• No results found

EUV optics cleanliness qualification using spectroscopic ellipsometry

N/A
N/A
Protected

Academic year: 2021

Share "EUV optics cleanliness qualification using spectroscopic ellipsometry"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

1. EUV reflectance loss due to carbon deposition is mainly determined by the carbon layer thickness and density and not by it’s composition. 2. All published experimental carbon densities and refractive indices are well described by Bruggeman’s effective medium approximation (BEMA).

3. For EUV induced carbon, the predicted reflectance loss based on the BEMA agrees well with the experimental data with an accuracy of ~ 1%, thus enabling qualification of the cleanliness of EUV optics.

-40% -30% -20% -10% 0% 0 5 10 15 20 25 30 -0.16 -0.12 -0.08 -0.04 0.00 ΔR/ R Polyethylene (0.90 g/cm3) Graphite (2.25 g/cm3) Diamond (3.51 g/cm3) (a) ΔR/ R/ ρ [ g/cm 3] -1

Carbon layer thickness (nm) (b)

ΔR/R/ρ≈kd

Juequan Chen

1

, Eric Louis

1

, Herbert Wormeester

2

, Rob Harmsen

1

, R.W.E. van de Kruijs

1

, Chris Lee

2

,

Willem van Schaik

3

, Fred Bijkerk

1,2

1

FOM-Institute for Plasma Physics Rijnhuizen,

2

MESA+ Research Institute for Nanotechnology, University of Twente,

3

ASML, Veldhoven, The Netherlands

Background & Motivation

• Physical mechanism of carbon contamination on EUV optics under EUV radiation

Experimental results

Goal: predict EUV reflectance loss due to carbon deposition using visible-light ellipsometry

Juequan Chen et al., Detection and characterization of carbon contamination on EUV multilayer mirrors, Optics Express, 17 (2009) 16969-16979

Juequan Chen et al., Characterization of EUV induced carbon films using laser-generated surface acoustic waves, Diamond and Related Materials, 18 (2009) 768-771

Conclusions

EUV optics cleanliness qualification using spectroscopic ellipsometry

Mo Si d x-rays: = 0.1-30 nm λ

Acknowledgements

Methodology

1. Principle of EUV reflectance loss

2. Estimating the carbon density from the

optical constants

4. Application for ultrathin carbon films

Estimation of carbon density

(a) Calculated relative EUV reflectance loss for different types of carbon films

(b) Reflectance loss nor-malized by density only

ÖReflectance attenuation scales with density and thickness only

ÖIn typical EUV optics contamination (< 5 nm) type of carbon is irrelevant for reflectance loss determination

ÖGood agreement for EUV induced C, up to 7% reflectance loss.

Ö4% offset for hot filament C and PVD C (for reflectance loss > 7%)

• Multilayer mirror for EUV optics

3. Estimation of EUV reflectance loss

ÖTrajectory of Ψ and Δ reveals type of carbon ÖGood agreement obtained between

densities measured by GIXR and estimated values using the BEMA and CM model.

Predict reflectance loss:

1. Ellipsometry allows determination of product of refractive index and thickness (nd).

2. ‘nd’ allows estimation of product of density and thickness (ρd) (BEMA) 3. Reflectance loss can be estimated

by Jeromy Hollenshead, J. Vac. Sci. Technol. 2006

• Principle of Ellipsometry

Change in polarization after reflection supplies thickness and optical constants of contamination layer • Wavelength range used:

− 0.7-5.1 eV (245.3-1689.4 nm) • In situ & ex situ

N o rmal Δ = = i s p e R R ) tan(ψ ρ

• 3 types of carbon contamination examined: • EUV induced carbon

• Physical vapor deposition (PVD) by e-beam evaporation • Evaporation from a graphite filament (hot filament C)

• EUV reflectometry and grazing incidence X-ray reflectivity (GIXR) used as reference

Carbon type n @600 nm Density Max (g/cm3) Density Min (g/cm3) e1 @0 eV Density Max (g/cm3) Density Min (g/cm3) Density (g/cm3)

Method ellipsometry BEMA BEMA extrapolated CM CM GIXR EUV C 1.41 1.17 0.79 1.95 1.40 0.63 1.2±0.2 Hot C 2.60 2.53 1.68 9.44 2.2661 1.99 2.0±0.1

PVD C 2.88 2.542 1.95 10.63 2.2661 2.06 2.2±0.2 1The density of HOPG is applied as the upper limit of graphite like carbon.

2This limit is based on k because it is smaller than that based on n 0%0% 5% 10% 15% 20% 25% 30% 35% 5% 10% 15% 20% 25% 30% 35% −Δ R /R ( est im at ed) −ΔR/R (measured) EUV induced C (BEMA) EUV induced C (CM) Hot filament C (BEMA) Hot filament C (CM) PVD C (BEMA) PVD C (CM)

− fvand fC: volume fraction of voids and carbon (fv+fC=1)

− and are the respective dielectric functions. − n+ik=

− Compared by the Clausius-Mosotti (CM) equation

0

2

2

v eff C eff v C v eff C eff

f

ε ε

f

ε

ε

ε

ε

ε

ε

=

+

+

+

Bruggeman’s effective medium approximation (BEMA): − Mix carbon with voids − Describe refractive index and density v ε εC eff ε

d

k

R

R

ρ

Δ /

22.523.0 23.5 24.024.525.025.5 26.0 26.527.027.528.0 90 100 110 120 130 140 150

EUV induced C growth Hot filament C growth Calculated for C (n=2.455 k=0.13) graphi te like Δ (° ) Ψ (°) diamo nd/polym er like start (clearn MLM) 4.1 nm 4 nm 11.9 nm

ÖRefractive indices for various types of carbon are all in the triangle (black-purple-blue line): limits density range for a measured n

ÖRange of density reduced further by k: − diamond-like (or polymer-like) if k < 0.15 − graphite-like if k > 0.15

ÖReduced range of density Æ EUV loss accurately predicted by ellipsometry data

Referenties

GERELATEERDE DOCUMENTEN

De nummers 27 en 30, fragmenten van ijzeren hulzen, eveneens langs de zuidoostelijke langszijde van het graf gelegen, behoren wellicht tot de houten schacht van

- op welke wiize wordt de gewenste moat bereikt bij het instellen. Er moeten worden ingesteld: gereedschappen in hou- clers, nokkenpane!en voor de posities en een

Daarop volgend werd er een dendrochronologisch onderzoeksproject (BOF, 2005-2006) uitgevoerd waarbij de uitbouw van een Vlaamse referentiechronologie centraal

After 1994, when the ANC (African National Congress) came to power, it recognised that traditional health practitioners (THP) play an important role in the primary health care

- in een woonwijk liggen liefst geen verkeersaders voor het doorgaand verkeer en niet teveel voorzieningen die het woonmilieu negatief bein vloeden;

The focus was on four overlapping groups of internationally linked authors: (1) Ugandan authors with an international co-author, (2) Uganda authors with a joint

Al kunnen computers steeds meer op het gebied van taal- en spraak- technologie, controle en bijstelling van hun out- put door de mens is nu nog nodig, zeker voor talen waarvan

thuiswerkers incidenteel niet op vaste dagen p.w. Van de thuiswerkers was 65 procent hoogopgeleid in 2018, van de niet-thuiswerkers was dit 24 procent. Daarnaast zijn