• No results found

“K−pp”, a K-meson nuclear bound state, observed in 3He(K−, Λ p)n reactions

N/A
N/A
Protected

Academic year: 2021

Share "“K−pp”, a K-meson nuclear bound state, observed in 3He(K−, Λ p)n reactions"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Ajimura, S., Asano, H., Beer, G., Berucci, C., Bhang, H., Bhang, H. & Zmeskal, J.

(2018). “K

pp”, a K-meson nuclear bound state, observed in

3

He(K

, Λ p)n

reactions. Physics Letters B, (789), 620-625.

https://doi.org/10.1016/j.physletb.2018.12.058

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Science

Faculty Publications

_____________________________________________________________

“K

pp”, a K-meson nuclear bound state, observed in

3

He(K

, Λ p)n reactions

J-PARC E15 collaboration, S. Ajimura, H. Asano, G. Beer, C. Berucci, H. Bhang, M.

Bragadireanu, P. Buehler, L. Busso, M. Cargnelli, S. Choi, C. Curceanu, S. Enomoto,

H. Fujioka, Y. Fujiwara, T. Fukuda, C. Guaraldo, T. Hashimoto, R.S. Hayano, T.

Hiraiwa, M. Iio, M. Iliescu, K. Inoue, Y. Ishiguro, T. Ishikawa, S. Ishimoto, K.

Itahashi, M. Iwasaki, K. Kanno, K. Kato, Y. Kato, S. Kawasaki, P. Kienle, H. Kou, Y.

Ma, J. Marton, Y. Matsuda, Y. Mizoi, O. Morra, T. Nagae, H. Noumi, H. Ohnishi, S.

Okada, H. Outa, K. Piscicchia, Y. Sada, A. Sakaguchi, F. Sakuma, M. Sato, A.

Scordo, M. Sekimoto, H. Shi, K. Shirotori, D. Sirghi, F. Sirghi, K. Suzuki, S. Suzuki,

T. Suzuki, K. Tanida, H. Tatsuno, M. Tokuda, D. Tomono, A. Toyoda, K. Tsukada, O.

Vazquez Doce, E. Widmann, T. Yamaga, T. Yamazaki, Q. Zhang, J. Zmeskal

February 2019

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY

license (

http://creativecommons.org/licenses/by/4.0/

)

This article was originally published at:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

“K

pp”,

a

K -meson

nuclear

bound

state,

observed

in

3

He

(

K

,



p

)

n

reactions

J-PARC

E15

collaboration,

S. Ajimura

a

,

H. Asano

b

,

G. Beer

c

,

C. Berucci

d

,

H. Bhang

e

,

M. Bragadireanu

f

,

P. Buehler

d

,

L. Busso

g

,

h

,

M. Cargnelli

d

,

S. Choi

e

,

C. Curceanu

i

,

S. Enomoto

j

,

H. Fujioka

k

,

Y. Fujiwara

l

,

T. Fukuda

m

,

C. Guaraldo

i

,

T. Hashimoto

n

,

R.S. Hayano

l

,

T. Hiraiwa

a

,

M. Iio

j

,

M. Iliescu

i

,

K. Inoue

a

,

Y. Ishiguro

o

,

T. Ishikawa

l

,

S. Ishimoto

j

,

K. Itahashi

b

,

M. Iwasaki

b

,

k

,

,

K. Kanno

l

,

K. Kato

o

,

Y. Kato

b

,

S. Kawasaki

a

,

P. Kienle

p

,

1

,

H. Kou

k

,

Y. Ma

b

,

J. Marton

d

,

Y. Matsuda

l

,

Y. Mizoi

m

,

O. Morra

g

,

T. Nagae

o

,

H. Noumi

a

,

H. Ohnishi

q

,

b

,

S. Okada

b

,

H. Outa

b

,

K. Piscicchia

i

,

Y. Sada

a

,

A. Sakaguchi

a

,

F. Sakuma

b

,

,

M. Sato

j

,

A. Scordo

i

,

M. Sekimoto

j

,

H. Shi

i

,

K. Shirotori

a

,

D. Sirghi

i

,

f

,

F. Sirghi

i

,

f

,

K. Suzuki

d

,

S. Suzuki

j

,

T. Suzuki

l

,

K. Tanida

n

,

H. Tatsuno

r

,

M. Tokuda

k

,

D. Tomono

a

,

A. Toyoda

j

,

K. Tsukada

q

,

O. Vazquez Doce

i

,

p

,

E. Widmann

d

,

T. Yamaga

b

,

a

,

,

T. Yamazaki

l

,

b

,

Q. Zhang

b

,

J. Zmeskal

d

aOsakaUniversity,Osaka,567-0047,Japan bRIKEN,Wako,351-0198,Japan

cUniversityofVictoria,VictoriaBCV8W3P6,Canada

dStefan-Meyer-InstitutfürsubatomarePhysik,A-1090Vienna,Austria eSeoulNationalUniversity,Seoul,151-742,SouthKorea

fNationalInstituteofPhysicsandNuclearEngineeringIFINHH,Bucharest,Magurele,Romania gINFNSezionediTorino,10125Torino,Italy

hUniversita’diTorino,Torino,Italy

iLaboratoriNazionalidiFrascatidell’INFN,I-00044Frascati,Italy

jHighEnergyAcceleratorResearchOrganization(KEK),Tsukuba,305-0801,Japan kTokyoInstituteofTechnology,Tokyo,152-8551,Japan

lTheUniversityofTokyo,Tokyo,113-0033,Japan

mOsakaElectro-CommunicationUniversity,Osaka,572-8530,Japan nJapanAtomicEnergyAgency,Ibaraki319-1195,Japan

oKyotoUniversity,Kyoto,606-8502,Japan

pTechnischeUniversitätMünchen,D-85748,Garching,Germany qTohokuUniversity,Sendai,982-0826,Japan

rLundUniversity,Lund,22100,Sweden

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received9August2018

Receivedinrevisedform25October2018 Accepted4December2018

Availableonline2January2019 Editor:V.Metag

Keywords:

Kaon Strangeness

Mesonicnuclearboundstate

Weobservedadistinctpeakinthep invariantmassspectrumof3He(K,p)n,wellbelowmK+2mp, i.e.,themassthresholdoftheK−tobeboundtotwoprotons.Byselectingarelativelylarge momentum-transfer region q=350∼650 MeV/c, one can kinematically separate the peak from the quasi-free process,K NK N followedbythenon-resonantabsorptionbythetwospectator-nucleonsK N N→ N. We foundthat thesimplestfitto theobserved peakgives usaBreit–Wignerpole positionat BKpp=

47±3(stat.)+63(sys.)MeVhavingawidthKpp=115±7(stat.)+2010(sys.)MeV,andtheS-waveGaussian reactionform-factorparameter QKpp=381±14(stat.)+570 (sys.)MeV/c,as anewform ofthenuclear boundsystemwithstrangeness–“Kpp”.

©2018PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthorsat:RIKEN,Wako,351-0198,Japan.

E-mailaddresses:masa@riken.jp(M. Iwasaki),

sakuma@ribf.riken.jp

(F. Sakuma),

takumi.yamaga@riken.jp

(T. Yamaga).

1 Deceased.

https://doi.org/10.1016/j.physletb.2018.12.058

(3)

1. Introduction

Sincethepredictionofthe

π

-mesonbyYukawa[1], the long-standingquestionhasbeenwhetheramesonicnuclearboundstate exists, i.e., whethera meson forms aquantumstate at an eigen-energyEM belowtheintrinsicmassm withoutpromptlyvanishing

innuclearmedia.Ifit exists,itmeansthat ameson(qq) formsa quantumstatewithin thenuclearmedium constitutedofbaryons (qqq).Therearemanyimportantsubjectstostudy,e.g.,howhadron massesaregeneratedfrom

masslessparticles[quarks(mq

few

MeV/c2)andgluons(mg

=

0)];howthepropertiesofthesemesons

changeinthe nuclearmedium;how hadronsare confinedinthe nuclearmedia;andtheequation-of-stateinnuclear(orstar) mat-ter. Therefore, many mesons have been examined over the past century,to seewhetheramesonicnuclearbound stateexists be-lowthemassthresholdwithabindingenergy BM

m

EM,but

therehasbeennoclearevidencefortheirexistence.

The

π

N S-wave interaction is repulsive, so there is no nu-clearbound state much deeper than the atomicstates[2]. What aboutthe second-lightestmeson with an s-quark, the kaon? Af-terthe longstanding “kaonichydrogenpuzzle” wasresolved [3–5], thestrongK N attractiveinteractionwasestablishedintheisospin

I

=

0 channel. This leads us naturally to the ansatz that the

(

1405

)

couldbea Kp nuclearboundstate,ratherthana three-quark



-baryonic-stateasitisnamed,i.e.,thenameimpliesthatit isafirstexcited stateofthe



baryon whoseexcitation iscaused bytheconstituent-quarkinternal-motion.ArecentlatticeQCD cal-culationalsosupportsthe Kp picture[6].Akaishi–Yamazaki pre-dictedtheexistence ofkaonic nuclearboundstatesassuming the

(

1405

)

bea Kp boundstate[7].Thesimplestpredictedkaonic nuclearsystem, K N N symbolicallydenotedas“Kpp”,hascharge

+

1, I

=

12 and JP

=

0−, with a binding energy BKpp

=

48 MeV

(measuredfrom M

(

K pp

)

mK

+

2mp

2370 MeV/c2) anda

par-tialmesonicdecaywidth



πY N

=

61 MeV[8].

Triggered by this prediction, many studies were undertaken. Theoretically, the existence of the kaonic bound states is well supported, butthe resultsare widely scattered: binding energies (BKpp

10

100 MeV)andpartialmesonicdecaywidths(



πY N

40

100 MeV), e.g., [9–12], while the total decay width



K pp

(includingnon-mesonic decaychannels) hasyet tobe calculated. Experimentally,there havebeenmanysearchesfor“Kpp”, with reportsofpossiblecandidates[13–15] aswellascontradictory re-sults[16,17],leavingthematterbothcontroversialandunsettled.

2. J-PARCE15experiment

We have conducted an experimental search for the “Kpp”

by bombarding a 3He target witha 1 GeV/c K− beamto knock out a nucleon with the kaon, and directly introduce a recoiled virtual-K -meson into the residual nucleus. At this momentum (

s

1

.

8 GeVfor K N),thesingle-nucleonelastic-reaction K N

K N has a very large cross-section, helped by the presence of

Y∗-resonances(mY

1

.

8 GeV/c2)[18].Ontheotherhand,dueto

theshrinkageof thede Broglie wave-lengthofthe projectile, di-rectmulti-nucleonabsorption(multi-NA),whichproducesasevere backgroundinan at-rest-kaon-absorption experimenttosearch for “Kpp”[17,19],willberelativelysuppressed.

Themomentumofthevirtual ‘K ’isgivenasqK

=

qK n

≡ |

qK n

|

(i.e. the momentum difference of an incident kaon and the for-wardneutronqK n

pLabK.

pnLab.),wherethesuperscriptrepresents

thatit isinthelaboratory-frame,andthe singlequotation marks representthat it is within the strong interaction range in a nu-cleus.When the‘K ’ is backscattered, theqK can be assmall as

200MeV/c (theminimumq amongthesearchexperiments per-formed). With this condition, a successive reaction between the

virtual‘K ’andtwo‘spectatornucleons’at-restinthelaboratory-frame

canbe efficientlyrealized.Thisway,a“Kpp” canbe formed al-mostat-rest in thelaboratory-frame, whichmakes the formation probabilitylarge.Inthisreactionchannel,onecanreducethe pos-siblecombinationsof“Kpp”decayparticles,becausethes-quark

isconserved inthestronginteraction andthusa hadronwithan

s-quark should exist in its decay. Thus, one can efficiently con-duct invariant mass spectroscopy (decay channel) by having the detector surrounding the target, and missing mass spectroscopy (formation channel) usinga forward neutroncounter (NC)anda spectrometertosimultaneouslydetectaforwardgoingneutron(or proton) coming from K N

K N reaction. We designed our ap-paratus toachieve a mass resolutionof

σ

M

10 MeV/c2 both in

missingandininvariantmass[20].

Thefirst-stageexperiment,J-PARCE151st,exhibitedahugepeak aboveM

(

K pp

)

byobservingtheneutroninNC(

NC

1

/

20)[21].

This spectral peak has a very large cross-section of



6 mb/sr in the semi-inclusive quasi-elastic K N

K N channel at

θ

n

=

0.

Thus, we confirmed that the forward nucleon knockout reaction,

K N

K N, isthe dominant process at pK

=

1 GeV/c.It also

re-vealed that there was a large event-excess extending from the quasi-elasticK bumptothelowermassregion.Thetailreachedto

100MeV below M

(

K pp

)

(

1mb/sr). However, nosignificant structurewas observedinthistailatanylocation,where“Kpp”

candidateswerereported[13–15].

On the contrary, we found a kinematical anomaly: a peak-like structure was observed in the



p invariant mass (IMp

M

,

hereafter)spectrum ofthenon-mesonic



pn finalstate below theM

(

K pp

)

massthresholdatlowqp

(

=

qK n

q

,

hereafter

)

[22].

This is the simplest final state, which consists of the minimum numberof lowest massbaryons withoutmeson emission, sothe possibleinterpretations arelimited. Themostpromising interpre-tationis:the“Kpp”isformedbyknockingoutaneutron,decays to



p, and thus a corresponding peak is seen in the M

spec-trum.

Tosignificantlyimprovethestatisticsofthe



pn finalstate per-mittingustoexaminethisinterpretation,wesetahigherpriority onaccumulatingeventshavingthreechargedparticlehitsaround the target withoutrequiringforwardneutrondetection. To identify the



pn finalstate,weobservedthembythe pp

π

−-events with-out requesting an NC hit, andwe conductedthe kinematical re-fit of p

π

p (

+

nmissing) to the



pn finalstate using energy– momentum conservation atthe analysis stage to prevent biasing thedata.Wesucceededinaccumulating30timesasmuchdataon

p

π

p eventscomparedtoE151st.

The formation channel, K

+

3 He

“Kpp”

+

n, can be uniquely definedby the following two parameters;the



p-inva-riant mass M and the momentum transfer q. The event dis-tributions over M and q are given in Fig. 1. As shown in the figure, a strong event-concentration observed previously [22] is confirmed near the mass threshold M

(

K pp

)

at the lower-q side

(

Mc2

,

qc

)

∼ (

2

.

37

,

0

.

25

)

GeV.

To our surprise, however, the structure near M

(

K pp

)

cannot be represented as a single Breit–Wigner (B.W.) function, as was naïvelyassumedinthepreviouspaper[22].Instead,itismore nat-uraltointerpret thisstructureasconsistingofat-leasttwo inter-nal substructuresoriginatingfromdifferentreaction mechanisms. However, the primary reaction KN

‘K ’n (n forward) would be the same, because both substructures are close to

(

M

,

q

)

(

mK

+

2mp

,

lower limit

)

.

The2Dplot(Fig.1a)showsthattheeventdistributionpatterns change at M

(

K pp

)

. The yield of a region-of-interest just below

M

(

K pp

)

is reduced as a function of q, but extends to q

650 MeV/c.ThedistributioncentroidofM doesnotdependonq within

(4)

interpre-Fig. 1. a)2DeventdistributionplotontheM (=IMp)andthemomentumtransferq (qp)forthepn finalstate.TheMF(q)giveninEq. (2),themassthresholdM(K pp),

andthekinematicalboundaryforpn finalstate,areplottedinthefigure.Thelowerq boundarycorrespondstoθn=0 (forwardn),andtheupperboundarycorrespondsto

θn=π(backwardn).ThehistogramsofprojectionontotheM axisb),andontoq axisc)arealsogiventogetherwiththedecompositionsofthefitresult.

tation. On the other hand, the distribution centroid of M above M

(

K pp

)

dependsonq,andtheyieldvanishesrapidlyasafunction ofq.ThecentroidshiftstotheheavierM sideforthelargerq, sug-gestingitsnon-resonantfeature,i.e. thepropagator’skineticenergy isconvertedtotherelativekineticenergybetween



andp,near thelowerq boundary.Thus,themostnaturalinterpretationwould benon-resonantabsorptionofquasi-free‘K ’bythe‘N N’spectator (QFKA)duetothefinalstate interaction(FSI).Thisprocesscanbe understoodasapart ofthequasi-free K reaction,in whichmost

K sescape from the nucleus, aswe published in [21]. Note that thereisanotherchangeineventdistributions atM

(

K pp

)

,i.e.,the eventdensityislowclosetothe

θ

n

=

0 linebelowM

(

K pp

)

,while

itishighabove M

(

K pp

)

(thispointwillbeseparatelydiscussedin thelastsection).

Thisspectralsubstructureisinrelativelygoodagreementwith that of Sekihara–Oset–Ramos’s spectroscopic function [23] to ac-count fortheobserved structure in[22]. Actually,their spectrum has two structures, namely A) a “Kpp” pole below the mass threshold M

(

K pp

)

(meson bound state), and B) a QFKA process above the M

(

K pp

)

. Thus, the interpretation of the internal sub-structuresnearM

(

K pp

)

isconsistentwiththeirtheoreticalpicture.

3. Fittingprocedure

We first describe what we can expect if point-like reactions happenbetweenan incoming K− and3He,whichgoesto a



pn finalstate.Theeventsmustdistributesimplyaccordingtothe



pn

Lorentz-invariantphase space

ρ

3

(

M

,

q

)

,as shownin Fig. 2a. We fullysimulatedtheseeventsbasedonourexperimental setupand analyzed the simulated events by the common analyzer applied to the experimental data. The result is shown in Fig. 2b, which is simply

E(

M

,

q

)

×

ρ

3

(

M

,

q

)

, where

E(

M

,

q

)

is the experimen-tal efficiency. One can evaluate

E(

M

,

q

)

by dividing Fig. 2b by Fig.2a bin-by-bin,which isgiveninFig. 2c.Asshownin Fig.2c, we havesufficient andsmooth experimental efficiencyat the re-gion of interest, M

M

(

K pp

)

at lower q, based on the careful designoftheexperimentalsetup.Ontheotherhand,theefficiency

is rather low at the dark blue region and even less toward the kinematicalboundary,asshowninFig.2c.Ifwe simplyapplythe acceptance correction, thestatistical errors ofthose bins become hugeandveryasymmetric.Thisfactmakestheacceptance correc-tion oftheentire

(

M

,

q

)

regionunrealistic.Therefore,we applied areverseprocedure,i.e.,wepreparedsmoothfunctions f{j}

(

M

,

q

)

(toaccountforthe j-th physicalprocess)andmultipliedthatwith

E(

M

,

q

)

×

ρ

3

(

M

,

q

)

(

=

Fig. 2b) bin-by-bin. In this manner, one canreliably estimatehowthephysicsprocessshould beobserved in ourexperimental setup,andthispermitted usto calculatethe mean-event-numberexpectedineach2Dbin.Thethreeintroduced modelfunctions(atthebestfitparameterset)areshowninFig.3. A veryimportant andstriking structureexists below M

(

K pp

)

, whichcouldbeassignedasthe“Kpp”signal.Tomakethefitting function as simple as possible, let us examine the event distri-bution by usingthe same function aswas applied in [22], i.e., a product ofB.W.depending onlyon M, andan S-wave harmonic-oscillatorform-factordependingonlyonq as:

f{Kpp}

=

CKpp





Kpp

/

2



2



M

MKpp



2

+





Kpp

/

2



2 exp





q QKpp



2



,

(1)

where MKpp and



Kpp are the B.W. poleposition and thewidth,

QKpp is the reaction form-factor parameter, and CKpp is the

nor-malizationconstant,asshowninFig.3a.

Amodel-functionoftheQFKAchannel, f{Q FKA}

(

M

,

q

)

,is

intro-duced asfollows.As described, we assume that a ‘K ’propagates between the two successive reactions. It consists of 1) KN

‘K ’N and2)non-resonant‘K ’

+

‘N N’

→ 

+

p intheFSI.Whenthe ‘K ’propagatesatmomentumq asanon-shellparticleinthe spec-tator’srestframe(

laboratory-frame),thentheresultinginvariant massM (

I Mp

(

‘K

+

N N’

)

)canbegivenas:

MF

(

q

)

=



4m2N

+

m2K

+

4mN

(5)

Fig. 2. Simulatedspectraofa)Lorentz-invariantpn phasespaceρ3(M,q)bytakingintoaccountthekaonbeammomentumbite,b)E(M,q)×ρ3(M,q),andc)experimental

efficiency,E(M,q),evaluatedbythebin-by-binratiobetweena)andb).Theunitofz-axis(colorcode)isperonegeneratedeventsbothfora)andb).Forc),theratiois given.

Fig. 3. Individual2Dfitfunctionsofthethreephysicalprocesses,a)“K pp”,b)QFKAandc)B G intheformofE(M,q)ρ3(M,q)fj(M,q)atthebestfitparameterset.The z-axis(colorcode)istheexpected-meaneventnumbertobeobserved.Thepale-blueisfortheregionwheretheexpectednumberisbelowone.Thez-axis’colorcodeofc) ischangedtoshowits(M,q)-dependenceclearly.

where mN and mK are the intrinsic mass of the nucleon and

the kaon, respectively. The curve originating at M

=

M

(

K pp

)

in Fig.1a is the MF

(

q

)

, which isconsistent with the q-dependence

of QFKA as shown in the figure. Along the line, there are two strongevent-concentrationsobservedat

θ

n

=

0 (backward‘K ’)and

θ

n

=

π

(forward ‘K ’). To account for the distribution, we

de-fined f{Q FKA}

(

M

,

q

)

asfollows.Fortheq-direction,weintroduced Gaussian and exponential distributions at around the minimum andmaximum,respectively, with a constant inbetween. Forthe

M-direction, a Gaussian around MF

(

q

)

is applied to account for

thespectator’sFermi-motion.

Thereisanothercomponent,widelydistributingoverthe kine-matically allowed region of M and q, which was previously ob-served[22].Inreference[22],wesimplyassumedthattheyieldof thiscomponentwasproportional to

ρ

3

(

M

,

q

)

. However,withthe presentmuchimprovedstatistics,wefoundthatwecannotfitthis componentwith

ρ

3

(

M

,

q

)

.Comparedto

ρ

3

(

M

,

q

)

,theyieldsinthe heavierM regionandlowerq regionaremuchweaker, asshown inthefitcurvegiveninFig.1bandc.Thus,wephenomenologically

introduceda distributionfunction, f{BG}

(

M

,

q

)

, similarto Eq. (1), butweexpandedtheq-dependentharmonicoscillatortermto al-lowangularmomentumupto P -wave,asshowninFig.3c.

Thedata D

(

M

,

q

)

can be fittedby usingthe maximum likeli-hoodmethod,whoselikelihoodlnL{fit}isgivenbyaPoisson

distri-bution P

(

X

=

D

(

M

,

q

)

;

λ

D

(

M

,

q

))

havingmeanvalue

λ

D

(

M

,

q

)

at

each

(

M

,

q

)

-binas: lnL{fit}

= −

M

q ln P

(

X

=

D

(

M

,

q

)

; λ

D

(

M

,

q

)).

(3)

Thefittingfunction

λ

D

(

M

,

q

)

isdefinedas:

λ

D

(

M

,

q

)

=

E

(

M

,

q

)

ρ

3

(

M

,

q

)

j yjfj

(

M

,

q

)

⎠ ,

(4)

where yj is the yield of the j-th physical process, and the first

term

E(

M

,

q

)

ρ

3

(

M

,

q

)

issimplyFig.2b.

To examine whether we should introduce more sophisticated model functions, we also studied the following distributions. In the3He

(

K

,



p

)

n reactionfollowedby



p

π

−decay,thereare five kinematically independent observables in total. The remain-ingthreekinematicalparameters,independentofM andq,define the decay kinematics of “Kpp”

→ 

p and the



p

π

− de-cayasymmetry.Thus, theseparameters aresensitiveto JP ofthe reaction channels. For the “Kpp” signal, we analyzed events in thewindow M

=

2

.

28

2

.

38 GeV/c2 wherethemajorpartofthe componentislocated,andq

=

350

650 MeV/c wherenosevere interferenceisexpectedwith f{Q FKA}.Theangulardistributionsare fairly flat forany ofthe three kinematicalparameters. Therefore, the angulardistributionis consistent with S-wave.Thus, there is

(6)

Fig. 4.p invariantmassspectrumforpn finalstateproducedinthemomentum transferwindowof350<q<650 MeV/c.The efficiencyE(M,q)wascorrected basedonthesimulationbeforetheq integrationofthedata.Eachfittedphysical process,whichisefficiencycorrectedandintegratedovertheq-windowafterthe fit,isalsogiven.

nospecificreasontointroduceanysophisticatedtermsinaddition to Eq. (1). In fact, a flat distribution is naturally expected ifthe pole’squantum-numberis JP

=

0−.Wealsoanalyzedtheangular distributions for f{Q FKA} and f{BG}. However, againwe found no

specificreasontointroducefurtherterms.

We haven’t considered the interference terms between the three physical processes as given in Eq. (4), to avoid over fit-ting of our statistically limited data. Instead, we applied a peak fitting window to reduce the interference effect on our fit re-sult by the following procedures. We conducted i) thepeak fit,

where f{Q FKA}

(

M

,

q

)

is fitted by fixing all the parameters of

f{Q FKA}

(

M

,

q

)

and f{BG}

(

M

,

q

)

within the q-window where no severe interference with QFKA is expected. We then iterated this procedure together with procedure ii) aglobalfittoevaluate f{Q FKA}

(

M

,

q

)

and f{BG}

(

M

,

q

)

(byfixing parameters in f{Kpp} ex-ceptforthepeakyieldCKpp),untilproceduresi)andii)converged.

Toexhibit this “Kpp” candidateand topresentthe M

spec-trumfreefromexperimentalacceptance,weplottedthespectrum by correcting our detector efficiency for the events in the mo-mentum transfer windowof 350

<

q

<

650 MeV/c where mostly

E(

M

,

q

)



0,asshowninFig.4.Tomake fitvaluesinsensitiveto theacceptancecorrectionprocedure,we correctedtheacceptance asfollows.The data D

(

M

,

q

)

was divided by

E(

M

,

q

)

bin-by-bin andintegratedoverq atgivenM.Weappliedthesameprocedure forthedataerrortakingerror-propagationintoaccount.Foreach projectedphysicsprocess

ρ

3fj (plottedasthecurvedlinesinthe

figure), we integrated over q, by replacing the

E(

M

,

q

)

ρ

3

(

M

,

q

)

function(giveninFig.2b)with

ρ

3

(

M

,

q

)

(Fig.2a)tobemultiplied by fj

(

M

,

q

)

,cf.,Eq. (4).

In this window, the yield of other processes is largely sup-pressedincontrastto“Kpp”.TheQFKAdistributionisalsoclearly separatedfromthe“Kpp”peakregion,becausetheQFKAcentroid iskinematicallyshiftedtotheheavierside,accordingtoEq. (2),cf.,

acomparisonofthespectraldifferenceoftheQFKA component in-settedin bluecurvesin Fig.1b andFig.4. As aresult, a distinct peakisobservedbelowM

(

K pp

)

.

4. Fitresult

The S-wave parameters obtained were; the mass eigenvalue

MKpp

=

2324

±

3

(

stat

.)

+63

(

sys

.)

MeV/c2 (i.e. BKpp

M

(

K pp

)

MKpp

=

47

±

3

(

stat

.)

+63

(

sys

.)

MeV), the width



Kpp

=

115

±

7

(

stat

.)

+1020

(

sys

.)

MeV, and the reaction form-factor parameter

QKpp

=

381

±

14

(

stat

.)

+570

(

sys

.)

MeV/c.The q-integrated“Kpp” formationyieldbelowthethresholdgoingtothe



p decay chan-nel is evaluated to be

σ

Kpp

·

Brp

=

7

.

2

±

0

.

3

(

stat

.)

+01..60

(

sys

.)

μb (for M

<

M

(

K pp

)

). For the complete integration over all

q and M, the cross-section becomes

σ

tot

Kpp

·

Brp

=

11

.

8

±

0

.

4

(

stat

.)

+01..27

(

sys

.)

μb.

Weevaluatedthesystematicerrorscausedbythespectrometer magnetic field strength calibrated by invariant masses of



and

K0 decay, binningeffect ofthe spectrum, andthecontamination effectsoftheotherfinalstates(

0pn and

pp)tothe



pn event

selection.Tobeconservative,theeffectstothefitvaluesareadded linearly.Moredetailedanalysiswillbegiveninaforthcomingfull paper.

The BKpp

50 MeVismuchdeeperthan reportedinourfirst

publication since the assumption of a single pole structure was invalid. It isalso muchdeeper than chiral-symmetry-based theo-retical predictions. The



Kpp

110 MeV is rather wide, meaning

veryabsorptive.Ontheotherhand,itshouldbesimilartothatof

(

1405

)

π

, if“Kpp” decays like‘

(

1405

)

+

‘p’

π

p.

Thus,theobservedlargewidthindicatesthatthenon-mesonicY N

channelswouldbethemajordecaymodeofthe“Kpp”. Interest-ingly,theobservedQKpp

400MeV/c isverylarge.Thelarge QKpp

value impliestheformationofavery compact(

0

.

5 fm)system referring to

¯

h

200 MeV/c fm.The compactnessofthe systemis also supportedby thelarge BKpp. However,the present QKpp can

bestronglyaffectedbytheprimary K N

K N reactioninthe for-mation process, so one needs more study to evaluate the static form-factor parameter of “Kpp” to deduce its size (or nuclear density)morequantitatively.

5. Discussionandconclusion

We have demonstrated the existence of a peak structure in

IMp below M

(

K pp

)

,which can be kinematically separated very

clearly from QFKA by selecting the momentum transfer window of 350

<

q

<

650 MeV/c. As shown in Fig. 1a, the “Kpp” dis-tribution yield reduces near

θ

n

=

0 as a function of q, and it is

proportionaltothephasespacevolumedefinedbyJacobian(cf., Fig.2a(or b)).Thisisnaturally expectedifthe S-wave harmonic-oscillatorform-factor giveninEq. (1) isvalid.Onthe otherhand, the QFKA distributionishighly concentrated at

θ

n

=

0,wherethe

phasespace

ρ

3

(

M

,

q

)

isvanishing.Thisisconsistentwithour pre-vious result[21],inwhichnostructurewas foundbelowM

(

K pp

)

at

θ

n

=

0,i.e.,theleaking-tailofQFKAintotheboundregionhides thestructurebelowM

(

K pp

)

at

θ

n

=

0.

Thepresent



pn finalstate isthesimplestchannelforK− in-teracting with 3He. In this final state, the “kinematicalanomaly” is only seen in IMp having an angular distribution consistent

withS-wave.Thus,thereisnoreasonableexplanationastowhya peakstructurecouldbeformedbelowM

(

K pp

)

otherthan“Kpp”.

However,onemaywonderwhetheraspuriousbumpnearM

(

K pp

)

mightbeformedfromsomeintermediatestateconverging(or con-verting)toa



pn finalstateintheFSI.

Here we discuss possible candidates for such an intermedi-ate state. Energetically, the possible intermediate states could be ‘



+

p’,

+

N’ and ‘

(

1405

)

+

N’ below ‘K

+

p

+

p’, which has an s-quark andtwo baryons (‘

(

1385

)

+

N’ is excluded be-cause it requires P -wave). In other words, a Y(∗) (baryon with an s-quark)could begeneratedbythe primary2NAreaction,and theY(∗)couldmakeasuccessiveconversionreactionwithanother spectatornucleon,toforma



pn finalstateduetotheFSI.Similar toEq. (2),theIMp ofthesechannelscanbegivenas:

(7)

IMp



‘Y(∗)

+

N’





m2N

+

m2Y(∗)

+

2mN

m2Y(∗)

+

q2

.

(5) First of all, observed “Kpp” event concentration does not have the q-dependence required by Eq. (5). Moreover, the IMp of



+

p’ (

2100), ‘

+

N’ (

2175 MeV/c2) channels are much too small at the kinematical boundary of q

500 MeV/c. The

IMp of ‘

(

1405

)

+

N’ is

2371 MeV/c2 at the observed

aver-ageq distributionof q

450 MeV/c (assuming

(

1405

)

mass

=

1405.1 MeV/c2 (PDG [24])).Thus theerror inthedifference from

MKpp(

2324 MeV/c2)isaslargeasfivestandarddeviations.A

di-rect



p formationdueto2NA(K

+

‘pp’

→ 

+

p)couldbe possi-ble.Inthisreaction,kaonmomentumis1GeV/c andtheresulting



p invariantmassM calculatedfromEq. (2) is2.8GeV/c2.Infact, an eventconcentration isobserved at

(

Mc2

,

qc

)

∼ (

2

.

8

,

1

.

0

)

GeV as shown in Fig. 1, but it is well separated from the region of interest. Therefore, none of these can be valid candidates. More complicated channels are even less likely to form a kinematical anomalyatthespecificenergynearM

(

K pp

)

.

The “Kpp” signal is significantly above the M

(

p

)

thresh-old, so it is unreasonable to explain it as a



-hypernucleus. One maystill wonder if the “Kpp” signal could be due to the

(

1405

)

–protonhypernucleus ((14052)H),sothat themeson(or constituent anti-quark) degree-of-freedom is already quenched in thesystem. However, this isnot consistent withpresent data.In theq distribution,the“Kpp”signallocatedatlowerq extendsup

650 MeV/c. Thusa tightlybound“Kpp”ismorenaturalthan alessbound 2

(1405)H measuredfrom M

((

1405

)

p

)

. It wouldbe evenlessboundifthepolepositionof

(

1405

)

is

1425rather than 1405 MeV/c2 as the chiral-unitary model suggests [24]. In theM distribution,thesignalismuchwiderthanthatof

(

1405

)

, so the major decay channel should be Y N rather than

π

N, in contrastto

(

1405

)

π

(100%).Thisdrasticchangeofthe de-cay property is also not consistent with 2

(1405)H interpretation. Moreover, if

(

1405

)

is a “Kp” bound system, as recently ac-ceptedratherwidely,thediscriminationofthetwointerpretations ismeaninglessfromthebeginning.

It ismore naturalto interpret that the K in “Kpp” is ener-getically stabilized(BKpp

50 MeV) compared to that in “Kp”

(

≡ (

1405

)

: BKp

5

25 MeV), becauseofthe presence oftwo

protons (nucleons) nearby. At the same time, the decay width becomes large (



Kpp

110 MeV in respect to



Kp

50 MeV),

forthe samereason. The existence ofthe QFKA channel adjacent to “Kpp” also supports this interpretation, because if the sub-thresholdvirtual ‘K ’canformanuclearboundstate bycapturing spectatornucleons,then itisnaturaltoexpect higher-energy vir-tual ‘K ’production in‘vacuum’ (above M

(

K pp

)

), which could be followedby‘K−’

+

pp

→ 

p inFSI.Thus,thesimplestandnatural

interpretation is a kaonic nuclear bound state “Kpp”;a system composed of a K−-meson and two protons with JP

=

0−, i.e. a

highly excited novel form of nucleus with a kaon, in which the mesonicdegree-of-freedom stillholds.

Insummary,thequasi-freevirtual‘K ’productionK‘N’

‘K ’N is the key reaction in the formation reaction, and M

(

K pp

)

is a doorway below which the “Kpp” is formed. Naïvely speak-ing, iftheenergy ofthe ‘K ’produced isbelow itsintrinsic mass (EK

<

mK), then the“Kpp” willbe formed.On theother hand,

ifitisabovetheintrinsicmass(EK

>

mK),thentheQFKA reaction happens(orthekaonescapesfromnuclei).

Acknowledgements

The authors are grateful to the staff members of J-PARC/KEK fortheirextensiveeffortsespeciallyonthestableoperationofthe facility. Weare also grateful tothe fruitful discussions with Pro-fessors Akinobu Dote, Toru Harada, Takayasu Sekihara, Khin Swe Myint and Yoshinori Akaishi. This work is partly supported by MEXT Grants-in-Aid 26800158, 17K05481, 26287057, 24105003, 14102005,17070007and18H05402.Partofthisworkissupported by the Ministero degli Affari Esteri e della Cooperazione Inter-nazionale,DirezioneGeneraleperlaPromozionedelSistemaPaese (MAECI),StrangeMatterproject.

References

[1]H.Yukawa,Proc.Phys.Math.Soc.Jpn.17(1935)48.

[2]H.Geissel,etal.,Phys.Lett.B549(2002)64.

[3]M.Iwasaki,etal.,Phys.Rev.Lett.78(1997)3067.

[4]G.Beer,etal.,Phys.Rev.Lett.94(2005)212302.

[5]M.Bazzi,etal.,Phys.Lett.B704(2011)113.

[6]J.M.M.Hall,etal.,Phys.Rev.Lett.114(2015)132002.

[7]Y.Akaishi,T.Yamazaki,Phys.Rev.C65(2002)044005.

[8]T.Yamazaki,Y.Akaishi,Phys.Lett.B535(2002)70.

[9]N.V.Shevchenko,A.Gal,J.Mareš,Phys.Rev.Lett.98(2007)082301.

[10]A.Dote,T.Hyodo,W.Weise,Phys.Rev.C79(2009)014003.

[11]M.Bayar,E.Oset,Phys.Rev.C88(2013)044003.

[12]A.Dote,T.Inoue,T.Myo,Phys.Rev.C95(2017)062201(R).

[13]M.Agnello,etal.,Phys.Rev.Lett.94(2005)212303.

[14]T.Yamazaki,etal.,Phys.Rev.Lett.104(2010)132502.

[15]Y.Ichikawa,etal.,Prog.Theor.Exp.Phys.2015(2015)021D01.

[16]G.Agakishiev,etal.,Phys.Lett.B742(2015)242.

[17]O.VazquezDoce,etal.,Phys.Lett.B758(2016)134.

[18]T.Kishimoto,Phys.Rev.Lett.83(1999)4701.

[19]M.Sato,etal.,Phys.Lett.B659(2008)107.

[20]K.Agari,etal.,Prog.Theor.Exp.Phys.2012(2012)02B011.

[21]T.Hashimoto,etal.,Prog.Theor.Exp.Phys.2015(2015)061D01.

[22]Y.Sada,etal.,Prog.Theor.Exp.Phys.2016(2016)051D01.

[23]T.Sekihara,E.Oset,A.Ramos,Prog.Theor.Exp.Phys.2016(2016)123D03.

Referenties

GERELATEERDE DOCUMENTEN

The study further established that leadership style and employee engagement are significantly positively related, indicating that both leadership styles are able

Thus, let k be an algebraically closed field of characteristic 0 and let K be a trans- cendental field extension of k, where we allow the transcendence degree to be arbitrarily

In addition to the addiction Stroop and visual probe task, other indirect assessment tasks have been developed to index AB towards substance-relevant cues, for example the

With regard to quantity difference, 75% of the respondents said that there was a quantity difference per enset processed depending on the type of processing

This thesis describes my research on various aspects of the LHCb particle physics program, centred around the LHCb detector and LHC accelerator at CERN in Geneva... CP violation in

er is een belangrijke basis gelegd voor een nieuwe (klimaatrobuuste) methode om te voorspellen welke gevolgen veran­ deringen in het waterbeheer hebben voor de

Tulp en lelie zorgen voor veel werk bij Maarten de Kock, onderzoeker plantenvirologie en diagnostiek van PPO.. Bij tulp gaat het om vra- gen over de beheersing van virus- sen

In dit experiment is dunne rundermest toegediend met de duospraymachine en vergeleken met bovengronds breedwerpig verspreide 1 :1-verdunde en onverdunde mest.. De tank van de