• No results found

Process development for biomass delignification using deep eutectic solvents. Conceptual design supported by experiments

N/A
N/A
Protected

Academic year: 2021

Share "Process development for biomass delignification using deep eutectic solvents. Conceptual design supported by experiments"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Chemical

Engineering

Research

and

Design

j o u r n a l ho me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h e r d

Process

development

for

biomass

delignification

using

deep

eutectic

solvents.

Conceptual

design

supported

by

experiments

Dion

Smink,

Sascha

R.A.

Kersten,

Boelo

Schuur

UniversityofTwente,FacultyofScienceandTechnology,SustainableProcessTechnologyGroup,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10April2020

Receivedinrevisedform26August 2020

Accepted12September2020 Availableonline19September2020

Keywords: Delignification Deepeutecticsolvent Conceptualprocessdesign Liquid–liquidextraction

a

b

s

t

r

a

c

t

Deepeutecticsolvents(DES)havebeenproposedassolventsforbiomassdelignification.This paperdescribesaconceptualprocessdesignforthedelignificationofEucalyptusglobulus usingaDEScomprisedof30wt%cholinechlorideand70wt%lacticacid.Inthisdesign, theligninandhemicelluloseby-productsarerecoveredbyliquid–liquidextractionusing 2-MTHFassolvent.Materialandenergybalancesweremadeandtheenergyusageofthe processwasoptimizedwithadditionalexperiments.TheamountofDESwasreducedto theminimalamountrequiredtofilltheporousbiomass(5kgperkgwood),whichonly reducedthedelignificationfrom94%to87%andincreasedtheyieldfrom57to59%.Direct recyclingoflignin-in-DESmixtureswithoutligninremovalbyliquid–liquidextractiontothe delignificationstagemaysaveenergy,butincreasedrepolymerizationincreasesthelignin’s molarweight,whichdecreasesitsvalueandmakesrecoverybyliquid–liquidextractionmore difficult.Afteroptimization,thetotalheatdutyoftheproposedprocessis7.9GJ/tpulp,which is28%lowerthanthekraftprocess.ThemainbenefitofDESbaseddelignificationprocesses isthepossiblevalorizationofbyproducts,suchasligninandfuransfromhemicellulose.

©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemical Engineers.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Deepeutecticsolvents(DES,plural:DESs)arecompositesolventsthat exhibitdeepeutecticbehavioruponmixingtheconstituents.Various authorsproposedadefinitionforaDES(Zhangetal.,2012;Paivaetal., 2014;Smithetal.,2014;Martinsetal.,2019;Schuuretal.,2019)but nofinaldefinitionorconsensushasbeenachievedyet.Regardlessof whataformaldefinitionofDESsshouldbe,thesecompositesolvents thatexhibittheirlowtransitiontemperatures(Franciscoetal.,2013b) duetohydrogenbonding,attractedwideattentioninacademia.Since thesesolventscaneasilybepreparedinnumerouswaysby combin-ingahydrogenbonddonorandacceptor(Gomezetal.,2018)andare oftenbiocompatible,biodegradable(Luetal.,2012)andcanhavealow toxicity(Macárioetal.,2018),DESshavebeenusedforvarious appli-cations.ExamplesincludeCO2capture(López-Salasetal.,2014;García

etal.,2015;Mirzaetal.,2015),airpollutantremoval(Mouraetal.,2017),

Correspondingauthor.

E-mailaddress:b.schuur@utwente.nl(B.Schuur).

extractivedistillation(Panetal.,2019),metalextractions(Söldneretal., 2019),desulfurization(Limaetal.,2018,2019)andbiomass fractiona-tion(Jablonsk ´yetal.,2019;Miˇsanetal.,2019;Sminketal.,2019).

Lignocellulosicbiomassisarenewablerawmaterialsourceandcan beconvertedintocellulosefibersand,amongotherbyproducts,lignin bydelignificationtechnologies.Theobtainedcellulosepulpcanbeused forpaperproduction,productionofothermaterials,orcanbeconverted tobio-ethanolorotherplatformchemicals(Naiketal.,2010;Rosatella etal.,2011;Dusselieretal.,2013).Ligninisanaromaticbiopolymerwith advocatedpotentialforthechemicalindustryandcurrentresearchis focusingonligninvalorization(Rinaldietal.,2016;Westwoodetal., 2016).Otherbyproducts,suchashemicelluloseandextractablescan beconvertedintofuransandturpentinerespectively(Houetal.,2018b; Lietal.,2018).

Mostconventionalcellulosefiberproducinginstallationsmakeuse ofthekraftprocess,inwhichlignocelluloseisdelignifiedusingsodium hydroxideandsodiumsulfidetoformcellulosefiberssuitablefor paper-making.Theligninisdepolymerizedbyanucleophilicsubstitution reactionwiththesulfide,meaningtheligninthatisfinallyobtained ishighlysulfurized.Asaconsequence,tobeabletorecyclethesodium sulfide,theligninhastobecombusted.Kraftmillsmayalsoproduce https://doi.org/10.1016/j.cherd.2020.09.018

0263-8762/©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

ligninasbyproduct,butthescaleandapplicationsarelimited.Kraft ligninismainlyusedforlow-valueapplications,suchasheat recov-ery(Chen,2015).Alsootherprocesses,suchasorganosolv,canbeused forcelluloseproduction,buttheseprocessesrequirehighamountsof organicsolvents,whichareoftenvolatileandflammable(VanOsch etal.,2017).Othersolvents,suchasionicliquids(Sunetal.,2009)may alsobeconsideredforbiomassdelignification,buttheirhighercosts maylimitindustrialapplicability.

Althoughkraftplantsarehighlyintegratedandenergyeffective plants(RudieandHart,2014),theystillhaveanaverageheatusage around11GJ/t(Suhretal.,2015).Thisheatisprovidedfromthe com-bustionoftheextractedligninandotherpartsofthetreethatare unsuitableofpapermaking,suchasthebark.Mostmodernkraftmills haveanenergysurplus,whichismostoftenusedtoprovidepowerto thegrid.

DESshavebeenreportedforthedelignificationofvarioustypesof lignocellulose.AnoverviewofthesestudiesisshowninTable1.Lignin thatisproducedusingDESsoftenshowsverylittlesignsof condensa-tion(Alvarez-Vascoetal.,2016)andtypicallyhasalowmolarweight (Alvarez-Vascoetal.,2016;Lyuetal.,2018).Manystudieshavebeen per-formedonbiomassdelignificationusingDESandmanyDES,biomass typesandprocessingconditionshavebeenstudied.However,tothe bestofourknowledge,noanalysisoftheoverallprocessenergy effec-tivenesshasbeenmade,andtheconceptualdesignasmadeinthis study,hasnotbeenmadeforbiomassdelignificationusingDESyet.

EspeciallyDESscomprisedoflacticacidandcholinechloridewere veryoften used forbiomass delignification(Jablonsk ´y etal., 2015; Alvarez-Vascoetal.,2016;Changetal.,2016;Kumaretal.,2016;Zhang etal.,2016;Lietal.,2017,2019a,2019b;Houetal.,2018a;Lyuetal.,2018; Mamillaetal.,2019;Muleyetal.,2019;Shenetal.,2019;Sminketal., 2019;Tianetal.,2019).Althoughtheoptimallacticacidtocholine chlo-rideratiosfordelignificationarebetween10:1and50:1,(Sminketal.,

2019)aDEScomprisedof30wt%cholinechlorideand70wt%lactic acidwasusedinthisstudysinceitispossibletoregenerateligninfrom thisDESbyliquid–liquidextraction,whichhaspotentialfor signifi-cantenergysavings(Sminketal.,2020a).Thisequalsa1:3.6Mratioof cholinechloridetolacticacid.

Althoughthetechnicalconceptofbiomassdelignificationusing DESsiswellproven,thelackofaprocessevaluationbasedona con-ceptualdesignhindersmakingestimationsontheeconomicfeasibility oftheconcept.Eventhoughmanydetailsarestillunknown,makinga conceptualdesignwithallthenecessaryestimationsisafirststepthat wepresentheretoidentifywhethertheconceptofDES-based pulp-inghaspotentialtobecomeindustriallyviableornot.Basedonthis study,thereadershallbeabletovaluethepotentialofthe technol-ogy,andinadditionbeabletoindicatewhichadditionaldataisstill requiredtomakeafullydetailedprocessdesign.Inthiswork,a con-ceptualdesignwasmadeaccordingtothemethoddescribedbyDouglas (Douglas,1988),whichiseasytouseandrelevantforindustrial applica-tions(Harmsen,2004).Usingthisapproach,acomplexprocessdesignis dividedintomultiple,muchsimplerproblems.FollowingtheDouglas method,theinput–outputstructureoftheprocesswasdefinedfirst, afterwhichtheseparationsweredefined.Later,themassandenergy balancesweremadeusingrigorouscalculations.Therefore,itis rela-tivelyeasytoscreenalternativesandtherebyoptimizethedesign.In thiswork,theprocesswasoptimizedforenergyusage.Energyusage isaveryimportantparameter,notjustfromanenvironmentalpoint ofviewandfortheoperationalcostsoftheprocess,butenergylosses typicallydictatetheinvestmentcostsforaprocessaswell(Lange,2001).

2.

Methods

and

materials

2.1. Materials

Air-dryE.globuluschipsweredonatedbyTheNavigator Com-pany from their mill in Portugal and free from impurities, suchasstones,soilormetal.Thecommerciallysizedchips (typically25–35×10–25×2.5–6mm,L×W×T)weremilledto producewoodmealusingahammermillandsieved(mesh −25/+70) and contained 5.6wt% moisture, as determined accordingtotheNRELmethod(Sluiteretal.,2008a).Thewood contained21.6%lignin,50.6%glucose,14.0%xylose,and1.1% galactose(ovendrybasis),asdeterminedbyacidhydrolysis usingthestandardNRELmethod(Sluiteretal.,2012).Lactic acid(>85%),cholinechloride(>98%)andsulfuricacid(95–98%) werepurchasedfromSigma-Aldrich.2-MTHF(Emplura)was purchasedfromVWR.

2.2. Experimentalprocedures

2.2.1. Biomassdelignificationexperiments

1to2geucalyptusmeal(ovendrybasis)wasaddedtogether with10gDEStoaTeflon-linedautoclave.Thisautoclavewas insertedintoadirectcontactheater,whichheatedthe auto-claveto130◦Cinacoupleofminutes.After1h,theautoclave wastakenoutoftheheaterandgentlycooleddowntoroom temperature. Thecontents werewashedusing ethanoland filteredoveraWhatmanglassfiberfilterbeforedryingofthe residuetoaconstantweightat105◦Cinaconvectionoven. Allexperimentswereperformedinduplo.Theyieldwas cal-culatedaccordingtoEq.(1).

yield (%)= Drysolidresidue (g)

Eucalyptusmealaddedtoautoclave (g)∗



1−Moisturecontentineucalpytus



gg



∗100 (1) Theacidinsolublelignininthesolid residuewas deter-mined by acid hydrolysis according to the NREL method (Sluiteretal.,2012).Thedegreeofdelignificationwas calcu-latedaccordingtoEq.(2)

Delignification (%)=100−Yield (%)∗LigninLigninininresidue (%)wood (%) (2) Theerrorinthedelignificationwasdeterminedfromone experimentthatwasrepeated 5times.The95%confidence intervalwasdeterminedusingthet-teststatisticmethod.For duploexperiments,theerrorindelignificationwas1.2%.

2.2.2. Ligninextractionexperiments

3mLlignininDESmixture(seesection2.2.3.forthe prepara-tionprocedure),3mL2-MTHFand0.5–3mLwaterwereadded toaglassvialwithascrewcap.Thevialswereplacedina JulaboSW22shakingbathat50◦Candshakenovernightat 200rpm. The phases were settled under gentle shaking at 20rpmuntiltheywerefullyseparated.Thelignincontentsin bothphasesanalyzedbyGPC.

2.2.3. PreparationoflignininDESmixture

700glacticacidand 300gcholinechloridewereaddedtoa round bottomed flask(2L) with a condenser. The mixture washeatedto130◦Cand200g(ovendrybasis)commercially sizedchipswereaddedtotheflask.Themixturewasstirred gentlyfor3or8handthemixtureswerefilteredwhilehot overa53␮msteelmesh.Thelignincontentinthemixtures

(3)

Table1–OverviewofpreviousworksonbiomassdelignificationusingDES,sortedbybiomasstype.

Woodtype Author Year DES Delignification(%)and/or

remarks

Softwoods

Spruce Wahlströmetal.(2016) ChCl+boricacidand glycerol,betaine+glycerol

Thepretreatmentefficiency ofDESforenzymatic hydrolysisislimited. Schäferetal.(2018) ChCl+3-phenylpropionic

acid

21%,Particlesizehasalarge influenceondelignification Pine

Alvarez-Vascoetal.(2016) ChCl+aceticacid,lactic acid,levulinicacidand glycerol.

58%,delignificationusing ChCl+glycerolineffective. Lietal.(2019a,2019b) ChCl+lacticacid 67%,treatmentusing

microwavereduced delignification Muleyetal.(2019) ChCl+lacticacidandoxalic

acid

90%,microwaveheating reducedprocessingtime

Hardwoods

Beech Jablonsk ´yetal.(2019) Lacticglycineacidand+betaine,alanine, ChCl+ethyleneglycoland glycolicacid

15%,ChClandglycolicacid mosteffective

Mamillaetal.(2019) ChCl+lacticacid,oxalic acid,KOHandurea

OxalicacidandKOHcould dissolvemorewood polymers

Poplar

Alvarez-Vascoetal.(2016) ChCl+aceticacid,lactic acid,levulinicacidand glycerol.

78%,delignificationusing ChCl+glycerolineffective. Tianetal.(2017) Lacticacid+betaine 69%,DEShadahigher

selectivityandrequireda lowertemperaturethan soda/AQororganosolv pulping

Tianetal.(2019) ChCl+formicacid,acetic acidandlacticacid

77%,Producedpulpswere comparabletokraftpulps Lietal.(2019a,2019b) Lacticacid+ChCland

glycine

90%withChClDES,but only58%withglycineDES

Eucalyptus

Changetal.(2016) ChCl+lacticacid 90%,1:9ratiooptimal. Achievedat90◦Cand12h Liangetal.(2019) ChClandethyleneglycol 90%,DESrecoveredusing

membranes

Shenetal.(2019) ChCl+lacticacid 93%,obtainedligninhad lowweightandawell preservedstructure Sminketal.(2019) ChCl+lacticacid 92%,chlorideistheactive

ingredientincholine chloride

Willow Lietal.(2017) ChCl+lacticacid,glycerol andurea

92%,usingChCl+lacticacid at120◦Cand12h

Songetal.(2019) Lacticacid+betaine 53%,moreselectivethan hydrotropes,butrequired highertemperatures.

Agricultural byproductsand grasses

Miscanthus Guoetal.(2019a) ChCl+glycerol+acid catalyst

90%,Suitablepretreatment forenzymaticdigestion Wheat

straw

Jablonsk ´yetal.(2015) ChCl+Urea,malonicacid, lacticacid,malicacid,lactic acidandoxalicacid

58%byChCl+oxalicacid, butChCl+lacticacidhad thehighestselectivity Wahlströmetal.(2016) ChCl+boricacidand

glycerol,betaine+glycerol

Thepretreatmentefficiency ofDESforenzymatic hydrolysisislimited. Zhaoetal.(2018) ChCl+monoethanolamine 71%,suitablepretreatment

forenzymatichydrolysis Jablonsk ´yetal.(2019) Lacticacid+alanine,

glycineandbetaine, ChCl+ethyleneglycoland glycolicacid

24%,lacticacidandalanine wasmosteffective

Ricestraw

Kumaretal.(2016) ChCl+lacticacidand betaine

60%,additionofwater enhanceddelignification Houetal.(2018a) 6lacticacidand13ChCl

basedDESs

51%,withChCl+lacticacid Houetal.(2018b) ChCl+oxalicacid 70%,suitablepretreatment forenzymatichydrolysis

(4)

–Table1(Continued)

Woodtype Author Year DES Delignification(%)and/or

remarks

Limetal.(2019) K2CO3+glycerol AlkalineDESsuitablefor

ricestrawpulping Corncob

Procenteseetal.(2015) ChCl+glycerol,imidazole andurea

88%,DEStreatment enhancedenzymatic digestibility. Zhangetal.(2016) ChCl+7acidsand2

polyalcohols

98.5%,delignification enhanceswithacid strength

Guoetal.(2019b) Lacticacid

+Benzyltrimethylammonium

63%,suitablepretreatment forenzymaticdigestion Chlorideand

benzyltriethy-lammonium chloride

Cornstover Xuetal.(2018) 9ChClbasedDESs 60%,DESsuitablefor

biofuelproduction Songetal.(2019) Lacticacid+betaine 79%,moreselectivethan

hydrotropes,butrequired highertemperatures. wasdetermined byacid hydrolysis,forwhich20mLofthe

lignin-in-DESmixturewasaddedtoaTeflon-linedautoclave, togetherwith60mLwater.3mL72%Sulfuricacidwasadded tothemixtureusingapipetteandtheautoclavewasinserted intoadirectcontactheaterat120◦Candkeptthereforone hour.Themixturewascooleddowntoroomtemperatureand filteredoveraWhatmanglassfiberfilter.Theresiduewasdried inaconvectionovenat105◦Candtheacidinsolublelignin contentwasdeterminedgravimetrically.

2.3. Analysismethods

2.3.1. Acidhydrolysis

Theacidinsolublelignincontent ofthesamplewas deter-minedbyhydrolysisofthesampleaccordingtostandardized NRELprocedure(Sluiteretal.,2012).0.3gSamplewasadded toaTeflon-linedautoclave,togetherwith3mLsulfuricacid (72%)andthemixturewaskeptat30◦Cfor1hwhilestirring every10min.Afterthis,84mLwaterwasaddedandthetube waskeptat120◦Cforanotherhour.Thesolidswerefiltered anddriedovernightat105◦C.Theacidinsolublelignincontent wascalculatedaccordingtoEq.(3).

Acidinsolublelignin (%)

= Residue (g)

sample (g)∗



1−Watercontent



gg



∗100 (3)

2.3.2. GPC

AnAgilent1200serieswasusedforthegelpermeation chro-matography(GPC)witharefractiveindexdetectorandaUV detectoroperatingat254nmusing3GPCPLgel3␮mMIXED-E columnsinseries.Thecolumnwasoperatedat40◦Canda95:5 (v:v)tetrahydrofuranandwatermixturewasthesolventata flowrateof1mL/min.Molecularweightdistributionswere cal-ibratedusingpolystyrenesolutionshavingmolecularweights rangingfrom162to27,810g/mol.

2.3.3. HPLC

Thelactic acidcontent inthehydrolysisliquidswas deter-minedbyhigh performanceliquidchromatography (HPLC).

AnAgilent1200systemwasequippedwithaHi-Plex-H col-umnoperatedat60◦Candarefractiveindexdetectorat55◦C. 5mMsulfuricacidinwaterwasusedasmobilephasewitha flowrateof0.6mL/min.

2.3.4. Karl–Fischertitration

ThewatercontentoflignininDESmixturewasdetermined by Karl–Fischer titration using a Metrohm 787KF Titrino. Hydranal composite 5 (5mg water/mL) was titrated from a 20mL burette in a 3:1 (v:v) mixture of methanol and dichloromethane.Thesamplewasmeasured induplowith arelativeerror<2%.

2.3.5. Determinationofashcontent

Theashcontentintheeucalyptuswasdeterminedaccording tothestandardNRELprocedure(Sluiteretal.,2008b).1.5–2g biomass was pre-driedin aconvection oven at105◦C and addedtoaporcelaincruciblewhichwaspre-driedat575◦C. Thiscruciblewasinsertedintoanovenat575◦Ctooxidizeall organicmaterial.Theanalysiswasperformedinduplo.The ashcontentwasdeterminedgravimetricallybyEq.(4).

Ashcontent (%)=Residueafteroxidation (g)

Drybiomass (g) ∗100 (4)

2.4. Calculationmethods

Allcalculationsinthisworkarerigorouscalculations,based on literature data, and sometimes based on experimental results reported in this paper. In order to make calcula-tions on the mass balances and energy balances of unit operations,informationisneededonphasebehavior.Where liquid–liquid equilibria of DES and 2-MTHF and lignin are involved,thisinformationistakenfromearlierpublications (Sminketal.,2020a,b).Theliquid–liquidequilibriumandvapor liquid equilibrium data for 2-MTHF and water was taken fromGlassetal.(2016)andStephenson(1992).Furthermore, it is assumed that the DES is completely non-volatile, as shownbyFranciscoetal.(2013a), andforthe enthalpiesof evaporationofwaterfromblackliquorsalsoliteraturedata wasused.For kraftblackliquor,theinformationwastaken fromFerreiraetal.(2011)(Hvap,BL=54.1kJ/mol),whileforthe

(5)

Table2–Assumptionsmadeforthemassbalanceoftheconceptualprocesswiththeirjustifications.

Symbol Description Value Unit Justification

DB DEStobiomassratio 10 kg/kg Commonratiousedinliterature

(Alvarez-Vascoetal.,2016) lB Ligninfractioninbiomass 0.216 kglignin/kgbiomass Measuredbyacidhydrolysis,see

(Sminketal.,2019) MP,out Totalcelluloseproduction 1000 kg/h Forconveniencea

SF Solventtofeedratio 0.5 kg/kg Estimatedfrom(Sminketal.,

2020a)

WFL Washingfactorlignin 2 kg/kgDES

WFP Washingfactorpulp 3 kg/kg Estimatedfromwaterwashing

datab

XDES,MTHF SolubilityofDESin2-MTHF 0.3 kg/kg Estimatedfrom(Sminketal.,

2020a)

xMTHF,DESrecycle Solubilityof2-MTHFinDES 0.1 kg/kg Estimatedfrom(Sminketal.,

2020a)

xW,B Waterfractioninbiomass 0.5 kg/kg (BownandLasserre,2015)

xW,DESrecycle WaterfractioninDESafter

liquid-liquidextraction

0.5 kg/kg Estimatedfrom(Sminketal., 2020b)

XW,P Waterfractioninpulp 0.67 kg/kg Typicallyachievablebypressing

(Eketal.,2009b) yL Ligninremovalfrombiomass 0.94 kgligninin

biomass/kglignin removed

Measuredinthiswork

yp Solidyieldafterdelignification 0.57 kg/kgbiomass Measuredinthiswork a Normalizedto1t/hforconvenience.Allnumberscanbescaledlinearlytoanydesiredproductioncapacity.

b Onlydataaboutwaterwashingsareavailable,whichstatethat2.5m3water(Eketal.,2009b)pertofpulpisrequired.Basedonthedensityof

DES,beinghigherthanwater,3kgDESperkgpulpwasassumedtobetheminimumforDESwashingofpulp.

DESblackliquor,Hvap,DESwascalculatedusingtheClausius

ClapeyrontheorywithVLEdataobtainedbyFranciscoetal. (2013a),Hvap,DES=44.3kJ/mol. Othernecessaryinformation

wasmeasuredinthecasethatnoreasonableestimatecould begiven.Allrelevantequilibriumvaluesforthemassbalance arereportedinTable2(videinfra).

3.

Results

and

discussion

3.1. Conceptualprocessdesignandinitialenergy requirementestimation

3.1.1. Input–outputstructure

First, the typeoflignocellulosic biomassmust beselected. Inprinciple,everytypeoflignocellulosicbiomass(hardwood, softwood,grasses,agriculturalwastes)canbeselectedforthe process.WeselectedE.globulusforfurtherstudiesbecausethis speciesisthemostcultivatedspeciesinfastgrowing planta-tions(Dillenetal.,2016)andbecauseeucalyptuswasalsoused inourpreviousstudies(Sminketal.,2019,2020a).However, the methodology applies to majority of the lignocellulosic biomasssources.

Next, the morphology of the feed must be selected. AlthoughtheDESimpregnationrateincreasesiftheparticles aresmallerandtherefore,thecookingwillbefasterandmore homogeneous,cuttingwoodinherentlycutsandthereby dam-agesthecellulosefibersinthe woodandthereforereduces thequalityoftheproducedcellulosefibers.Thus,smallerchip sizesincreasethepulpingrate,butcompromisesthequality oftheproducedcellulosefiber.Inthepaperindustry,where fiberqualityisveryimportant,chipsaregenerally20–30mm long.Forotherapplications, suchascellulosefermentation tobio-ethanol,thefiberqualityisirrelevant.Inthesecases, theusedchipsizeswillbemuchsmaller.Thechipsizeisvery importantforthedesignofthedigester,butnotforfurther

processingofthepulpandDESrecovery.Therefore,thisisno factorintherigorouscalculations.

Feedimpuritiesareimportantforany(chemical)process. Inthecaseoflignocellulosicbiomass,threemajorimpurities arepresent:water,extractablesandash.Presenceofwaterin thefeedisnotexpectedtoposeanyproblemsintheprocess, sincetheamountsofwaterpresentinthewoodare negligi-blecomparedtheamountsthatarerequiredforpulpwashing. AdditionofsomewatertoDESwilldecreasetheviscosityand isbeneficialintherecoveryprocess.However,littleisknown yeton theinfluenceofwateronthepulpingprocess.Also, highwatercontentsmayresultinsignificantevaporationat thepulpingtemperature,whichmayrequiretheuseof pres-surizedequipmentorventingduringpulping.Extractablesare low molar weightcompounds, suchas fatty acids, sterols, terpenoids and waxesthat can beextracted from biomass usingneutralsolvents.Consideringthe hydrophobicnature ofthesecompounds,theywillendupinthe2-MTHFduring theligninextraction.Extractablesmayberemovedby steam-ing biomasspriortofurtherprocessing.Ashpresentinthe feeddissolvesintheDESandwillaccumulateintheDES recy-cleloop.Therefore,itcouldbedesirabletoremoveashprior toDESprocessing,forinstancebyacidleaching(Oudenhoven etal.,2016).IncasesaltsdoendupintheDESrecyclethey willaccumulateandhavetoberemoved,forinstanceusing a bleedstream intherecycle. Purgingofthis bleedstream willbeveryexpensive,sothesaltswillhavetoberemovedby techniquessuchaselectrodialysisorprecipitationinanother solvent, such as ethanol. The ash content inthe eucalyp-tus usedforthis study wasonly0.38wt%. Incase1%ash isallowedintheDESrecyclestream,0.38kgDES hastobe bleadfromtherecycleperkgeucalyptusinthefeed(0.38kg DES*1%salt=3.8gsalt,whichisequaltotheamountin1kg eucalyptus). However,theashcontent canbemuchhigher in other biomasssources. For example,straw can havean ashcontentof6–8%(Oudenhovenetal.,2015).Forthe

(6)

rigor-Fig.1–Theinput-outputstructureoftheconceptual process.

ouscalculationsonlythepresenceofwaterinthefeedwas included.

Theoutletstreamsofthisprocessmustatleastconsistof astreamfortheproducedcelluloseandlignin.Besidesthese products,someofthehemicelluloses willalsobreakdown during DES processing. During treatment with acid DESs, hemicellulosebreaksdowntosugarfractions,whichfurther reacttofurans.Lietal.(2018)andHouetal.(2018b)studied thefractionation ofricestraw using acidbased DESs.Both authors(Houetal.,2018b;Lietal.,2018)couldonlyrecover lessthanhalfofthehemicelluloseremovedaseithersugaror furaniccompound,withtheremainderreferredtoas‘Loss’. Weexpecttheselossestobefuranicsandsugarsthatreacted furthertoformpolymericbyproductscalled‘humin’. Sepa-rationofsugarsfromDES iscomplicated.Bothcompounds arecompletelynon-volatile,excludingseparationby distilla-tion.Furthermore,bothcompoundsarehighlypolar,making affinitybasedseparationverychallenging.Theonlyoptions appeartobeadelicate membrane-basedprocess basedon thesmalldifferenceinsizeofthemoleculesandionsinthe system,another optionistoletthe sugarsreact furtherto furans.Thesefuransmaybeseparatedbyliquid–liquid extrac-tionusingorganicsolvents,suchas2-MTHF(Rosatellaetal., 2011;Duttaetal.,2012;Mikheenkoetal.,2019).Smallsugars producedinthecookingwillforamajorpartalreadybe con-vertedintofurans,andintheproposedprocessitseemslikely thatproducedfuranswillalsobeextractedby2-MTHFand thusleavetheprocesstogetherwiththelignin.Littleisknown about the humins, but withits furanicstructure, it seems possiblethattheseby-productsarealsoextractedby2-MTHF and thus leavethe process together with thelignin. Alter-natively,huminsmayprecipitateduringtheprocessonthe reactionequipment,asinthecommercialproductionof fur-furalfromhemicelluloserichagriculturalwastes(Hoydonckx etal.,2007).Intheusedlignin-in-DESmixtures,only3%of theinitialamountofxylosepresentinthebiomasswasfound backbyHPLC.Fortherigorouscalculations,weassumedthat allhemicellulosethatisremovedfromthebiomassstructure leavestoprocessas‘hemicellulosebyproduct’(HBP)together withthelignin.Thismeansthattheinput–outputstructure looksasdescribedinFig.1.

3.1.2. Batchversuscontinuous

In kraft pulping, continuous digesters have become stan-dard.Although somebatchdigesters are stillin operation, batchpulpinghasbecomeoutofdate.Inatypicalcontinuous digester,woodchipsarefedatthetopofthereactorvesseland slowlysinkthroughcookingliquorwithvariouscompositions. Comparedtothecurrentaqueouspulpingliquors,DESshave

amuchhigherdensityandviscosity(Franciscoetal.,2013c). TheincreaseddensityoftheDESincreasesthebuoyantforces exertedonawoodchipandtheincreasedviscosityincreases the dragforce onawood chip.Thiswilldecrease the flow rate ofchips throughacontinuousdigester filledwithDES and thusgreatlycomplicatesthedesignofsuchadigester. Asaconsequence,muchdatamustbegatheredtomakea detailed design. More than half ofall Europeanpulp mills hadacapacityexceeding200ktperyearin2018(CEPI,2018). Althoughsomeoldermillsstilloperatesemi-batchwise,this ishighlyunusualatthisscale.Therefore,pulpingmustbe exe-cutedcontinuously,justasotheroperations,suchassolvent recoveryandpulpwashing.

3.1.3. Theseparationsystem

Afterthe pulpingreactor, amixtureofcellulosepulp,DES, ligninandhemicelluloseby-productsmustbeseparated.In this mixture, the lignin and hemicellulose by-productsare dissolved intheDES. Itisconvenient toseparatethe solid pulpfromtheliquidDESfirst,forinstancebypressing. Dur-ingpressing,partoftheliquidremainsasstagnantliquidin the fibersin theporous pulpbeds.Therefore,the liquidin thepulpmustbedisplacedbyanotherliquid.Washingwith waterisveryconvenientsincewaterisinexpensive,non-toxic andnon-flammable.However,ifwaterisusedtodisplacethe DESinthecellulosefibers,thewaterwillmixwiththeDES, causinglignintoprecipitateonthefibers,whichisvery unde-sirable.Therefore,theDESinthecellulosefibersmustfirstbe displacedbycleanDES,beforeitcanbedisplacedbywater.

AftertheseparationbetweentheDESandpulp,theliquid mixturecontainingDES,water,ligninandhemicellulose by-productsmustbeseparated.Inourpreviouspaperwemade abriefcomparisonbetweentheregenerationofligninfrom DESusingcoldwaterprecipitation(Sminketal.,2020b)and concludedthatthe lowmolarweightligninfractionscould not berecovered bycold waterprecipitation.Furthermore, liquid–liquid extraction using 2-MTHFhas the potential to save95%energycomparedtocoldwaterprecipitation(Smink etal.,2020b).Therefore,ligninisrecoveredfromtheDESusing liquid–liquidextraction.Waterisremovedlaterfromthe mix-ture,sinceitaidsliquid–liquidextractionofligninfromthe DES.Weassumethatthehemicellulose-byproductsarealso extractedby2-MTHF(seeSection3.1.1.).The2-MTHFcanbe recoveredbyevaporationandtheligninandhemicellulose by-productsremainintheevaporationresidue,togetherwithany DESthatmayhaveleachedtothe2-MTHFduringextraction. ThisDEScanbewashedfromtheproductsusingwaterand thewashingwaterisrecycledbacktotheextractionstage.

Atlast,the DES mustbe separated from the waterand any 2-MTHF that leached to the DESphase during extrac-tion.Waterand2-MTHFmaybeseparated fromtheDESby evaporation.Aftercondensation,thewaterand2-MTHFcan beseparatedinasettlervesselbecauseoftheimmiscibility between waterand 2-MTHF. TheLLEbetween 2-MTHFand water was reported byGlass et al. (2016) and Stephenson (1992). At70◦C,the solubility of2-MTHFinwateris5wt% andthesolubilityofwaterin2-MTHFis6wt%.Remarkably, thesolubilityof2-MTHFinwaterdecreaseswithincreasing temperatures.Altogether,theflowsheetasshowninFig.2is obtained.

Massbalance

In the conceptual process, biomass is fractionatedinto pulp, lignin and hemi-cellulose by-products. Any other byproductsorlossesarenottakenintoaccountinthisprocess

(7)

Fig.2–Structureoftheconceptualprocess.Inthetopfigure,theprocessisshownbyfunctionandinthebottomfigure,the processisshownbyoperations.Afterpulping,thepulpinusedDESsuspension(3)ispressedandwashedtoformaclean pulpsuspension(6).AllUsedDESandwaterfromthewashingandpressingstagesarecombinedinstream(7),whichis mixedwithwaterfromtheligninwash(13)andtheligninandhemicellulosebyproductpresentinthismix(8)areextracted using2-MTHF(9and10).ThecleanDESrecycle(16)isdriedandthecleanDES(18)isusedagainforpulping(2)andwashing (4).

design.Therefore,theamountofbiomassenteringtheprocess (stream1,Fig.2)(MB,in)isequaltotheamountsofpulp(stream

6,Fig.2)(Mp,out),lignin(ML,out)andhemicellulosebyproducts

(MHBP,out)produced(stream15,Fig.2),asshowninEq.(5).

MB,in=MP,out+ML,out+MHBP,out (5)

Theamountofpulpproducedisthesumoftheamountof biomassenteringtheprocess,multipliedbythepulpyield(yP),

asshowninEq.(6).Thisyieldwasdeterminedexperimentally at57%.

MP,out=MB,in∗yP (6)

Theamount oflignin produced isequal tothe amount ofligninremovedfrom thebiomass.Thisisthe amountof biomassentering theprocess,multipliedbythe lignin frac-tioninthebiomass(xL,B)andthedegreeofdelignification(yL),

asshowninEq.(7).Thesefractionsweredetermined experi-mentallyatrespectively21.6%and94.1%.

ML,out=MB,in∗xL,B∗yL (7)

Forconvenience,thepulpproductionissetto1000kg/hand therewith,thesystemof3equationscanbeusedtosolvethe 3unknowns(MB,in,ML,outandMHBP,out).

TheamountofDESusedforpulpinginthedigester(stream 2,Fig.2)(MDES,pulping)isequaltotheamountofbiomass,

mul-tipliedbytheDEStobiomassratio(DB),asshowninEq.(8).

Priortooptimizingtheflowsheet,thisratioissetto10since thisisacommonratioinliterature(Alvarez-Vascoetal.,2016).

MDES,pulping=MB,in∗DB (8)

Afterpulping,thepulpisfirstwashedusingDEStoremove ligninfromthepulp.Tothebestofourknowledge,nodatais availableonpulpwashingusingDESyet.Therefore,dataused onwaterwashingisusedtogiveanestimateontheamount ofDES requiredforwashing,but morework isrequiredto provewhetherthisassumptionisjustified.Itiscommonto usearound3kgwaterperkgpulpinindustry(Eketal.,2009a). Thiswashingfactor(WF)ismultipliedbytheamountofpulp producedtocalculatetheamountofDESrequiredforwashing (MDES,wash),asshowninEq.(9).

MDES,wash=MP,out∗WFP (9)

Waterisrequiredtoaidliquid–liquidextractionoflignin fromtheDES.Therefore,thewaterfractionintheDES recy-clestream(stream16,Fig.2)(xW,DESrecycle)isdefinedasthe

amountofwaterintherecycle(stream16,Fig.2)(MW,DESrecycle)

overthesumoftheamountsofwaterandDES(frompulping andwashing),asshowninEq.(10).Awatermassfractionof 0.5isassumed,sincethisissufficientforfullligninrecovery usingliquid–liquidextraction(Sminketal.,2020b).

xW,DESrecycle=

MW,DESrecycle

MDES,Pulping+MDES,washing+MW,DESrecycle

(10)

Theamount ofsolventrequiredfortheextractionstage (stream9+10,Fig.2)(MMTHF,extraction)isequaltothetotalmass

(8)

oftheDESandwaterintherecycle(stream16,Fig.2), multi-pliedbythe solventtofeedratio (SF),asshowninEq.(11). Aratioof0.5wasused,sincethisissufficientforfulllignin recovery(Sminketal.,2020b).

xW,DESrecycle=

MW,DESrecycle

MDES,Pulping+MDES,washing+MW,DESrecycle

(11)

SincetheextractionsolventandDESarepartiallymiscible, someoftheextractionsolventleachestotheDESrecycle(from stream9tostream16,Fig.2).Thisamount(MMTHF,leached)is

determinedbythesolubilityfactor(xMTHF,leached)of2-MTHFin

DES,asshowninEq.(12).Thisfactorwasestimatedat0.1from equilibriumdata(Sminketal.,2020a).

MMTHF,extraction

=



MDES,pulping+MDES,washing+MW,DESrecycle



∗SF (12)

BesidesleachingofsolventtotheDESrecycle,someDES willalsoleachtothesolvent(fromstream 8tostream11). ItmustbenotedthatDESsarenotpseudo-purecompounds, andespeciallyduringliquid–liquidextraction,their compo-sition changes sinceevery DES constituent has adifferent leachingcharacteristics.Inthiscase,lacticacidhasamuch highersolubilityin2-MTHFthancholinechloride(Sminketal., 2020a)andthus,relativelymorelacticacidthancholine chlo-ridewillleachtothe2-MTHFphase(fromstream8tostream 11,Fig.2).However,afterextractionanyleachedDESwillend up instream 12 ofthe process,where it iswashed ofthe ligninandhemicellulosebyproductandfurthermorerecycled directlybacktotheextractionstageviastreams13and8(see Fig.2).Therefore,itisnotexpectedthatthecompositionof theleachedDESwillhaveanyinfluenceontheenergyusage oftheprocessandisthereforenottakenintoconsideration. Thisamount(MDES,MTHFleach)isdeterminedfromthe

solubil-ityfactorofDESin2-MTHF(xDES,MTHF),asshowninEq.(13).

Thisfactorwasestimatedat0.3fromequilibriumdata(Smink etal.,2020a).

MDES,MTHFleach=MMTHF,extraction∗xDES,MTHF (13)

Atlast,thewaterbalanceismade.Somewateris natu-rallypresentinthiswood.Sinceitwasdecidednottopre-dry thewood,thisamounthastobetakenintoaccountaswell. Thefractionofwaternaturallypresentinbiomass(xW,B)is0.5

(Bownand Lasserre,2015).Thisisdefinedasde amountof waterinthebiomass(MW,B),dividedbytheamountsofwater

andbiomassenteringtheprocess,asshowninEq.(14).

xW,B=

MW,B

MB,in+MW,B

(14)

Sincepulpisaporousmaterial,somewaterwillalways remaininthepulpafterwashing(stream6,Fig.2).Ifthe pro-cessisintegratedwithforinstanceapapermakingplant,this amountdoesnotneedtoberemovedsincecellulosepulpmust befedtoapapermakingmachineinanaqueoussuspension. Alternatively,thewatercanberemovedifthepulpissoldon themarket.Thewaterfractioninthepulp(xW,P)isdefinedby

theamountofwaterinthepulp(MW,P),dividedbytheamount

ofpulpandwaterinthepulp,asshowninEq.(15).Thewater

fractioninpulpwassetat0.67,sincethisamountcantypically beachievedbypressingofthepulp(Eketal.,2009b).

xW,P=

MW,P

MP,out+MW,P (15)

Afterevaporationof2-MTHFfromtheligninand hemicel-lulosebyproduct,anyDESthatremainswiththeligninand hemicellulosebyproduct(stream12,Fig.2)mustberemoved fromtheligninbywashingwithwater.Theamountofwater required for lignin and hemicellulose byproduct washing (stream14,Fig.2)(MW,Lwash)isdeterminedbytheamountof

DESthatmustbewashedfromtheligninandhemicellulose byproduct,multipliedbyawashinfactor(WFL),asshownin

Eq.(16).Thewashingfactorisestimatedat2,itisassumed that2kgwaterisrequiredtowash1kgDESfromthelignin andhemicellulosebyproduct.

MW,Lwash=MDES,MTHF∗WFL (16)

Inaddition,theamountofwaterrequiredforthewashing ofpulpmustbedetermined.Industrially,3kgwaterisused towash1kgpulp.Afterthepulpwashingstep,theDESand watermixtureissenttoaliquid–liquidextractionoperation toremovelignin.Inthis step,waterisalsorequiredforan efficientligninextraction.Itisexpectedthattheamountof waterpresentinthismixtureisnotsufficientforaneffective ligninextraction.Therefore,extrawatermustbeaddedtothis mixture.Itispossibletodothisattheextractionstage,butitis alsopossibletousemorewaterduringthewashingstep.This amountwillthen(viastream7and8,Fig.2)alsoendupinthe extractionstage.Sinceusingextrawaterinthewashingstage willeasethewashingoperation,thisispreferredoverthefirst option.Therefore,theamountofwaterusedforpulpwashing (MW,Pwash,stream5)iscalculatedfromamassbalanceonthe

waterrequiredintheDESrecycleforefficientligninextraction (MW,DESrecycle,stream16).Theamountsofwaterthatalready

endedupinthisstreamfromthewaternaturallypresentin thebiomass(MW,B,stream1)andtheamountthatisadded

fromtheligninwash(MW,Lwash,stream14)arereducedfrom

thisamountandtheamountofwaterthatwaterthatleaves theprocessinthecellulosepulp(MW,P,stream6)mustbemade

upfor.ThefinalequationisshowninEq.(17).

MW,Pwash=MW,DESrecycle−MW,B−MW,Lwash+MW,P (17)

Theamountofwaterusedfrompulpwashingmustalways behigherorequaltotheminimumamountofwaterrequired forpulpwashing.Thisamountis3kgwaterperkgpulpand calledthewashfactor(WFP),showninEq.(18).Incasethe

amountofwatercalculatedbyEq.(17)islowerthanthelower boundary stated in Eq.(18), the amount ofwaterrequired forwashingwillbedeterminedaccordingtoEq.(18)andthe waterfractionintheDESrecycle(calculatedfromEq.(10))will increase.

MW,Pwash≥MP,out∗WFP (18)

UsingEqs.(5)–(18)andthementionedassumptions,which aresummarizedinTable2,themassbalanceoftheprocess canbecalculated,whichisshowninTable3.

(9)

Table3–Massbalanceoftheconceptualprocess.

Materialsinprocessstreams(kg/h) Processstream

1 2 3 4 5 6 7 8 9 10 Wood 1754 DES 17,544 17,544 3000 20,544 25,979 Water 1754 1754 5065 2000 8819 19,689 2-MTHF 18,116 3623 Pulp 1000 1000 Lignin 356 356 356 HBP 398 398 398

Materialsinprocessstreams(kg/h) Processstream

11 12 13 14 15 16 17 18 19 20 Wood DES 5435 5435 5435 20,544 20,544 Water 10,870 10,870 15,689 15,689 194 20,350 2-MTHF 18,116 3623 3623 3038 1071 Pulp Lignin 356 356 356 HBP 398 398 398 3.2. Energybalance

Duringpulping,themixtureofDESandwoodiskeptat130◦C. Afterpulping,thepulpisfirstwashedusingcleanDESfrom theevaporationplant.ThecleanDESisnotheated,norcooled beforethewashingstage.AfterthecleanDESwash,thepulp iswashedusingfreshwater.Theuseofhotwaterisbeneficial becauseitincreasesdiffusionratesanddecreasesthe viscos-ityoftheliquidmixtures.Franciscoetal.(2013a).determined theviscosityofasimilarDES, comprisedoflactic acidand cholinechlorideina2:1Mratioat13temperaturesfor11 mix-turesofthisDESwithwater.Itisassumedthatwaterenters thewashingplantat80◦C.Atthistemperature,theviscosityof thecomparableDESusedbyFranciscoetal.(2013a)is25mPas andisreducedtoapproximately 1mPasina50wt%DESin watersolution(∼0.14mol/mol).Furthermore,nopressurized equipmentisrequiredatthistemperatureanditcaneasilybe achievedusingwasteheatoftheprocess.Eitherwaterfrom theevaporationplantmay beuseddirectly inthe washing stage,or the heat in this stream may beused topre-heat waterforthewashingstage.Itisassumedthatthe suspen-sionofcellulosefibersinwaterexitsthewashingplantatthe inlettemperatureofthewashingwater(80◦C)andthatthe restoftheliquidsfromthewashingplantaremixed.Before liquid–liquidextraction,thisstream(stream7,Fig.2)iscooled downto75◦C.Thisisslightly lower thanthe boilingpoint ofpure2-MTHF(whichis80◦C),andbasedontheVLEdata reportedbyGlassetal.(2016),weestimatethatnopressurized equipmentisrequiredforliquid–liquidextraction.

Afterliquid–liquidextraction,waterisremovedfromthe DESrecycle(stream16,Fig.2.)bymulti-effectflash evapora-tion.Itisassumedthatthesemulti-effectflashevaporators havethesamecharacteristicsasthemulti-effectflash evap-oratorscurrentlyusedinthekraftprocess.Furthermore,itis assumedthattheDESiscompletelynon-volatile,asshown byFranciscoetal.(2013a).Typically,theseevaporatorsusea 7effectevaporationtrainandhaveasteamefficiencyof5.95 (Valmet,2015)(1tonofsteamisusedtoevaporate5.95tonof water).However,theheatrequiredtoevaporatewaterfrom kraftblackliquor(Hvap,BL)isdifferentthantheheatrequired

to evaporatewater from the DES (Hvap,DES). Hvap,BL was

determinedbyFerreiraetal.(2011)andis54.1kJ/mol.Hvap,DES

wascalculatedusingtheClausiusClapeyrontheorywithVLE dataobtainedbyFranciscoetal.(2013a)andequals44.3kJ/mol. Ifitisassumedthattheheatcontentofsteamis2.2GJ/t[75], theheatdutyofthewaterevaporationstepcanbecalculated usingEq.(19). Qwaterevaporation=2.2∗ MW,DESrecycle steamefficency∗ Hvap,DES Hvap,BL (19)

Inmultieffectflashevaporation,thefirststageorstages areheatedusingdirectsteam.Thesteamthatevaporatesfrom thisliquidisusedtoheatthenextstage,andsoforth.TheDES entersatthelasteffectandisthusheatedfurtherwitheach consecutivestage.Itisassumedthatthetotalheatincrease isequaltotheheatincreaseinakraftevaporator,whichis typically 40◦C [76]. Thismeans that the dry DES exits the evaporationtrainat75+40=115◦C.

Afterliquid–liquidextraction,the2-MTHFisalsorecovered using multi-effectflashevaporation.Itisassumedthat the setupofthemultistage flashevaporationissimilar tothe setupofthewaterevaporation.However,theheatof evap-oration of2-MTHFisonly 0.40MJ/kg, whichismuch lower thantheheatofevaporationofwater,whichis2.2MJ/kg.This meansthatinthefirststage,1kgsteamisrequiredto evapo-rate2.2/0.4=5.5kg2-MTHFandthustheheatdutyisreduced bythisfactor.The2-MTHFvaporfromthefirststageisthan usedtoheatthenextstage,andsoforth.Itisassumedthat thesameevaporationefficiencyisachievedasforthe evap-orationofwaterfromDES,thustheheatdutyisreducedby thesameefficiencyfactorof5.95.Thetotalheattoevaporate the 2-MTHFafterliquid–liquid extractioncanbecalculated accordingtoEq.(20). QMTHFevaporation=2.2∗ 0.40 2.2 ∗ MMTHF,extraction Evaporationefficiency (20)

Aftertheevaporationtrain,theDESiscleanandreadytobe usedagaininthepulpingstep.TheDESandwoodchipsare addedtoadigester.For theenergycalculationsweassume thatthewoodchipsenterthedigesteratroomtemperature. Both the DES and the chips(withwater inthem)must be heatedto130◦Cinthedigester.Thisheatcanbecalculated usingtheheatcapacitiesofwood,waterandDES,according

(10)

Table4–Energyusageintheconceptualprocessbefore andafteroptimization.

Operation Heatbefore optimization(GJ/t) Heatafter optimization(GJ/t) Digester 1.7 1.3 Waterevaporation 6.2 2.7 2-MTHFevaporation1.4 0.7 Pulpdrying 3.0 3.0 Total 12.3 7.7 toEq.(21).

QDigester= (CP,wood∗MB,in+CP,water∗MW,B)∗



Tdigester−Troom



+CP,DES∗MDES,pulping∗



Tdigester−Tevaporation,end



(21)

LittleisknownabouttheheatsofreactioninDES delig-nification.Tothebestofourknowledge,onlyonestudywas performedon the heats ofkraft delignification(Courchene etal.,2005).However,theseresultscannotbeusedtomake anestimation forDES delignification since the delignifica-tionchemistryiscompletelydifferent.Courcheneetal.(2005) found that the heat released during kraft pulping indicat-ing an exothermic process,is due to the neutralization of acidiccarbohydratebreakdownproductswithNaOH,a reac-tionthatdoesnotoccurinDESdelignification.Thequestion whether biomassconversion processesare endothermicor exothermicalsoplaysinotherfields,suchaspyrolysis.Inthe pyrolysisprocess,manyendothermicandexothermicreaction zoneswereobserved.Overall,itisbelievedthatpyrolysisof woodisslightlyendothermicwithaheatofreactionaround 0.6MJ/kg(Sinhaetal.,2000),althoughitmustalsobenoted thatligninbreakdown reactions aremoreexothermic than cellulosebreakdown reaction(Roberts,1971)(whichremain mostlyinertduringpulping).Furthermore,thefractionofthe polymersthatreactsinthepulpingismuchsmallerthanin pyrolysis.Taken together,itappearsjustifiedtoneglectthe heatthatisproducedorrequiredduringDESpulping,but fur-therresearchisnecessarytofindoutwhetherthisassumption isrealistic.

Atlast,thepulpmaybedried.Formanycellulose applica-tions,suchaspapermakingorenzymatichydrolysisforthe productionof other chemicals, the celluloseis used in an aqueousslurry.Whenthisplantisintegratedwiththe pulp-ingplant,dryingofthepulpisunnecessary.Inthisstudythe heatofdryingistakenintoaccount,sincewestudya non-integratedpulpmill.Itisassumedthattheheatrequiredfor pulpdryingisthesameasinacommercialpulpmill,which is3GJ/t(Suhretal.,2015).Inshort,heatisrequiredforthe digesterandtoevaporatewaterand2-MTHFandcoolingofthe DESisrequiredbeforeliquid–liquidextraction.Anoverview oftherequiredheatfortheprocessisshowninTable4. Fur-thermore,theproducedpulpmaybedried.Unfortunately,the heatsformulti-effectflashevaporationandpulpingmustbe providedathightemperatures(>120◦C)andthus,thereare littleopportunitiesforheatintegration.

3.3. Processimprovement

Theamountofheatrequiredforanon-integratedDESbased pulping process was estimated at 12.3GJ/t using rigorous calculations.Toputthis numberinto perspective;atypical

Fig.3–DelignificationofeucalyptusasfunctionoftheDB ratio.Thethreeexperimentaldelignificationsofeucalyptus wereobtainedbytreatingthewood1hat130◦C.The regioninwhichtheDBratioistoolowtofilltheporous biomassbedwithDESisindicatedinredblocksandthe regionbelowthefiberliberationpointisindicatedwith orangestripes.(Forinterpretationofthereferencesto colourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle).

kraftprocess uses11.0GJ/t inheat. InordertomakeaDES based pulpingprocess competitive tothe kraft,the energy usageshould belower than inthekraftprocess. Consider-ing thatmanydecadesofoptimizationhavetakenplacein the development ofthe kraftprocess, alsooptimizationof the DES-based process should be done, and startingfrom thevaluestakenfromlaboratoryobservations,afirstsetof improvementsisconsideredbasedonacombinationof exper-imentsandcalculations.

3.3.1. DEStobiomassratio

Themostobviousparametertochangeintheprocessisthe DBratio.UsinglessDESwillreducethedutyinthedigester andrequirelesswaterand2-MTHFforextraction.However, a decreasedDBratio willincreasethe ligninconcentration intheDES,whichmaydecreasethedelignificationrate. Fur-thermore,thereisaminimumDBratiobecausebiomassitself isaporousstructureandbiomassinadigesterhasa pack-ingdensity.Thistypicallyresultsinapackingdensityaround 230kg/m3forhardwoods(Eketal.,2009b).Assumingthe

den-sityofwoodis1500kg/m3(Eketal.,2009b)andthedensity

oftheDESappliedinthisstudyis1140kg/m3(Franciscoetal.,

2013c),atleast4.2kgDESisrequiredtofilltheemptyspacesin thewoodpacking.Forconvenience,theDBratiowasreduced from10:1to5:1kg/kg.Itwasfoundthatdelignificationdegree decreasedfrom94.1%to87.0%andtheyieldincreasedfrom 57%to59%.Althoughthedelignificationdegreedecreased,it isstillwellabovethefiberliberationpoint,whichisat80% delignification(Brännvall,2017).Thisisschematicallyshown inFig.3(Brännvall,2017).Thetotalenergyuseintheprocess decreasedto8.6GJ/tpulp.

3.3.2. Wateraddition

Reducing the amount of water used in the liquid–liquid extraction ofligninfrom the DES willdecrease the energy requirementinthewaterevaporator.Thewatercontentinthe DESmustbebetween25and50wt%forfullligninrecovery

(11)

Fig.4–SinglestageligninrecoveryfromDESusing2-MTHF forvariousamountsofwaterintheDESraffinateat equilibrium.Thewatercontentsintheraffinatethatare obtainedintheproposedprocessbymixingtheminimum amountsofwater(seeEq.(18))areindicatedbydashed linesfortwoDBratios.Thesearetheminimumamountsof waterthatcanbereachedfromaprocesspointofview. (Sminketal.,2020a).Theligninrecoveriesinoneextraction stageweredeterminedfor6watercontentsintheraffinates between20 and 55wt%. Itwasfoundthat the singlestage recoverydidnotimprove muchwhen thewatercontent in theraffinateincreasedmorethan40%.

Waterhastwofunctionsintheprocess,itisrequiredfor fullextractionoftheligninfromtheDES,anditisrequired forthewashingofthecellulosefibersandlignin.Thewater thatisrequiredforwashingthecelluloseandligninis recy-cledtotheextractionstage.Whentheminimumamountsof washingwateraremixedwiththeDES,thewatercontentsin theraffinatearebetween38%and43%foraBDof1:10and1:5 respectively.ThesevaluesareshowninFig.4asthedashed anddash-dotlines.Itcanbeseenfromthefigurethatthe sin-glestagerecoverydoesnotincreasemuchfurtherwhenmore waterisaddedthanthewaterthatisalreadypresentfrom therecyclingofthewaterwashings.Therefore,theamount ofwaterrequiredforthe processislimited bytheamount requiredforthewashingstages,ratherthanthelignin recov-ery.AtaDBratioof5:1and43%waterintheraffinate,thetotal energyusageoftheprocessdropsto7.7GJ/tcellulosepulp.

3.3.3. RecyclingofwashingDES

TheDESthatiscurrentlyusedforwashingissentdirectlyto theliquid–liquidextractionstage,whereligninand hemicel-lulosebyproductareremovedfromit.Thelignincontentsin theeluentstreamsarehoweverlowerthanthelignincontents intheDESthatexitsthedigester.Thus,theligninthatexits thewashingstreammaybeconsideredasnotfullysaturated. Therefore,itmaybeconsideredtosendtheeluentfromDES washingwithalowlignincontentbackdirectlytothe pulp-ingstage.IfthisDESisrecycledbackdirectlytothedigester, the total energyusage can befurther reduced from 7.7 to 6.8GJ/t.However,whenmoreligninispresentinthedigester, thismaycauseligninandhemicellulosepolymerization reac-tions,whichmayinhibitthedelignificationrateandincrease theligninmolarweight.Toinvestigateontheseverenessof therepolymerization, delignificationexperimentswere car-riedoutwithpreviouslypreparedlignin-in-DESmixtures.

FromFig.5itcanbeseenthatthedelignificationdecreases withthe initiallignincontent.However, thedelignification

Fig.5–Delignificationofeucalyptusasfunctionofthe initiallignincontentoftheDES.Eucalyptuswastreated1h at130◦C.

staysabove80%,evenwhentheinitiallignincontentexceeded 2.5wt%. The lignin molar weightdistribution in these liq-uids was also investigated by GPC. First, the lignin molar weightdistributionsinthepreviouslypreparedlignin-in-DES mixture,andintheDESthatwasobtainedafterthe delignifi-cationexperimentusingcleanDESweredetermined.When the lignin-in-DES mixture is used for a consecutive delig-nification experiment, the lignin that is added to the DES duringthedelignificationexperimentisaddedtothelignin thatwasalreadypresent inthemixture.Ifweassumethat theligninthatwasinitiallypresentinthelignin-in-DES mix-tureisinertduringthedelignificationexperiment,itwouldbe expectedthattheligninobtainedbythedelignification exper-imentusingthelignin-in-DESmixtureisthesumofthelignin inthe initiallignin-in-DES mixtureandtheligninobtained usingthecleanDES.Wecanthenexpectthemolarweightof theligninobtainedfromthedelignificationexperimentusing thelignin-in-DESmixturetobetheweightedaverageofthe lignininthe lignin-in-DESmixtureand theligninobtained by delignification using a clean DES. This expected molar weightdistributionwascomparedtothedistributionthatwas actuallyobtained inthe delignificationexperiment usinga lignin-in-DES mixture, as shownin Fig. 6. In this figure, it canclearlybeseenthattheobtainedmolarweightismuch higherthantheexpectedmolarweightandthus,additional condensationreactionsmusthavetakenplacewiththelignin thatwasinitiallypresentinthemixture.Thiswillnotonly makeithardertovalorizetheobtainedlignin,butitwillalso makeligninrecoverybyliquid–liquidextractionmuchharder. Therefore,recyclingofwashingDESwithoutligninrecoveryis notconsideredfortheconceptualdesign.

3.4. Solventlosses

Lactic acid can form esters withhydroxyl groups in other molecules,justlikeanyothercarboxylicacid.Thismeansthat lacticacidmayalsoformesterswithhydroxygroupsinlignin andcellulose.Forexample,Kajimotoetal.(2008)produced cel-lulosefibersfromSugipineusinglacticacidandfoundthatthe producedfiberscontained6–9%lacticacid,whichwas poly-merizedtothecellulosefibers.Thelacticacidfractioninthe ligninandcelluloseproducedbyDESwasdeterminedbyacid hydrolysis.Itwasfoundthatthecellulosecontained3.6wt% lacticacid,whilethelignincontained6.4wt%lacticacid.By massbalancethismeansalossof36kglacticacidinthepulp

(12)

Fig.6–Obtainedandexpectedmolarweightdistributions foradelignificationexperimentusingalignin-in-DES mixture.TheobtainedgraphistheGPCspectrumfromthe trialwith2.6wt%initiallignin.Theexpectedmolarweight graphistheweightedaverageoftheGPCspectrumofthe lignin-in-DESmixtureandtheGPCspectrumobtainedfrom thedelignificationexperimentusingcleanDES.

and20kgintheligninpertcelluloseproduced,addinguptoa totallossof56kglacticacidpertcellulosepulp.Possibly,lactic acidcanberemovedfromcellulosefibersbyozonebleaching (NeumannandBalser,1993).

Moreresearchisrequiredtodeterminethelossesby sol-ventdegradationduringDESprocesses.Rodriguezetal.(2019) researcheddegradation byesterification betweenthe lactic acidandcholinechloride.However,theseesterification reac-tionsareequilibriumreactions.Thismeansthattheformed degradationproduct(theesterbetweenlacticacidandcholine chloride)reactsbacktotheinitialDES,andespeciallyby oper-atingthepulpingstagewet,thepresenceofwaterdramatically reducestheesterificationoflacticacid.Hazetal.(2016) deter-minedthataDEScomprisedoflacticacidandcholinechloride wasstableupto197◦C,meaningtheusedDESisthermally stableattheoperatingconditionsusedinthiswork.

4.

Outlook

Theenergyuseinthisprocessismainlyduetotheevaporation ofwaterusedforwashingthecellulosefibers.Thismeansthat thereisrelativelylittleroomforanimprovementinenergy usebythe optimizationofpulpingandregeneration condi-tions.Nevertheless,theheatdutyoftheproposedDESprocess is28%lowerthanthekraftprocess.Washingwithother sol-vents,suchasethanolinsteadofwatermayfurtherdecrease theenergyusageoftheprocess sincetheheat of evapora-tionofethanolismuchlowerthan water.Anotherpossible reductionoftheheatdutycanbeobtainedbyreducingthe evaporationofwater,by(atleastpartially)dewatertheDES usingamembrane.Furtherresearchonthissubjectis nec-essarytoaccuratelyestimatethetechnicalfeasibilityofsuch processandtoestimatethepossiblesavingsinenergyuse.

PulpingwithDESsofferspotentialadvantagesoverthe cur-rentkraftprocessfromtheviewpointofthe12principlesof greenchemistry(AnastasandEghbali,2010).First,the poten-tialtoproducevaluablebyproductsfromthefeedstockismuch higher,meaningmoreproductscanbemadefromthesame feedstock,whichincreasestheatomeconomy.Reasonforthe

higherpotentialonvaluablebyproductsisthatnonucleophlic substitutionusing bisulfidehastobeusedtodelignifiy the biomass(DaCostaLopesetal.,2020).Thismeansthatthe pro-cessislessdestructivetothelignin,whichmaybeobtained withhighervalue.Second,theenergyefficiencyofthe pro-cessispotentiallyimprovedsignificantlyasfollowsfromour energyanalysis.Third,becausenopressurizedequipmentis requiredtooperatetheprocess,thecookingissafer.However, therearealsosomedrawbacksrelatedtotheuseof2-MTHF, whichisusedintherecovery.Although2-MTHFabio-based solvent, it isveryvolatile and flammable.Althoughits use seemsjustifiedbythesignificantenergysavings,itis desir-abletofindnon-flammablealternativesto2-MTHF.Allinall, weconsiderthebenefitsoftheproposedprocess,intermsof the12principlesofgreenchemistry,tobemuchbiggerthan thedrawbackscomparedtothekraftprocess.

Itseemsthatalloperationscanbeperformedusingreadily availabletechnology.Furthermore,nopressurizedequipment isrequiredsincetheproposedDESisnon-volatile.Thismeans thattheprocessmayhaveaverylowcapitalexpenditure. Fur-thermore,theenergyusageoftheproposedprocessisvery low,whichisnotonlyfavourablefortheoperationalcosts,but sincetheinvestmentcostsofchemicalprocessesaretypically dictatedbyenergylosses(Lange,2001),thisisalsofavourable fortheinvestmentcostsoftheproposedprocess.However,the biggestopportunityforDESbasedproductsisthevalorization ofby-products.Nexttotheproducedcellulose,ligninsmaybe producedalwell.Furthermore,theprocessmaybeadjusted toproducevaluablefuranicproductsfromthehemi-cellulose, suchas(hydroxymethyl)furfural(Huetal.,2008;Zhangetal., 2014).Thesechemicalmaybeusedasfeedstockforchemical industryasareplacementoffossilresources,asschematically showninFig.7.Allinall,theproppedDESbaseddelignification processshowsagreateconomicpotential.

In the proposed process,DES losses are significant due topolymerizationoflacticacidtoligninandcellulose.This means that the process either has high solvent losses, or expensivepost-treatmentstorecoverDES.Furthermore,some 2-MTHFleaches tothe DESduringliquid–liquid extraction. This is evaporated from the DES together with the water andcanbeseparatedusingasimplesettlersince2-MTHFis immisciblewithwater.However,2-MTHFandwaterdohave amutualsolubility (Glasset al., 2016). Asolubility calcula-tionusingthedatafromGlassetal.(2016)resultsinalossof 456kg2-MTHFpertcellulose.Thisamountmustalsobe recov-eredfromthewater,forinstancebyextractionusingeither ahighboilingsolvent,suchasdodecane,orsolvent impreg-natedresins.Inthiscase,the2-MTHFcanberecoveredfrom theextractantbyflashevaporation,meaningheatof evapo-rationof2-MTHFmustbeaddedtothetotalheatduty.This amountis0.456*0.4=0.18GJ/tcellulose.Alternatively, mem-braneseparationsmaybeconsideredforthisseparation,but moreworkisrequiredtofindoutwhetheramembrane sep-arationistechnicallyfeasible.Membraneseparationsdonot requireadditionalheat,butwillrequiresomeadditional elec-tric power (Kujawski,2000). The kraft process is currently favoredoverotherbiomassfractionationprocessessincethe cellulosefibersproducedbythisprocesshavegoodproperties forpapermaking.IthasnotyetbeenproventhatDESbased delignificationprocessescanproduceasimilarfiberqualityto thekraftprocess,whichmaylimitpossibleindustrial appli-cation.ConsideringthemanypossibleDESconstituentsand ratios,whichwillallaffectthefiberquality,wethinkthatit mustbepossibletofindaDESthatcanproducecellulosefibers

(13)

Fig.7–ConceptualcomparisonofthefeedstocksandproductsinthecurrentindustrialsituationandthedesiredDES process.PicturewasadaptedfromtheProviDESfinalreport(DeepEutecticSolventsinthepaperindustry,Institutefor SustainableProcessTechnology,2018).

withtherightpropertiesforpapermaking,butmoreresearch isrequiredtoproofthis.

5.

Conclusions

Aconceptualprocessdesignwasmadeforthedelignification oflignocellulosicbiomassusingadeepeutecticsolvent com-prisedoflactic acidand cholinechloride.Massand energy balancesweremadeusingrigourouscalulations.Optimizing theamountsofwaterandDESusedintheprocessreduced theestimatedheatdutyfrom12.3to7.9GJ/tcellulose,which is28%lowerthan thekraftprocess.TheamountofDESin theprocess could bereduced tothe amountthat is physi-callyrequiredtofilltheporousbiomassbed.Theamountof waterrequiredforsufficientligninrecoverybyliquid–liquid extractionisalreadyachievedwhenthewaterusedfor wash-ingofthecelluloseandligninarerecycledtotheliquid–liquid extractionstage.Recyclingoflignin-in-DESmixturesdirectly backtothedelignificationstagemaysaveaminoramountof energy,butwillincreasethemolarweightofthelignin,which decreasesits potentialforvalorizationand makesrecovery byliquid–liquidextractionmoredifficult.Valorizationof by-products,suchasligninandfuranicsfromhemi-celluloseis keyinDESbaseddelignificationprocesses.

Declaration

of

interests

The authors declare that they have no known competing financialinterestsorpersonalrelationshipsthatcouldhave appearedtoinfluencetheworkreportedinthispaper.

Acknowledgements

Theauthors would like tothankthe members ofthe ISPT “DeepEutecticSolventsinthepulpandpaperindustry” con-sortium for their financial and in kind contribution. This cluster consists of the following organisations: CTP, CTS Twente,ISPT,Mayr-MelnhofKarton,MidSwedenUniversity, Mondi, Sappi, Stora Enso, University of Aveiro, University ofTwente,ValmetTechnologiesOy,VTTTechnicalResearch CentreofFinlandLtd,WEPAandZellstoffPöls.Thisproject receivedfundingfromTKIE&Iwiththesupplementarygrant ’TKI-Toeslag’forTopconsortiaforKnowledgeandInnovation (TKI’s)ofthe<GS1>MinistryofEconomicAffairsandClimate Policy.

Eucalyptuschipswere kindlyprovidedbyTheNavigator Company.

Appendix

A.

Supplementary

data

Supplementary material related to this article can be found,inthe onlineversion,atdoi:https://doi.org/10.1016/j. cherd.2020.09.018.

References

Alvarez-Vasco,C.,Ma,R.,Quintero,M.,Guo,M.,Geleynse,S., Ramasamy,K.K.,Wolcott,M.,Zhang,X.,2016.Unique low-molecular-weightligninwithhighpurityextractedfrom woodbydeepeutecticsolvents(DES):asourceofligninfor valorization.GreenChem.18,5133–5141,

http://dx.doi.org/10.1039/c6gc01007e.

Anastas,P.,Eghbali,N.,2010.Greenchemistry:principlesand practice.Chem.Soc.Rev.39,301–312,

http://dx.doi.org/10.1039/B918763B.

Bown,H.E.,Lasserre,J.-P.,2015.Anair-dryingmodelforpiledlogs ofEucalyptusglobulusandEucalyptusnitensinChile.New Zeal.J.For.Sci.45,1–9,

http://dx.doi.org/10.1186/s40490-015-0047-6.

Brännvall,E.,2017.Thelimitsofdelignificationinkraftcooking. BioResources12,2081–2107,

http://dx.doi.org/10.15376/biores.12.1.2081-2107. CEPI,2018.KeyStatistics,EuropeanPulpandPaperIndustry.

ConfederationofEuropeanPaperIndustries,Brussels. Chang,J.,Liu,J.,Guo,S.J.,Wang,X.F.Y.,2016.Investigationinto

selectiveseparationoflignininnoveldeepeutecticsolvent.J. SouthChinaUniv.Technol.44,14–20,

http://dx.doi.org/10.3969/j.issn.1000-565X.2016.06.003. Chen,H.,2015.3—Lignocellulosebiorefineryfeedstock

engineering.In:Chen,H.(Ed.),LignocelluloseBiorefinery Engineering,PrinciplesandApplications.Woodhead Publishing,Sawston,Cambridge,pp.37–86,

http://dx.doi.org/10.1016/B978-0-08-100135-6.00003-X. Courchene,C.,McDonough,T.,Hart,P.,Malcom,E.,Carter,B.,

2005.Determiningtheheatofreactionofkraftpulping.Tappi J4,9–13.

DaCostaLopes,A.M.,Gomes,J.R.B.,Coutinho,J.A.P.,Silvestre, A.J.D.,2020.Novelinsightsintobiomassdelignificationwith acidicdeepeutecticsolvents:amechanisticstudyof␤-O-4 etherbondcleavageandtheroleofthehalidecounterionin thecatalyticperformance.GreenChem.22,2474–2487, http://dx.doi.org/10.1039/C9GC02569C.

Dillen,J.R.,Dillén,S.,Hamza,M.F.,2016.Pulpandpaper:wood sources.In:ReferenceModuleinMaterialsScienceand MaterialsEngineering.Elsevier,

http://dx.doi.org/10.1016/B978-0-12-803581-8.09802-7. Douglas,J.M.,1988.ConceptualDesignofChemicalProcesses.

McGraw-Hill,NewYork.

Dusselier,M.,VanWouwe,P.,Dewaele,A.,Makshina,E.,Sels,B.F., 2013.Lacticacidasaplatformchemicalinthebiobased economy:theroleofchemocatalysis.EnergyEnviron.Sci.6, 1415–1442,http://dx.doi.org/10.1039/C3EE00069A.

Dutta,S.,De,S.,Saha,B.,Alam,M.I.,2012.Advancesin conversionofhemicellulosicbiomasstofurfuraland

(14)

upgradingtobiofuels.Catal.Sci.Technol.2,2025–2036, http://dx.doi.org/10.1039/C2CY20235B.

Ek,M.,Gellerstedt,G.,Henriksson,G.,2009a.WoodChemistry andWoodBiotechnology.DeGruyter,Berlin,

http://dx.doi.org/10.1515/9783110213409.

Ek,M.,Gellerstedt,G.,Henriksson,G.,2009b.PulpingChemistry andTechnology.DeGruyter,Berlin,

http://dx.doi.org/10.1515/9783110213423.

Ferreira,A.,Egas,A.,Domingues,A.,Fernandes,C.,Lobo,L.,2011. VaporpressureandboilingpointelevationofEucalyptuskraft blackliquors.SilvaLusit.

Francisco,M.,González,A.S.B.,GarcíadeDios,S.L.,Weggemans, W.,Kroon,M.C.,2013a.Comparisonofalowtransition temperaturemixture(LTTM)formedbylacticacidandcholine chloridewithcholinelactateionicliquidandthecholine chloridesalt:physicalpropertiesandvapour–liquidequilibria ofmixturescontainingwaterandethanol.RSCAdv.3, 23553–23561,http://dx.doi.org/10.1039/C3RA40303C. Francisco,M.,vandenBruinhorst,A.,Kroon,M.C.,2013b.

Low-transition-Temperaturemixtures(LTTMs):anew generationofdesignersolvents.Angew.Chem.Int.Ed.52, 3074–3085,http://dx.doi.org/10.1002/anie.201207548. Francisco,M.,vandenBruinhorst,A.,Zubeir,L.F.,Peters,C.J.,

Kroon,M.C.,2013c.Anewlowtransitiontemperaturemixture (LTTM)formedbycholinechloride+lacticacid:

characterizationassolventforCO2capture.FluidPhase

Equilib.340,77–84,

http://dx.doi.org/10.1016/j.fluid.2012.12.001.

García,G.,Aparicio,S.,Ullah,R.,Atilhan,M.,2015.Deepeutectic solvents:physicochemicalpropertiesandgasseparation applications.EnergyFuels29,2616–2644,

http://dx.doi.org/10.1021/ef5028873.

Glass,M.,Aigner,M.,Viell,J.,Jupke,A.,Mitsos,A.,2016. Liquid-liquidequilibriumof2-methyltetrahydrofuran/water overwidetemperaturerange:measurementsandrigorous regression.FluidPhaseEquilib.433,212–225,

http://dx.doi.org/10.1016/j.fluid.2016.11.004.

Gomez,F.J.V.,Espino,M.,Fernández,M.A.,Silva,M.F.,2018.A greenerapproachtopreparenaturaldeepeutecticsolvents. ChemistrySelect3,6122–6125,

http://dx.doi.org/10.1002/slct.201800713.

Guo,Z.,Zhang,Q.,You,T.,Ji,Z.,Zhang,X.,Qin,Y.,Xu,F.,2019a. Heteropolyacidsenhancedneutraldeepeutecticsolvent pretreatmentforenzymatichydrolysisandethanol

fermentationofMiscanthus×giganteusundermildconditions. Bioresour.Technol.293,122036,

http://dx.doi.org/10.1016/j.biortech.2019.122036. Guo,Z.,Zhang,Q.,You,T.,Zhang,X.,Xu,F.,Wu,Y.,2019b.

Short-timedeepeutecticsolventpretreatmentforenhanced enzymaticsaccharificationandligninvalorization.Green Chem.21,3099–3108,http://dx.doi.org/10.1039/c9gc00704k. Harmsen,G.J.,2004.Industrialbestpracticesofconceptual

processdesign.Chem.Eng.Process.ProcessIntensif.43, 671–675,http://dx.doi.org/10.1016/j.cep.2003.02.003.

Haz,A.,Stri ˇzincová,P.,Majová,V.,Andrea,S.,Jablonsky,M.,2016. Thermalstabilityofselecteddeepeutecticsolvents.Int.J.Sci. Res.7,14441–14444.

Hou,X.-D.,Li,A.-L.,Lin,K.-P.,Wang,Y.-Y.,Kuang,Z.-Y.,Cao,S.-L., 2018a.Insightintothestructure-functionrelationshipsof deepeutecticsolventsduringricestrawpretreatment. Bioresour.Technol.249,261–267,

http://dx.doi.org/10.1016/j.biortech.2017.10.019.

Hou,X.-D.,Lin,K.-P.,Li,A.-L.,Yang,L.-M.,Fu,M.-H.,2018b.Effect ofconstituentsmolarratiosofdeepeutecticsolventsonrice strawfractionationefficiencyandthemicro-mechanism investigation.Ind.CropsProd.120,322–329,

http://dx.doi.org/10.1016/j.indcrop.2018.04.076.

Hoydonckx,H.E.,VanRhijn,W.M.,VanRhijn,W.,DeVos,D.E., Jacobs,P.A.,2007.Furfuralandderivatives.In:Ullmann’s EncyclopediaofIndustrialChemistry.Wiley,Weinheim, http://dx.doi.org/10.1002/14356007.a12119.pub2.

Hu,S.,Zhang,Z.,Zhou,Y.,Han,B.,Fan,H.,Li,W.,Song,J.,Xie,Y., 2008.Conversionoffructoseto5-hydroxymethylfurfural

usingionicliquidspreparedfromrenewablematerials.Green Chem.10,1280–1283,http://dx.doi.org/10.1039/b810392e. Jablonsk ´y,M., ˇSkulcová,A.,Kamenská,L.,Vrˇska,M., ˇSíma,J.,

2015.Deepeutecticsolvents:fractionationofwheatstraw. BioResources10,8039–8047,

http://dx.doi.org/10.15376/biores.10.4.8039-8047. Jablonsk ´y,M.,Haz,A.,Majova,V.,2019.Assessingthe

opportunitiesforapplyingdeepeutecticsolventsfor fractionationofbeechwoodandwheatstraw.Cellulose26, 7675–7684,http://dx.doi.org/10.1007/s10570-019-02629-0. Kajimoto,T.,Tachibana,Y.,Maeda,Y.,Kubota,S.,Hata,T.,

Imamura,Y.,2008.Characterizationofthepulp-likefibers separatedfromSugiwithl-lacticacid.MokuzaiGakkaishi54, 319–326,http://dx.doi.org/10.2488/jwrs.54.319.

Kujawski,W.,2000.Pervaporativeremovaloforganicsfromwater usinghydrophobicmembranes.Binarymixtures.Sep.Sci. Technol.35,89–108,http://dx.doi.org/10.1081/SS-100100145. Kumar,A.K.,Parikh,B.S.,Pravakar,M.,2016.Naturaldeepeutectic

solventmediatedpretreatmentofricestraw:bioanalytical characterizationofligninextractandenzymatichydrolysisof pretreatedbiomassresidue.Environ.Sci.Pollut.Res.23, 9265–9275,http://dx.doi.org/10.1007/s11356-015-4780-4. Lange,J.-P.,2001.Fuelsandchemicalsmanufacturing;guidelines

forunderstandingandminimizingtheproductioncosts. CATTECH5,82–95,http://dx.doi.org/10.1023/A:1011944622328. Li,T.,Lyu,G.,Liu,Y.,Lou,R.,Lucia,L.A.,Yang,G.,Chen,J.,Saeed,

H.A.M.,2017.Deepeutecticsolvents(DESs)fortheisolationof willowlignin(Salixmatsudanacv.Zhuliu).Int.J.Mol.Sci.18, 2266,http://dx.doi.org/10.3390/ijms18112266.

Li,A.L.,Hou,X.D.,Lin,K.P.,Zhang,X.,Fu,M.H.,2018.Ricestraw pretreatmentusingdeepeutecticsolventswithdifferent constituentsmolarratios:biomassfractionation, polysaccharidesenzymaticdigestionandsolventreuse.J. Biosci.Bioeng.126,346–354,

http://dx.doi.org/10.1016/j.jbiosc.2018.03.011.

Li,L.,Yu,L.,Wu,Z.,Hu,Y.,2019a.Delignificationofpoplarwood withlacticacid-baseddeepeutecticsolvents.WoodRes.64, 499–514.

Li,P.,Zhang,Q.,Zhang,X.,Zhang,X.,Pan,X.,Xu,F.,2019b. Subcellulardissolutionofxylanandligninforenhancing enzymatichydrolysisofmicrowaveassisteddeepeutectic solventpretreatedPinusbungeanaZucc.Bioresour.Technol. 288,121475,http://dx.doi.org/10.1016/j.biortech.2019.121475. Liang,X.,Fu,Y.,Chang,J.,2019.Effectiveseparation,recoveryand

recyclingofdeepeutecticsolventafterbiomassfractionation withmembrane-basedmethodology.Sep.Purif.Technol.210, 409–416,http://dx.doi.org/10.1016/j.seppur.2018.08.021. Lim,W.L.,Gunny,A.A.N.,Kasim,F.H.,AlNashef,I.M.,Arbain,D.,

2019.Alkalinedeepeutecticsolvent:anovelgreensolventfor lignocellulosepulping.Cellulose26,4085–4098,

http://dx.doi.org/10.1007/s10570-019-02346-8.

Lima,F.,Gouvenaux,J.,Branco,L.C.,Silvestre,A.J.D.,Marrucho, I.M.,2018.Towardsasulfurcleanfuel:deepextractionof thiopheneanddibenzothiopheneusingpolyethylene glycol-baseddeepeutecticsolvents.Fuel234,414–421, http://dx.doi.org/10.1016/j.fuel.2018.07.043.

Lima,F.,Dave,M.,Silvestre,A.J.D.,Branco,L.C.,Marrucho,I.M., 2019.Concurrentdesulfurizationanddenitrogenationoffuels usingdeepeutecticsolvents.ACSSustain.Chem.Eng.7, 11341–11349,

http://dx.doi.org/10.1021/acssuschemeng.9b00877.

López-Salas,N.,Jardim,E.O.,Silvestre-Albero,A.,Gutiérrez,M.C., Ferrer,M.L.,Rodríguez-Reinoso,F.,Silvestre-Albero,J.,Del Monte,F.,2014.Useofeutecticmixturesforpreparationof monolithiccarbonswithCO2-adsorptionandgas-separation

capabilities.Langmuir30,12220–12228, http://dx.doi.org/10.1021/la5034146.

Lu,Q.,Liu,W.,Yang,L.,Zu,Y.,Zu,B.,Zhu,M.,Zhang,Y.,Zhang, Xiunan,Zhang,R.,Sun,Z.,Huang,J.,Zhang,Xiaonan,Li,W., 2012.Investigationoftheeffectsofdifferentorganosolv pulpingmethodsonantioxidantcapacityandextraction efficiencyoflignin.FoodChem.131,313–317,

Referenties

GERELATEERDE DOCUMENTEN

Locatienaam absolute achteruitgang soortenrijkdom door stress 1 absolute achteruitgang door vermesting/ verdroging/ verzuring 2 dominante factor voor oorzaken- cluster

In een ander ziekenhuis heeft men weer een andere procedure: De Ieerlingen worden aan het eind van hun stage op de af- deling door het team beoordeeld, maar ook de leerlingen

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

The environment has changed tremendously. The current environment forces you to be able to consult with stakeholders in your organisation which means that you cannot just manage

put 1 en waarschijnlijk als een tuinlaag te interpreteren, materiaal uit de 14 de tot 16 de eeuw. Naast de gedateerde lagen en kuilen werden echter ook een aantal

Dit rapport is een wetenschappelijke weergave van het archeologisch onderzoek - zowel terrein- als bureauwerk - dat bij het kerkhof van Aalter in het begin 2006 werd uitgevoerd

volgmechanisme en die tussen nokrol en nok. Bij een machinesnelheid van 2790 stuks/uur blijkt een gemeten verbetering mogelijk tot resp. zonder en met een loegevoegde

Er kunnen afwijkingen optreden in de ogen die (nog) geen klachten geven maar wel behandeld moeten worden om beschadiging van het netvlies te voorkomen of te