• No results found

The lower in vitro chondrogenic potential of canine adipose tissue-derived mesenchymal stromal cells (MSC) compared to bone marrow-derived MSC is not improved by BMP-2 or BMP-6

N/A
N/A
Protected

Academic year: 2021

Share "The lower in vitro chondrogenic potential of canine adipose tissue-derived mesenchymal stromal cells (MSC) compared to bone marrow-derived MSC is not improved by BMP-2 or BMP-6"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Original

Article

The

lower

in

vitro

chondrogenic

potential

of

canine

adipose

tissue-derived

mesenchymal

stromal

cells

(MSC)

compared

to

bone

marrow-derived

MSC

is

not

improved

by

BMP-2

or

BMP-6

M.

Teunissen

a,

*

,

F.

Verseijden

a

,

F.M.

Riemers

a

,

G.J.V.M.

van

Osch

b

,

M.A.

Tryfonidou

a a

DepartmentofClinicalSciences,FacultyofVeterinaryMedicine,UtrechtUniversity,Yalelaan108,3584CM,Utrecht,TheNetherlands

b

DepartmentofOrthopaedicsandDepartmentofOtorhinolaryngology,ErasmusMC,UniversityMedicalCenterRotterdam,3015GD,Rotterdam,The Netherlands ARTICLE INFO Articlehistory: Accepted22December2020 Keywords: BMP Cartilage Pelletculture Regenerativemedicine Surfacemarkerexpression

ABSTRACT

Mesenchymal stromalcells (MSC)are usedforcell-based treatmentforcanineosteoarthritis(OA).

ComparedwithhumanMSCs,detailedinformationonthefunctionalcharacterisationofcanineMSCsis

limited.Inparticular,thechondrogenicdifferentiationofcanineadiposetissue-derivedMSCs(cAT-MSCs)

ischallenging.Inthisstudy,weaimedtocomparecAT-MSCswithbonemarrow-derivedMSCs

(cBM-MSCs), focusing specifically on their in vitro chondrogenic potential, with or without bone

morphogenetic proteins(BMP).cBM-MSCs andcAT-MSCswerecharacterisedusing flowcytometry

and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The chondrogenic

differentiationpotentialofallcMSCpreparationsinthepresenceofTGF-β1aloneorwhensupplemented

with 10,100, or 250 ng/mL BMP-2 or BMP-6 was investigated using RT-qPCR, and biochemical,

histochemicalandimmunohistologicalanalyses.

BothcBM-MSCs andcAT-MSCsexpressedthesurfacemarkers CD90, CD73,and CD29,and were

negativeforCD45andCD34,althoughtheexpressionofCD73andCD271variedwithdonorandtissue

origin.Interestingly,expressionofACANandSOX9washigherincBM-MSCsthancAT-MSCs.Incontrast

withcBM-MSCs,cAT-MSCscouldnotdifferentiatetowardthechondrogeniclineagewithoutBMP-2/-6,

andtheirinvitrochondrogenesiswasinferiortocBM-MSCswithBMP-2/-6.Thus,cAT-MSCshavelower

invitrochondrogeniccapacitythancBM-MSCunderthestudiedcultureconditionswith10,100,or250

ng/mLBMP-2orBMP-6.Therefore,furthercharacterisationisnecessarytoexplorethepotentialof

cAT-MSCsforcell-basedOAtreatments.

©2021TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Osteoarthritis (OA) is a common progressive joint disease, characterisedbycartilagedegradation,subchondralbonechanges, and synovial inflammation. OA affects 2.5%–20% of the canine population, which increases to 80% in dogs aged >8 years (Anderson et al., 2018).Mesenchymal stromalcells (MSCs) are promisingcandidatesforcell-basedOAtreatmentsbecauseoftheir immunomodulatorypropertiesandchondrogeniccapacity( Whit-worthandBanks,2014;Im,2018).HumanMSCsisolatedfromthe bonemarrow(hBM-MSCs)possessinvitrochondrogenicpotential (Johnstoneetal.,1998;Pelttarietal.,2008).Comparedto hBM-MSCs, humanMSCsisolatedfromtheadiposetissue(hAT-MSC) possess several advantages, including ease of isolation with

minimalmorbidity,relativelyhigherMSCconcentration( Oedayr-ajsingh-Varmaetal.,2006),higherproliferationrate(Schäfflerand Büchler, 2007), and stronger immunosuppressive capabilities (Mattar and Bieback, 2015). While hAT-MSCs can differentiate towardmultiplelineagesinvitroandinvivo,theirosteogenicand chondrogenicpotentialareinferiortothoseofhBM-MSCs(Strioga etal.,2012).

CanineMSCs(cMSCs)havebeenlessextensivelycharacterised thanhMSCs(deBakkeretal.,2013).Particularly,thechondrogenic differentiation of cAT-MSCs is challenging; chondrogenesis in earlier studies was either unsuccessful (Russell et al., 2016), inferiortothatofcBM-MSCs (Reichetal., 2012;Beardenetal., 2017),orlackedrobustevidence(Robey,2017).

Therefore,weaimedtoenhancethechondrogeniccapacityof cAT-MSCstothelevelexhibitedbycBM-MSCsbysupplementing differentdosesofbonemorphogeneticprotein(BMP)-2orBMP-6. BothBMPsandtransforminggrowthfactor(TGF)-β1areknownto synergistically affect chondrogenesis (Sekiya et al., 2005).

*Correspondingauthor.

E-mailaddress:m.teunissen@uu.nl(M. Teunissen).

http://dx.doi.org/10.1016/j.tvjl.2020.105605

1090-0233/©2021TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

The

Veterinary

Journal

(2)

Furthermore, BMP-6 may specifically induce TGFβ receptor 1 expression, which is otherwise downregulated in hAT-MSCs comparedtothatinhBM-MSCs,therebyrecoveringtheeffectof TGF-β1 on hAT-MSC chondrogenesis (Hennig et al., 2007). Additionally,(surface)markerexpressionlevelsincAT-MSCsand cBM-MSCswerecomparedforobtainingmoreinsightsregarding differencesincellpopulation.

Materialsandmethods Animalsamples

Bonemarrowandadiposetissuesampleswerecollectedfrom healthydogs(n=14)aftereuthanasiaforunrelatedexperiments (AppendixA:Supplementarymaterial).Theprotocolwasapproved bytheEthicsCommitteeonAnimalExperimentation ofUtrecht University(2012.III.07.068,2013.III.08.254,2013.III.08.054). IsolationofcMSCsfromthebonemarrowandadiposetissue

cBM-MSCsand cAT-MSCswere isolatedand expandedasper methodsdescribedpreviously (Tryfonidou etal.,2014;Malagola etal.,2016).Briefly,afterisolation,thecellswereplated(cBM-MSCs; 1.3–2  106 cells/cm2, cAT-MSCs: 4  104 cells/cm2) in

MSC-expansion medium (α-MEM, Invitrogen) containing 10% foetal bovine serum (FBS; Gibco, high performance), 1% penicillin/ streptomycin(P/S;GEHealthcareLifeSciences),0.1mMascorbic acid2-phosphate(Sigma), and1ng/mL basicfibroblastgrowthfactor (bFGF;AbDSerotec)untilconfluencywasreachedandthecellswere cryopreserveduntilfurtheruse.Detaileddescriptionisprovidedin AppendixA:Supplementarymaterial.

Colony-formingunit-fibroblast(CFU-F)assay

Cryopreservedcellswerethawedoniceandplatedinexpansion medium atadensityof17cells/cm2 (correspondingto

approxi-mately 1000cells/Petridish(CellStar,664160,GreinerBio-One). After10–14days,thecellswerefixedwithmethanolandstained withCrystalViolet(0.5%inmethanol(100%),Sigma)for15minat roomtemperature(RT).Afterrinsing,thecolonies(consistingof >50cells)werecounted.

FACSanalysis

Sevencryopreserveddonor-matchedcAT-MSCsandcBM-MSCs (2106cells/donor)atpassage2wereanalysed.Thecellswere

thawedonice,washedinHanks’bufferedsalinesolution(HBBS) andresuspendedinstainbuffer(FSB,BDPharmingen)atadensity of 0.5–1 105 cells per reaction. Subsequently, the cells were

incubatedoniceinthedarkforatleast15minwithcanine-specific phycoerythrin (PE), fluoresceinisothiocyanate (FITC),orisotype

controlantibodies(Table1).Afterwashing,thecellswerestained with7-aminoactinomycinD(7AAD,0.25mg/test;BDBiosciences) todifferentiatebetweendeadandlivecells.Datawerecollected usingtheFACSDivasoftware(v8.0)onaCANTOII(BDBiosciences) andanalysedusingtheFlowJosoftware(v10.0).

Chondrogenicdifferentiation

TheprotocolusedforchondrogenicdifferentiationofthecMSCs wasadaptedfromJohnstoneetal.(1998)andwasfirstperformed usingTGF-β1(10ng/mL,RandDSystems)andBMP-6(10ng/mL, Peprotech;Hennig etal., 2007)in chondrogenic differentiation medium (Dulbecco’s modified Eagle medium [DMEM] high glucose, Invitrogen) containing 1% P/S, 1% ITS + premix (BD), 0.04mg/mLproline(Sigma),0.1mMascorbicacid2-phosphate, and10 7Mdexamethasone(Sigma;AppendixA:Supplementary

material).Pelletswerecollectedforreverse transcription-quanti-tative polymerasechain reaction (RT-qPCR), glycosaminoglycan (GAG),and DNAanalyses,and immunohistochemicalevaluation after35days.

Asthisdidnotresultinchondrogenicdifferentiationofthe cAT-MSCs, follow-up experiments were performed with higher concentrations of BMP-6 and BMP-2 (10,100, and 250 ng/mL). RT-qPCRwasperformedafter7daystodetectearlytranscriptional changesthatprecedethechangesattheproteinlevel.Additionally, cultureperiodof21dayswasusedbasedonmethodsreportedby

Mackayetal.(1998;AppendixA:Supplementarymaterial). GAGandDNAcontent

Threepelletsper donorwerepooled foreach conditionand digestedovernightat60Cusing600

m

Lpapaindigestionsolution (11.9

m

L/mLpapain[Sigma]and15.7

m

g/mLcysteineHCl[Sigma] inpapainbuffer[13mg/mLH2NaPO42H2Oand3.26mg/mLEDTA,

pH6]). GAGcontentwas determinedusingdimethyl methylene blue(DMMB,Sigma)assayasperprotocolsdescribedpreviously (Bach et al., 2015). DNA content was measured according to manufacturer’s instructions with the QubitTM dsDNA HS assay

(ThermoFisherScientific). Immunohistochemicalevaluation

Eachpelletwasfixedin4%neutralbufferedformalin(Klinipath B.V.)with0.1%eosin(BoomBVMemmel)andembeddedin2.4% alginateandparaffin.Five-micrometresectionswerestainedfor SafraninO/FastGreenstaining(0.125%SafraninO,Sigma;0.4%Fast Green, Sigma) and collagen type II (COL-II) and I (COL-I) immunohistochemistry as per methods described previously (Bach et al., 2015) using COL-I mouse monoclonal antibody (0.07

m

g/mL, Abcam, ab6308) and COL-II mouse monoclonal antibody (0.02

m

g/mL, DSSHB, II-II6B3), respectively. Normal

Table1

TheantibodiesusedforFACSanalysis.

Target Host Reactivity Clone Fluorochrome Manufacturer Catalognumber

CD90 Rat Dog YKIX337.217 PE eBioscience 12-5900-42

CD73 Rabbit Human,Mouse,Rat,Dog,Chicken Unknown FITC Biossantibodies bs-4834R

CD29 Mouse Human,Cow,Dog TS2/16 PE BioLegend 303004

CD271 Mouse Dog,Human,Mouse ME20.4 PE Invitrogen 12-9400-42 CD146 Mouse Dog,Human,Mouse,Rabbit P1H12 FITC Invitrogen 11-1469-42

CD45 Rat Dog Unknown PE LSBio LS-C127720

CD34 Mouse Dog IH6 PE BDPharmingen 559369

RatIgGK Rat Isotypecontrol eB149/10H5 PE eBioscience 12-4031-82 RabbitIgGk Rabbit Isotypecontrol Unknown PE Antibodiesonline ABIN376422 MouseIgGk Mouse Isotypecontrol MOPC-21 PE BioLegend 400112 IgGk,immunoglobulinkappa;PE,phycoerythrin;FITC,fluoresceinisothiocyanate.

(3)

mouseisotypeIgG(IgG1(RandD,HAF007)wasusedascontrol.

Sections werestained for 5 minwith Toluidine Blue O (0.04%, Sigma;BasicBlue17,86%dye,dissolvedin0.2Macetatebuffer). RT-qPCRanalysis

Thesurfacemarkerandchondrogenicgeneexpressionprofiles were investigated in expansion passage 2 of five matched, undifferentiatedcAT-MSCandcBM-MSCdonors(0.1106cells/

donor); the bone marrow was used as the control. The chondrogenic gene expressionof the differentiated cMSCs was determinedinthreepooledpelletsperdonorforeachcondition. The pelletsweresnap-frozenand crushedwitha pestle (Argos technologies Inc, 9951-901). Total RNA was isolated using the RNeasyminikit(Qiagen,74134)ormicrokit(Qiagen,74004),which includedanon-columnDNasestep.RNAwasquantifiedusingthe NanoDropND-1000spectophotometer(IsogenLifeScience).cDNA wassynthesisedusingtheiScriptTMcDNAsynthesiskit(Bio-Rad) accordingtothemanufacturer’sinstructions.

RT-qPCRwasperformedusingtheBioRadCFX-384cyclerandIQ SYBRGreen supermix (Bio-Rad) and surface marker-and chon-drogenic lineage-specificprimers (Table 2).Relative expression wasestimatedusingtheefficiency-correcteddelta-deltaCt(

DD

Ct)

methodandsixreferencegenes;HNRPH,RPL8,GUSB,SRPR,YWHAZ, andsDHA(Table2).

Statisticalanalysis

DetaileddescriptionofthestatisticalanalysesusingRsoftware (version3.0.2)isprovidedinAppendixA:Supplementarymaterial. Inshort,linearmixedmodelswereusedfornormallydistributed dataandtheKruskal-Wallisranksumtestfordatathatwerenot distributednormally.DifferenceswereconsideredsignificantifP values were <0.05 after multiple comparison correction. Addi-tionally,theeffectsize(ES)wascalculatedusingCohen’sd(Cohen, 1977).Effectsizeof>0.8wasconsideredtobelarge,and>2.0was consideredtobehuge(Cohen,1977;Sawilowsky,2009). Results

cBM-MSCsandcAT-MSCswereplastic-adherentandformcolonies Alldonorsdemonstratedthetypicalfibroblast-likephenotype (Fig.1).Approximately80%confluencywasreachedwithin5days forcAT-MSCs(range;3–7days)andwithin8daysforcBM-MSCs (range;7–9days).Onaverage,cAT-MSCsandcBM-MSCsproduced

Table2

PrimersusedinRT-qPCR.

Marker Gene PrimerSequence AmpliconSize(bp) Annealingtemperature(C) NCBIaccessionno.

Surfacemarkerexpression CD90 F:CAGCATGACCCGGGAGAAAAAG 134 63.5 NM_001287129 R:TGGTGGTGAAGCCGGATAAGTAGA CD146 F:GGGAATGCTGAAGGAAGG 99 63 XM_022418207 R:CTTGGTGCTGAGGTTCTG CD166 F:AAGCGTCATAAACCAAACAG 150 61 NM_001313804 R:TATAGCAGAGACATTCAAGGAG CD73 F:CTCCAACACATTCCTTTACAC 150 61 XM_532221 R:ACTCAACCTTCAAATAGCCT CD105 F:CATCCTTCACCACCAAGAG 139 60 XM_005625330 R:CAGATTGCAGAAGGACGG CD44 F:CTTCTGCAGATCCGAACACA 147 60 NM_001197022 R:GAGTAGAAGCCGTTGGATGG CD14 F:CCCGGCGCTCACCACCTTAGAC 98 60 XM_843653 R:CCTGGAGGGCCGGGAACTTTTG CD45 F:GACCATGGGGTGCCTGAAGAT 90 58 64 XM_005622282 R:CACAATGGGGCCACTGAAGAAG CD31 F:GTTCTGCGTGTCAAGGTG 85 65 XM_022422841 R:TGTCCTTCCCAAACTCCA CD34 F:TCAGGGCCCCCGACATCTC 115 66 NM_001003341 R:TCTCTGCTCACCCCTCTGGAAAAA

Chondrogenesis ACAN F:GGACACTCCTTGCAATTTGAG 110 61 62 NM_001113455 R:GTCATTCCACTCTCCCTTCTC COL2A1 F:GCAGCAAGAGCAAGGAC 150 60.5 65 NM_001006951 R:TTCTGAGAGCCCTCGGT SOX9 F:CGCTCGCAGTACGACTACAC 105 62 63 NM_001002978 R:GGGGTTCATGTAGGTGAAGG COL1A1 F:GTGTGTACAGAACGGCCTCA 109 61 NM_001003090 R:TCGCAAATCACGTCATCG COL10A1 F:CCAACACCAAGACACAG 80 61 XM_849417 R:CAGGAATACCTTGCTCTC TGFβR1 F:CAGTCACCGAGACCACAGACAAAGT 100 54 XM_014117881 R:TGAAGATGGTGCACAAACAAATGG

Housekeepinggenes HNRPH F:CTCACTATGATCCACCACG 151 61,2 XM_538576 R:TAGCCTCCATAACCTCCAC RPL8 F:CCATGAATCCTGTGGAGC 64 55 XM_532360 R:GTAGAGGGTTTGCCGATG GUSB F:AGACGCTTCCAAGTACCCC 103 62 NM_001003191 R:AGGTGTGGTGTAGAGGAGCAC SRPR F:GCTTCAGGATCTGGACTGC 81 61,2 XM_546411 R:GTTCCCTTGGTAGCACTGG YWHAZ F:CGAAGTTGCTGCTGGTGA 94 58 XM_843951 R:TTGCATTTCCTTTTTGCTGA sDHA F:GCCTTGGATCTCTTGATGGA 92 61 DQ402985 R:TTCTTGGCTCTTATGCGATG F,Forward;R,Reverse;bp,basepair;no,number.

(4)

10132and11149coloniesper1000platedcells,respectively (nosignificantdifference).

Passage2cAT-MSCshadlowCD73,ACAN,andSOX9expressionlevels The expressionprofile, investigatedusingFACSanalysis, was similar for passage 2 cBM-MSCs and cAT-MSCs, with high frequencies ofCD90+and CD29+ cellsand negligiblenumber of

CD271+,CD146+,CD34+,andCD45+cells(Fig.2a).Thenumberof CD271+cells weresignificantlylowerin cAT-MSCsthan that in

cBM-MSCs(P<0.001).LowbutvariablefrequenciesofCD73+cells

wereobserved(cBM-MSC:17.7%18.7%;cAT-MSC:14.7%8.8%). RT-qPCRwasperformedtoinvestigatetheexpressionofsurface markers,againstwhichcanine-specificFACSantibodieswerenot available.HighCD90,CD105,andCD166expressionandlowCD146 expression were observed in both cell types (Fig. 2b). CD44 expressionwas lowincBM-MSCs andwasundetectable in cAT-MSCs(P=0.26).CD73expressionwassignificantlyhigherin cBM-MSCthanthatincAT-MSC(P=0.0088).CD34,CD45,CD14,andCD31 were undetectablein both cell types.In undifferentiated cBM-MSCs,theexpressionlevelsofSOX9(P=0.02)andACAN(P=0.055) werehigherthanthoseincAT-MSC(Fig.2c).COL2A1andCOL1A1 weresimilarlyexpressedinbothcelltypes.

cAT-MSCsdidnotundergochondrogenesiswithouthigh concentrationsofBMP-2orBMP-6

DifferentiationwithTGF-β1and10ng/mLBMP-6assessedatday35 Afteradditionof TGF-β1,DNAcontentincreasedin bothcell types(P=0.00015)comparedtothatinthecontrolgroup,without additionaleffectofBMP-6(Fig.3a).Thiswasalsoreflectedinthe increaseinpelletsizeafterTGF-β1addition(Fig.3c).Theincrease

in GAG deposition, observed only in cBM-MSCs (Fig. 3a), was confirmedbyincreaseinACANexpression(P=0.007,Fig.3b)and positivity to Safranin O and Toluidine Blue staining (Fig. 3c). DepositionofCOL-IIbycBM-MSCswasconfirmedusing immuno-histochemistryandwasinagreementwiththeincreaseinCOL2A1 expression(Fig.3band3c).COL1A1expressionwassignificantly upregulatedincBM-MSCsandcAT-MSCsuponadditionofTGF-β1 alone(P=0.00003)orwithBMP-6(P=0.00003).Further,all cBM-MSCandcAT-MSCdonorsexpressedCOL-I.ExpressionofTGFβR1 wassignificantlylowerincAT-MSCsthanthatincBM-MSCs(P= 0.0008),anditsexpressiondidnotincreasewithTGF-β1orBMP-6 treatment.COL10A1expressionwasnotdetected,irrespectiveof theconditionanddonor.

DifferentiationwithTGF-β1anddifferentconcentrationsofBMP-2 andBMP-6

RT-qPCRwasperformedafter7daystoassessearly transcrip-tional changes (Fig. 4a). A BMP dose-dependent effect was observed in cBM-MSCs, with significant increase in ACAN expressionuponadditionof100or250ng/mLBMP-6(P=0.014 and0.049,respectively),and100or250ng/mLBMP-2(P=0.0017 and 0.0059, respectively), compared to that in the control. Additionally,comparedtothatinthecontrol,COL2A1expression significantlyincreasedwith100and250ng/mLBMP-2(P=0.046 and0.042,respectively),and250ng/mLBMP-6(P=0.049).In cAT-MSCs,amoderatedose-dependentincreasewasobservedonlyfor SOX9,ACAN,andCOL1A1afterstimulationwithBMP-2orBMP-6. TGFBR1expressionwassignificantlylowerincBM-MSCstreated with100or250ng/mLBMP-6(P<0.001)thaninthosetreated withTGF-β1alone.Thisdownregulationwasalsosignificantfor cAT-MSCs in the presence of 250 ng/mL of BMP-6 (P = 0.02). Expressionof TGFBR1in cAT-MSCswas significantlylowerthan

Fig.1.MSCmorphologyandCFU-Fassays.(a)Brightlightphasecontrastimagesofcaninebonemarrow(BM)-andadiposetissue(AT)-derivedmesenchymalstromalcells (MSC)demonstrateatypicalfibroblast-likephenotype.Scalebars,400mM(b)Representativeimagesofthecolony-forming-units(CFU)assayafterstainingwithCrystal Violet;cAT-MSCs,10132colonies;cBM-MSCs,11149coloniesper1000platedcells.

(5)

Fig.2. Surfaceandchondrogenicmarkerexpressionincaninebonemarrow(BM)-andadiposetissue(AT)-derivedmesenchymalstromalcells(MSC)inpassage2.(a)Mean standarddeviation(SD)ofthepercentageofcellspositiveforCDmarkersincBM-MSCs(blackbars)andcAT-MSCs(greybars),assessedusingFACSanalysis.(b)MeanSDof thenormalisedrelativeexpressionofCDmarkersinthebonemarrow(triangle),cBM-MSCs(circles),andcAT-MSCs(squares)comparedtothemeangeneexpression(dotted line).(c)MeanSDofthenormalisedrelativeexpressionofACAN,COL2A1,SOX9,andCOL1A1ofcBM-MSCs(circles)andcAT-MSCs(squares)comparedtothemeangene expression(dottedline).Individualdonorsareshownindifferentcolours.*,Significantdifferencebetweencelltypeswithinageneormarker(*P<0.05;**P<0.01).s, DifferencebetweenthetwocelltypeswithP<0.1andaneffectsize>0.8.

Fig.3.Biochemical,histological,andRT-qPCRanalysesofcaninebonemarrow(cBM,circles)-andcanineadiposetissue(cAT,squares)-derivedmesenchymalstromalcells (MSC),differentiatedtowardsthechondrogeniclineagefor35daysinpelletculturewithorwithout10ng/mLTGF-β1and10ng/mLBMP-6.(a)Biochemicalanalysisofthe glycosaminoglycan(GAG)content,DNAcontent,andGAGcontentcorrectedforDNAcontent(meanstandarddeviation(SD)).(b)MeanSDofthenormalisedrelative expressionofACAN,COL2A1,SOX9,COL1A1,andTGFBR1comparedtothemeanexpressionofthecontrolsamplesofbothcelltypes(dottedline).Individualdonorsareshownin differentcolours.##,Significantdifferenceinbothcelltypesinthisconditionvs.thecontrolgroup(P<0.01);**,significantdifferenceinthecBM-MSCgroupcomparedtothat inthecBM-MSCcontrolgroupandthecorrespondingcAT-MSCgroup;P<0.01.(c)Histologicalanalysisofdepositedglycosaminoglycans(GAG),usingSafraninO/FastGreen andToluidineBlue,andimmunohistochemicalanalysisofcollagentypeIandcollagentypeII.Scalebars,200mm.

(6)

thatincBM-MSCsinthepresenceof250ng/mLBMP-6(P=0.049). COL10A1expressionwasnotdetectedunderanyconditionorwith anydonor.

After 21days, GAG content and GAG/DNA increased signi fi-cantlyonlyafteradditionof250ng/mLBMP-2tocBM-MSCs(P< 0.01)andcAT-MSCs(P=0.07;Fig.4b).BMP-2(100ng/mL)induced chondrogenesisonly in a subsetof thecBM-MSCand cAT-MSC donors.GAGproductionanddepositionwasnotobservedafterthe additionofTGF-β1or10ng/mLBMP-2/-6.Uponsupplementation with100or250ng/mLBMP-6,chondrogenesiswaslimitedtoonly one cBM-MSCdonor. Irrespective of the growth factor supple-mented, cBM-MSCs deposited more GAGsthan cAT-MSCs. DNA contentsignificantlyincreaseduponadditionof100and250ng/ mLBMP-2(P<0.01),demonstratedbytheincreaseinpelletsize (Fig.4c).PositiveSafraninO,ToluidineBlue,andCOL-IIstaining wasobservedincBM-MSCpelletsfromdonorsthatdemonstrated GAGdepositionatthebiochemicallevel(Fig.4c),whileCOL-IIwas absentinallcAT-MSCs(Fig.4c).COL-Iwasdepositedinpelletsofall donorsaftergrowthfactorstimulation(Fig.4c).

Discussion

AT-MSCsarecommonlyusedindogsfortreatingOA(Hoffman and Dow, 2016; Gugjoo et al., 2019) owing to their immune-modulatory and regenerative abilities. However,their chondro-genic potential remains unclear. Here, wefurthercharacterised and comparedthesurfacemarkerexpressionandchondrogenic potential of cAT-MSCs with those of cBM-MSCs, a reference standard.

Adonor-matchedcomparisonofMSC-relatedsurfacemarkers demonstratedthattheexpressionpatternsofcBM-MSCsand cAT-MSCs were similar at passage 2. Differential expression was observedforCD73andCD271,bothpoorlyexpressedincAT-MSCs. CD73 positivity in hAT-MSCs has been associated with high chondrogeniccapacity andlowosteogenic capacity(Radaetal., 2011).CD271isconsideredahighlyselectivesurfacemarkerfor hBM-MSCs; CD271+ cells are considered to possess higher

chondrogenic potential(Lvet al.,2014;Somozaet al.,2014;Lu

etal.,2020).TheoverallCD271+frequencywaslowerinbothcell

typesthanthefrequenciesreportedinhumans(Lvetal.,2014).The cAT-MSCpopulationcontainsa relativelylowerfractionofcells withchondrogenicpotential, which possiblycontributed tothe poorchondrogenesisobservedinthisstudy.However,CDmarker expressionvariesbetweenreportsandspecies(Uderetal.,2018); moreimportantly,markerprofileschangeduringpassaging(Bara et al., 2014), thereby rendering their predictive capacity of chondrogenesisdebatable.Forexample,CD34expressionishighly affectedbycellculture,which,whilefoundtobehighincAT-MSCs immediately after isolation, disappearsafter culture(Lin et al., 2012).Furthermore,althoughCD34expressionhasbeenreported incAT-MSCs(Russelletal.,2016;Kriston-Páletal.,2017),ourstudy andstudiesreportedbyothers(Ivanovskaetal.,2017)havenot beenabletodetectit.InterpretationoftheCDprofileswasfurther complicatedbythepreviousfindingthat FACS-sorted subpopu-lationsofMSCshad similarCD markerexpressionprofilesafter culturing,whileretainingtheirfunctionaldifferences( Sivasubra-maniyan et al., 2018). In this complicated landscape, surface marker characterisation in the veterinary field is further chal-lenged by the lack of species-specific antibodies. Although RT-qPCRanalysisofCDmarkerscanbeused,discrepanciesbetween mRNAandproteinexpressionshouldbeconsidered.Forexample, thecanineMSCswerereportedlypositiveforCD44,whilethegene expressionlevelofthisCDmarkerwaslow.Altogether,thisimplies thattheapplicabilityofthemarkersproposedbytheInternational SocietyforCellularTherapy(ISCT;Dominicietal.,2006)indogs remainstobedetermined.AlthoughCDmarkerexpressionwas largelysimilar,higherexpressionofACANandSOX9inpassage2 undifferentiated cBM-MSCs was detected. We speculated that thesedifferencesingeneexpressionwereobservedbecause cBM-MSCsweremoreprimedtowardchondrogenesisthancAT-MSCs, which was influenced by thetissue origin (Rasi Ghaemiet al., 2013).However,furtherinvestigationregardingthechondrogenic potential of specific subpopulations within cBM-MSCs or cAT-MSCsiswarranted.

Ideally, upon chondrogenic differentiation, cMSCs should primarily produce COL-II rather than COL-I. Our results

Fig.4. Biochemical,histological,andRT-qPCRanalysesofthechondrogenicdifferentiationwithorwithoutdifferentdosesofbonemorphogeneticprotein(BMP)-2orBMP-6 ofcaninebonemarrow(cBM,circles)-andcanineadiposetissue(cAT,squares)-derivedmesenchymalstromalcells(MSC).(a)Meanstandarddeviation(SD)ofthe normalisedrelativeexpressionofACAN,COL2A1,SOX9,COL1A1,andTGFBR1ofcBM-MSCsandcAT-MSCsdifferentiatedtowardsthechondrogeniclineagefor7daysinpellet culturewithorwithoutTGF-β1and10,100,or250ng/mLBMP-2orBMP-6.Geneexpressionhasbeenpresentedastheexpressioncomparedtothemeangeneexpressionof thecontrolsamplesofbothcelltypes(dottedline).Individualdonorsareshownindifferentcolours.#,significantdifferencebetweenallcelltypesinthisconditionandthe controlgroup(#,P<0.05;##,P<0.01);*,significantdifferencevs.thecontrolgroup,butonlyinthiscelltype(*,P<0.05;**,P<0.01);$,significantdifferencevs.thegroup treatedwithonlyTGF-β1forcBM-MSCs(COL1a1,TGFβR1),cAT-MSCs(ACAN),orindependentofcelltype(DNAcontent;P<0.05);&,significantdifferencebetweencelltypes withinthesamecondition(P<0.05).(b)Biochemicalanalysisoftheglycosaminoglycan(GAG)content,DNAcontent,andGAGcontentcorrectedforDNAcontent(meanSD) ofcBM-MSCandcAT-MSC,differentiatedtowardthechondrogeniclineagefor21daysinpelletculturewithorwithoutTGF-β1and10,100,or250ng/mLBMP-2orBMP-6.(c) Histologicalanalysisofglycosaminoglycans(GAG),usingSafraninO/FastGreenandToluidineBlue,andimmunohistochemicalanalysisofcollagenIandcollagenII.

(7)

demonstratedthatcBM-MSCsproducedbothcollagens,with COL-II being primarily produced under effective chondrogenic con-ditions,whichwasinagreementwiththeobservationsreportedby otherstudies(Hodgkiss-Geereetal.,2012),whilecAT-MSCsonly deposited COL-Iunder the same culture conditions. Contrarily, COL-II depositionincAT-MSCpelletshasbeendemonstratedby others(Neupaneetal.,2008;Vieiraetal.,2010).However,afew studiesthatdirectlycomparedcBM-andcAT-MSCsreportedthat cAT-MSCsexpressedlessCOL2A1(Reichetal.,2012)andexhibited limitedCOL-IIand ToluidineBluestaining(Beardenetal.,2017) withoutBMPsupplementation.COL-IdepositionbybothcMSCsis not remarkable, as TGF-β1 is known to exert fibrotic effects (Cutroneo, 2007). In the absence of sufficient chondrogenic stimuli, cMSCsproduceamorefibrousinsteadofhyaline-based cartilaginousmatrix, explainingtheincreaseinpelletsizeinall TGF-β1-stimulated pellets. Furthermore, within the course of chondrogenic differentiation, hMSCs follow the endochondral ossificationpathway,therebyexpressingmarkersofhypertrophy (COL-X,ALP,andMMP13;Pelttarietal.,2008).Inthisstudy,COL-X wasundetectableatthegeneandproteinlevels.WhethercMSCs eventually also undergohypertrophic differentiation when cul-turedforextendedperiodsoftimeorwhetheradditionalstimuli arenecessaryremainstobedetermined.

ThechondrogenicpotentialofhumanAT-MSCsmaydependon growthfactorsotherthanTGF-β1(Hennigetal.,2007).However, cAT-MSCsdidnotundergochondrogenesiswiththeadditionof10 ng/mLBMP-6,norwasthereCOL-IIdepositionwithhigherdosesof BMP-2/-6.Additionally,TGFβR1,whichwasreportedtorestorethe chondrogenic potential of hAT-MSCs, was significantly down-regulatedincAT-MSCssupplementedwithhighdosesofBMP.This downregulationisprobablytheresultofnegativefeedbackloops initiatedbythehighBMPconcentrationthatactatthereceptor level(Yanetal.,2018).Thediscrepancyinoutcomebetweenthis studyandotherstudiesmightbeduetocultureprotocoland/or speciesdifferences(Martínez-Lorenzoetal.,2009).Incontrastto sheep or human chondrocytes, canine chondrocytes lose their abilitytore-differentiateunderchondrogenicinductionafterfew passages(Giannonietal.,2005).Alternativegrowthfactorsmight thereforeberequiredtorestorethechondrogenicpotentialof cAT-MSCs(BoeufandRichter,2010).It isalsopossiblethat environ-mental factors arising during culture, such as mechanical stimulation, oxygen tension, and nutritional supplementation, mayexplainwhytheresultsofthisstudydifferfromthoseofother studies(Henniget al.,2007; Neupaneetal.,2008;Vieiraetal., 2010),andtheireffectoncAT-MSCsshouldbefurtherinvestigated. Conclusions

Thisstudydemonstratedthatthechondrogeniccapacityof cAT-MSCs under standardculture conditionswas inferiortothat of cBM-MSCs,asdemonstratedbythedepositionofGAGsandCOL-II, and that chondrogenic capacity could not be restored with differentdosesofBMP-2 orBMP-6.Furtherinvestigationofthe stimulinecessaryforthechondrogenicdifferentiationofcAT-MSCs iswarrantedbeforeconsideringcAT-MSCsforcell-basedtreatment strategiesforOA.

Conflictofintereststatement

Noneoftheauthorshasanyfinancialorpersonalrelationships thatcouldinappropriatelyinfluenceorbiasthecontentofthepaper. Acknowledgements

ThisworkwassupportedbytheAOBone(S-10-48T)andthe DutchArthritisSociety(LLP22).WethankHarryvanEngelenfor

providingassistancewiththecollectionofthetissuesamples,Ger ArkensteinforaidingwiththeFACSanalysis,andKarinBenzfor giftingBMP-2generously.Preliminaryresultswerepresentedasa poster at the first MBE (Matrix Biology Europe) conference, Rotterdam,21–24June2014.

AppendixA.Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,inthe onlineversion,atdoi:https://doi.org/10.1016/j.tvjl.2020.105605. References

Anderson,K.L.,O’Neill,D.G.,Brodbelt,D.C.,Church,D.B.,Meeson,R.L.,Sargan,D., Summers,J.F.,Zulch,H.,Collins,L.M.,2018.Prevalence,durationandriskfactors forappendicularosteoarthritisinaUKdogpopulationunderprimary veterinarycare.ScientificReports8,1–12.

Bach,F.C.,deVries,S.A.H.,Krouwels,A.,Creemers,L.B.,Ito,K.,Meij,B.P.,Tryfonidou, M.A.,2015.Thespecies-specificregenerativeeffectsofnotochordal cell-conditionedmediumonchondrocyte-likecellsderivedfromdegenerated humanintervertebraldiscs.EuropeanCellsandMaterials30,132–147. Bara,J.J.,Richards,R.G.,Alini,M.,Stoddart,M.J.,2014.Concisereview:bone

marrow-derivedmesenchymalstemcellschangephenotypefollowinginvitroculture: implicationsforbasicresearchandtheclinic.StemCells32,1713–1723. Bearden,R.N.,Huggins,S.S.,Cummings,K.J.,Smith,R.,Gregory,C.A.,Saunders,W.B.,

2017.In-vitrocharacterizationofcaninemultipotentstromalcellsisolatedfrom synovium,bonemarrow,andadiposetissue:adonor-matchedcomparative study.StemCellResearchandTherapy8,1–22.

Boeuf,S.,Richter,W.,2010.Chondrogenesisofmesenchymalstemcells:roleof tissuesourceandinducingfactors.StemCellResearchandTherapy1,31. Cohen,J., 1977.StatisticalPowerAnalysisfortheBehavioralSciences,revisededition

AcademicPress,NewYork.

Cutroneo,K.R.,2007.TGF-β-inducedfibrosisandSMADsignaling:Oligodecoysas naturaltherapeuticsforinhibitionoftissuefibrosisandscarring.WoundRepair andRegenerationSupplement15,54–60.

deBakker,E.,VanRyssen,B.,DeSchauwer,C.,Meyer,E.,2013.Caninemesenchymal stemcells:stateoftheart,perspectivesastherapyfordogsandasamodelfor man.VeterinaryQuarterly33,225–233.

Dominici,M.,LeBlanc,K.,Mueller,I.,Slaper-Cortenbach,I.,Marini,F.C.,Krause,D.S., Deans,R.J.,Keating,A.,Prockop,D.J.,Horwitz,E.M.,2006.Minimalcriteriafor definingmultipotentmesenchymalstromalcells.TheInternationalSocietyfor CellularTherapypositionstatement.Cytotherapy8,315–317.

Giannoni,P.,Crovace,A.,Malpeli,M.,Maggi,E.,Arbicò,R.,Cancedda,R.,Dozin,B., 2005.Speciesvariabilityinthedifferentiationpotentialofinvitro-expanded articularchondrocytesrestrictspredictivestudiesoncartilagerepairusing animalmodels.TissueEngineering11,237–248.

Gugjoo,M.B.,Amarpal,Fazili,M.U.R.,Gayas,M.A.,Ahmad,R.A.,Dhama,K.,2019. Animalmesenchymalstemcellresearchincartilageregenerativemedicine–a review.VeterinaryQuarterly39,95–120.

Hennig,T.,Lorenz,H.,Thiel,A.,Goetzke,K.,Dickhut,A.,Geiger,F.,Richter,W.,2007. Reducedchondrogenicpotentialofadiposetissuederivedstromalcells correlateswithanalteredTGF?ReceptorandBMPprofileandisovercomeby BMP-6.JournalofCellularPhysiology211,682–691.

Hodgkiss-Geere,H.M.,Argyle,D.J.,Corcoran,B.M.,Whitelaw,B.,Milne,E.,Bennett,D., Argyle,S.A.,2012.Characterisationanddifferentiationpotentialofbonemarrow derivedcaninemesenchymalstemcells.TheVeterinaryJournal194,361–368. Hoffman,A.M.,Dow,S.W.,2016.Concisereview:stemcelltrialsusingcompanion

animaldiseasemodels.StemCells34,1709–1729.

ImIl,G.,2018.Tissueengineeringinosteoarthritis:currentstatusandprospectof mesenchymalstemcelltherapy.BioDrugs32,183–192.

Ivanovska,A.,Grolli,S.,Borghetti,P.,Ravanetti,F.,Conti,V.,DeAngelis,E.,Macchi,F., Ramoni,R.,Martelli,P.,Gazza,F.,etal.,2017.Immunophenotypical characterizationofcaninemesenchymalstemcellsfromperivisceraland subcutaneousadiposetissuebyaspecies-specificpanelofantibodies.Research inVeterinaryScience114,51–58.

Johnstone,B.,Hering,T.M.,Caplan,A.I.,Goldberg,V.M.,Yoo,J.U.,1998.Invitro chondrogenesisofbonemarrow-derivedmesenchymalprogenitorcells. ExperimentalCellResearch238,265–272.

Kriston-Pál,É.,Czibula,Á.,Gyuris,Z.,Balka,G.,Seregi,A.,Sükösd,F.,Süth,M., Kiss-Tóth,E.,Haracska,L.,Uher,F.,etal.,2017.Characterizationandtherapeutic applicationofcanineadiposemesenchymalstemcellstotreatelbow osteoarthritis.CanadianJournalofVeterinaryResearch81,73–78. Lin,C.S.,Ning,H.,Lin,G.,Lue,T.F.,2012.IsCD34trulyanegativemarkerfor

mesenchymalstromalcells?Cytotherapy14,1159–1163.

Lu,Z.,Yan,L.,Pei,M.,2020.Commentaryon‘Surfacemarkersassociatedwith chondrogenicpotentialofhumanmesenchymalstromal/stemcells’. F1000Research9.

Lv,F.J.,Tuan,R.S.,Cheung,K.M.C.,Leung,V.Y.L.,2014.Concisereview:thesurface markersand identityof human mesenchymalstem cells. Stem Cells 32,1408–1419. Mackay,A.M.,Beck,S.C.,Murphy,J.M.,Barry,F.P.,Chichester,C.O.,Pittenger,M.F.,

1998.Chondrogenicdifferentiationofculturedhumanmesenchymalstemcells frommarrow.TissueEngineering4,415–428.

(8)

Malagola,E.,Teunissen,M.,VanDerLaan,L.J.W.,Verstegen,M.M.A.,Schotanus,B.A., VanSteenbeek,F.G.,Penning,L.C.,VanWolferen,M.E.,Tryfonidou,M.A.,Spee,B., 2016.Characterizationandcomparisonofcaninemultipotentstromalcells derivedfromliverandbonemarrow.StemCellsandDevelopment25,139–150. Martínez-Lorenzo,M.J.,Royo-Cañas,M.,Alegre-Aguarón,E.,Desportes,P.,Castiella,

T.,García-Álvarez,F.,Larrad,L.,2009.Phenotypeandchondrogenic differentiationofmesenchymalcellsfromadiposetissueofdifferentspecies. JournalofOrthopaedicResearch27,1499–1507.

Mattar,P.,Bieback,K.,2015.Comparingtheimmunomodulatorypropertiesofbone marrow,adiposetissue,andbirth-associatedtissuemesenchymalstromalcells. FrontiersinImmunology6,560.

Neupane,M.,Chang,C.-C.,Kiupel,M.,Yuzbasiyan-Gurkan,V.,2008.Isolationand characterizationofcanineadipose-derivedmesenchymalstemcells.Tissue EngineeringPartA14,1007–1015.

Oedayrajsingh-Varma,M.J.,vanHam,S.M.,Knippenberg,M.,Helder,M.N., Klein-Nulend,J.,Schouten,T.E.,Ritt,M.J.P.F.,vanMilligen,F.J.,2006.Adipose tissue-derivedmesenchymalstemcellyieldandgrowthcharacteristicsareaffectedby thetissue-harvestingprocedure.Cytotherapy8,166–177.

Pelttari,K.,Steck,E.,Richter,W.,2008.Theuseofmesenchymalstemcellsfor chondrogenesis.Injury39,58–65.

Rada,T.,Reis,R.L.,Gomes,M.E.,2011.Distinctstemcellssubpopulationsisolated fromhumanadiposetissueexhibitdifferentchondrogenicandosteogenic differentiationpotential.StemCellReviewsandReports7,64–76.

RasiGhaemi,S.,Harding,F.J.,Delalat,B.,Gronthos,S.,Voelcker,N.H.,2013.Exploring themesenchymalstemcellnicheusinghighthroughputscreening. Biomaterials34,7601–7615.

Reich,C.M.,Raabe,O.,Wenisch,S.,Bridger,P.S.,Kramer,M.,Arnhold,S.,2012. Isolation,cultureandchondrogenicdifferentiationofcanineadiposetissue-and bonemarrow-derivedmesenchymalstemcells–acomparativestudy. VeterinaryResearchCommunications36,139–148.

Robey,P.,2017.‘Mesenchymalstemcells’:factorfiction,andimplicationsintheir therapeuticuse.F1000Research6,524.

Russell,K.A.,Chow,N.H.C.,Dukoff,D.,Gibson,T.W.G.,LaMarre,J.,Betts,D.H.,Koch,T. G.,2016.Characterizationandimmunomodulatoryeffectsofcanineadipose

tissue-andbonemarrow-derivedmesenchymalstromalcells.PLoSOne11, e0167442.

Sawilowsky,S.S.,2009.Neweffectsizerulesofthumb.JournalofModernApplied StatisticalMethods8,597–599.

Schäffler,A.,Büchler,C.,2007.Concisereview:Adiposetissue-derivedstromal cells-basicandclinicalimplicationsfornovelcell-basedtherapies.StemCells25, 818–827.

Sekiya,I.,Larson,B.L.,Vuoristo,J.T.,Reger,R.L.,Prockop,D.J.,2005.Comparisonof effectofBMP-2,-4,and-6oninvitrocartilageformationofhumanadultstem cellsfrombonemarrowstroma.CellandTissueResearch320,269–276. Sivasubramaniyan,K.,Ilas,D.C.,Harichandan,A.,Bos,P.K.,Santos,D.L.,deZwart,P.,

Koevoet,W.J.L.M.,Owston,H.,Bühring,H.J.,Jones,E.,etal.,2018.Bonemarrow– harvestingtechniqueinfluencesfunctionalheterogeneityofmesenchymal stem/stromalcellsandcartilageregeneration.AmericanJournalofSports Medicine46,3521–3531.

Somoza,R.A.,Welter,J.F.,Correa,D.,Caplan,A.I.,2014.Chondrogenicdifferentiation ofmesenchymalstemcells:challengesandunfulfilledexpectations.Tissue Engineering-PartB:Reviews20,596–608.

Strioga,M.,Viswanathan,S.,Darinskas,A.,Slaby,O.,Michalek,J.,2012.Sameornot thesame?Comparisonofadiposetissue-derivedversusbonemarrow-derived mesenchymalstemandstromalcells.StemCellsandDevelopment21,2724– 2752.

Tryfonidou,M.A.,Schumann,S.,Armeanu,S.,Harichandan,A.,Sivasubramaniyan,K., Mollenhauer,J.,Bühring,H.,2014.UpdateoncanineMSCmarkers.Cytometry PartA85,379–381.

Uder,C.,Brückner,S.,Winkler,S.,Tautenhahn,H.M.,Christ,B.,2018.MammalianMSC fromselectedspecies:featuresandapplications.CytometryPartA93,32–49. Vieira,N.M.,Brandalise,V.,Zucconi,E.,Secco,M.,Strauss,B.E.,Zatz,M.,2010.

Isolation,characterization,anddifferentiationpotentialofcanine adipose-derivedstemcells.CellTransplantation19,279–289.

Whitworth,D.J.,Banks,T.A.,2014.Stemcelltherapiesfortreatingosteoarthritis: Prescientorpremature?TheVeterinaryJournal202,416–424.

Yan,X.,Xiong,X.,Chen,Y.G.,2018.FeedbackregulationofTGF-βsignaling.Acta BiochimicaetBiophysicaSinica.

Referenties

GERELATEERDE DOCUMENTEN

We present, for the first time, a synthesis of research results on computing systems that only make as many errors as their users can tolerate, from across the disciplines of

Table 3 Characteristics of included studies (Continued) Study Country of study Stud y desig n and sam ple Medi cal te chnolog ies Medi cal diagnosis Conten t Fung, C.H ., Igodan ,

However, among data from radioli- gand binding studies there are also some results that are better explained by oligomerization than by G-protein coupling, such as (i) GTP-insensitive

Hoewel de aankoop frequentie onder deze light users uiterst marginaal is met gemiddeld 11 biologische aankopen per huishouden per jaar, vormt deze groep een belangrijke kans om de

De bedoeling van de Paddenstoelen- tuin is om te laten zien dat eetbare paddenstoelen het hele jaar rond te vinden zijn, niet alleen in de herfst. Fluweelpootjes, bijvoorbeeld, zijn

Veel van deze soorten zijn niet goed aangepast aan het duinvalleimilieu, althans zullen de competitie met beter aangepaste soorten verliezen, zodat na 5-10 jaren een nieuwe

provided for the Dwarf Crag Lizard, Pseudocordylus nebulosus, a melanistic species occurring at an altitude of 1 200 m within the mistbelt of the Hottentots Holland Mountains in

De overige kuilen leverden geen vondstmateriaal op, maar zijn vermoedelijk gezien de vele overeenkomsten in vorm, vulling en aflijning en hun ligging onder de Ap2 horizont overwegend