• No results found

Metabolic heterogeneity in clonal microbial populations

N/A
N/A
Protected

Academic year: 2021

Share "Metabolic heterogeneity in clonal microbial populations"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Metabolic heterogeneity in clonal microbial populations

Takhaveev, Vakil; Heinemann, Matthias

Published in:

Current Opinion in Microbiology DOI:

10.1016/j.mib.2018.02.004

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Takhaveev, V., & Heinemann, M. (2018). Metabolic heterogeneity in clonal microbial populations. Current Opinion in Microbiology, 45, 30-38. https://doi.org/10.1016/j.mib.2018.02.004

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Metabolic

heterogeneity

in

clonal

microbial

populations

Vakil

Takhaveev

and

Matthias

Heinemann

Inthepastdecades,numerousinstancesofphenotypic diversitywereobservedinclonalmicrobialpopulations, particularly,onthegeneexpressionlevel.Muchlessis, however,knownaboutphenotypicdifferencesthatoccuron thelevelofmetabolism.Thisislikelyexplainedbythefactthat experimentaltoolsprobingmetabolismofsinglecellsarestillat anearlystageofdevelopment.Here,wereviewrecentexciting discoveriesthatpointoutdifferentcausesformetabolic heterogeneitywithinclonalmicrobialpopulations.These causesrangefromecologicalfactorsandcell-inherent dynamicsinconstantenvironmentstomolecularnoiseingene expressionthatpropagatesintometabolism.Furthermore,we provideanoverviewofcurrentmethodstoquantifythelevelsof metabolitesandbiomasscomponentsinsinglecells.

Address

MolecularSystemsBiology,GroningenBiomolecularSciencesand BiotechnologyInstitute,UniversityofGroningen,Nijenborgh4,9747AG Groningen,TheNetherlands

Correspondingauthor:Heinemann,Matthias(m.heinemann@rug.nl)

CurrentOpinioninMicrobiology2018,45:30–38

ThisreviewcomesfromathemedissueonMicrobialsystems biology

EditedbyTerenceHwaandUweSauer

https://doi.org/10.1016/j.mib.2018.02.004

1369-5274/ã2018TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/).

Introduction

Inthelasttwodecades,wehaveobtainedampleevidence thatcellularphenotypesaredeterminednotonlybythe genotypeandenvironment,butcanbeinfluencedalsoby stochastic effects. These stochastic effects arise from

Brownian motion of low copy number biomolecules

involvedingeneexpression.Arangeofstudieshasshown howthestochasticityingeneexpressioncanleadtothese differentphenotypes,specifically,in termsof transcript andproteinlevels[1–3].

Bycontrast,likelyduetothelackofexperimentaltoolsto probe metabolism in single cells, still relativelylittle is knownhowthemolecularnoiseonthegeneexpression levelpropagatesintometabolism.Recentevidence, nev-ertheless,suggeststhatclonalmicrobialcellscandisplay

significant diversity in their metabolism, with the

extremecaseof subpopulationshaving distinctly differ-entactivitiesofmetabolic pathways[4–6].Furthermore, recentdiscoveriesshowthatevenunderconstant condi-tionsmetabolism of microbes is notstatic, but changes overtime,forinstance,alongthecelldivisioncycle[7] and with ageing [8,9]. The variability of metabolism withinclonal populations canpose challenges in eradi-catingpathogenicmicrobes,asindividualcellscanexhibit differentdegreesofantibiotictolerance[5].Inthesame way,the presence of metabolically low-performing var-iantsmaycompromisetheefficiencyofbiotechnological processesin industry[10].

Inthisreview,wegatherevidenceformetabolic hetero-geneity observed in clonal microbial populations. We

show recent examples where metabolic heterogeneity

arises from ecological factors, cell-inherent dynamics and stochastic effects (Figure 1). Novel experimental tools probing metabolism in single cells are necessary tofurtheruncovermetabolicdifferenceswithinmicrobial populationsandto ultimatelyunderstandhow such het-erogeneityoccurs.Thus,wealsoreviewthelatest devel-opments of respective tools (Table 1) and highlight insightsonmetabolicdifferencesthathavebeen discov-eredusingthesemethods.

Metabolic

heterogeneity

arising

from

the

influence

of

ecological

factors

Itiswellaccepted thatenvironmental factorscancause metabolic heterogeneity. Still, recent work has added new insights into what such ecological factors can be andhowtheycaninfluencecellularmetabolism. Remark-ably,ithasrecentlybeenfoundthatsurface immobiliza-tionofyeastcellsupregulatesgenesofglycolysisandcell wallbiogenesis,aswellasacceleratesethanolproduction and induces glycogen accumulation. Contrary to yeast

in planktonic state, the immobilized cells rapidly

ceasedividing and preserveviabilityfor more than two weeks[11].

Another common ecological factor that can stimulate

metabolic diversification is provided by intercellular interactionamong thevery cells in thepopulation[12]. Forinstance,withinayeastcolony,cellshavebeenfound to cooperatebyproducing differentanabolicprecursors and eventually exchanging them [13]. Such metabolic specializationofindividualcellshasbeenshownto deter-minetheirabilitytocopewithstress[14].Interestingly,

complex behavior can emerge from such intercellular

interaction. Cells in the periphery of a Bacillus subtilis biofilmare known to starve the interiorcells [15]. The latter,inturn,communicatetheirdemandforfoodusing

(3)

specific metabolites [15] and even electrical signaling [16]. These intercellular interactions have been found toresultinperiodiccessationofgrowthoftheperipheral cellsandnutrientflowintotheinterior[15].Toefficiently exploitscarcenutrients,eventwoneighboringbiofilmsof B.subtilishavebeenfoundtocoupletheirmetabolismvia theelectricalcommunicationandto undergoanti-phase growth oscillations[17].Thus,ecologicalfactors, such as surface attachment and intercellular interactions, which arepresentevenunderstrictly controlled experi-mentalconditions,mayleadtometabolicheterogeneity.

Metabolic

heterogeneity

arising

from

cell-inherent

dynamics

Experiencing identical environmental factors, two cells can still differin their metabolism,for instance, dueto cell-inherent dynamics. One type of such dynamics is associated with thecell division cycle. Recently, it has beenshowninsingleyeastcellsthatoscillationsinNAD (P)H and ATP levelsoccur in synchrony with the cell cyclebut areautonomousfromit[7].Transcriptomics

and ribosome profiling experiments on synchronized

populationssuggestthatthecellsperiodicallyfoster bio-massproductionalong thecellcycle. Particularly, mito-chondrialandribosomalbiogenesisgenesarefound upre-gulated in G1, thesame happensfor lipid biosynthesis genes in G2/M [18]. Thus, eukaryotic microbes have

oscillations in thelevelsof metabolites, andpotentially alsoin thebiosynthesisofbiomasscomponents.

Thislikelyextendstoprokaryotesaswell.Forexample, in Caulobacter crescentus the level of cyclic di-GMP has beenfoundtooscillateandtocontrolthecellcycle[19]. Similarly, recent dynamic single-cell measurements of NAD(P)H levelsin Escherichiacolihaveshown thatalso thismetaboliteoscillatesalongthecellcycle[20]. Like-wise, the earlier reported non-Gaussian distribution of ATPlevelsacrosssinglecells[21]couldpossiblyhaveits origin in a cell cycle dynamics. Furthermore, precise measurements of cell size and signals from fluorescent proteinsinE.colihavesuggestedthattherateofprotein biosynthesishas substantialcellcycledependence[22].

Thus, there is emerging evidence that prokaryotic

microbesalsoexperiencemetabolicchangesduringtheir celldivisioncycle.

Underconstantenvironments,cellularageingrepresents

another temporal change of metabolic phenotype and

henceisanadditionalcauseformetabolicheterogeneity. Buddingyeastages witheverydivision(replicative age-ing),andoldercellsshowincreasedlevelsofpyruvateand TCAcycleintermediatesanddecreasedlevelsof amino acids[8].Furthermore,ithasbeenfoundinreplicatively ageingyeastthatproteinsinvolvedintranslationbecome

more abundant relative to their transcripts, which

MetabolicheterogeneityTakhaveevandHeinemann 31

Figure1

Ecological factors Inherent dynamics Molecular noise

Surface Cell-to-cell interaction Time Current moment Time Current moment Cell cycle Cell ageing Electrical signalling Metabolite exchange Surface Fluctuation in gene expression Shift in conditions Distinct subpopulations Unimodal population

Current Opinion in Microbiology

Sourcesofmetabolicheterogeneityinmicrobialpopulations.Ecologicalfactors.Environmentalfactors,suchassurfaceandintercellular communications,canaffectindividualcellsdifferentlyand,therefore,stimulatetheirmetabolicdivergence.Inherentdynamics.Inamicrobial population,singlecellsusuallylacksynchronyincelldivisioncycleandageing.Consequently,atagivenmomentoftime,thecellsareinvarious phasesofcorrespondingmetabolicchanges.Molecularnoise.Fluctuationsingeneexpressioncangeneratevariabilityofenzymelevelsand metabolicfluxes,includinggrowthrates,amongsinglecells.Togetherwithparticularfeedbackcircuits,suchheterogeneitymayleadto multi-stabilityofmetabolism,forinstance,uponshiftsinnutrientconditions.

(4)

systems

biology

Experimental methods to quantify the levels of metabolites and biomass components in single cells.

Method Target Features Examples

Methods directly exploiting intrinsic properties of metabolites or biomass components Mass spectrometry (single-cell ‘metabolomics’) Absolute amount of primary and secondary metabolites

+ simultaneous measurement of up to 30 compounds + high-throughput  disruptive, that is, non-dynamic

Metabolites of central carbon metabolism [54,45,73], highly abundant lipid species and pigments [46,47]

Exploiting

autofluorescence of metabolites

Concentration of cofactors and pigments

+ non-disruptive, that is, dynamic

 mostly non-selective

Fluorescent microscopy: NAD(P)H [7], chlorophyll [54] FLIM:

decomposed NADH and NADPH [48], fraction of protein-bound to free NAD(P)H [49]

Raman spectroscopy Concentration of abundant chemical bonds, biomass components and pigments + non-disruptive  mostly non-selective (regarding chemical compounds)

Lipids [50–52], DNA and proteins [51], paramylon and chlorophyll [52], astaxanthin [54], global metabolic profiling [74], carbon– deuterium chemical bond [53]

Methods assisted by interaction of metabolites with engineered proteins Transcription factor-based sensors Concentration of primary and secondary metabolites + genetically encoded  non-ratiometric  delayed response (based on the expression of a fluorescent protein)

NADPH [75], NAD+/NADH [76],

malonyl-CoA [55], p-coumaric acid [56], e-caprolactam, d-valerolactam and butyrolactam [77] Single fluorescent protein-based sensors Concentration of primary metabolites + genetically encoded + immediate response +/ ratiometric or non-ratiometric Non-ratiometric:

Trehalose [78], NAD+/NADH [79]

Ratiometric:

NAD+/NADH [58], NADH [80], NADPH [57] FRET-based sensors Concentration of primary

metabolites, signaling molecules, metal ions

+ genetically encoded + immediate response + ratiometric  mostly <2-fold response

Two fluorescent proteins:

Pyruvate [61], trehalose-6-phosphate [81], ATP [82], cAMP [83]

One fluorescent protein: NADP+[62]

Methods assisted by interaction of metabolites with engineered RNA

RNA-based sensors expressing fluorescent proteins Concentration of secondary metabolites (big heterocyclic compounds) + genetically encoded + 7–11-fold response  delayed response (current concept)  non-ratiometric

Theophylline, tetracycline and neomycin [66]

RNA-based sensors with Spinach-like aptamers Concentration of primary metabolites, signaling molecules (big heterocyclic compounds) + genetically encoded + 5–25-fold response + immediate response  require external fluorophore  non-ratiometric

Adenosine, ADP, S-adenosylmethionine, guanine and GTP [63], cyclic di-GMP and cyclic AMP-GMP [68], cyclic di-AMP [69], thiamine 50-pyrophosphate [67] in Microbiol ogy 2018, 45 :30–38 www.sci encedirect.com

(5)

suggests thatbiosyntheticactivitieschangeas cellsage. Moreover, features of starvation and oxidative stress arealso inducedatoldages [9].Surprisingly,yeastcells surviving without nutrients (chronological ageing) are unexpectedlyfoundtoreducethefractionofmetabolites containingnaturallyoccurringheavyisotopes[23]. Over-all,ageingof thebuddingyeastis relatedtochangesin metabolism and thus contributes to themetabolic het-erogeneity ofapopulation.

Metabolic

heterogeneity

arising

from

molecular

noise

Inadditiontoecologicalfactorsandcell-inherent tempo-ral behavior, stochasticity in molecular interactions can giveriseto heterogeneityamongcells.Geneexpression involves interactions of molecules present at low copy numbers, whichmakestherateof thisprocess proneto fluctuations [1–3]. If flux-limiting metabolic enzymes and transporters are subject to such fluctuations, the noise in gene expressionmay propagate intothefluxes throughmetabolicpathways,asindicatedinrecent stud-ies[24,25].Infact,ithasbeenshowninE.colithatnoise

in the expression of an individual catabolic enzyme

propagates even further through the whole metabolic

network finally affecting thegrowth rate of single cells [26].Thealteredgrowthrate,inturn,hasbeenfoundto change the expression of other unrelated genes [26].

Such apparently growth-rate-related changes of gene

expression, however, could also be due to flux-sensing and flux-dependent regulation [27,28]. Overall, these findings indicatethatmolecular noisein theproduction ofevenoneenzymecanhaveglobaleffectsontheentire metabolism andexpressionofgenes.

As growth rate represents theultimate productof each cell’smetabolism,wecanuseitsdispersionamongcellsto assess themetabolic heterogeneity withinapopulation. Here,largescattersofgrowthratescanbefoundamong singlecellsinmicrobialpopulations[29–31].Cantherebe an advantage of such dispersion? Counterintuitively, according to experiments in both bacteria and yeast, having a wider distribution of single cell growth rates

does eventually increase the population growth rate

[29,30], which suggests that the latter is determined not only by the average cell division time. Besides, at lowpopulationgrowthrates,abiggerdispersionofsingle cellgrowthratesmakesthepopulationmoreadaptiveto rapid shifts to more favorable conditions [31]. Thus, intercellular metabolic heterogeneity, manifested in growthratevariability,canactuallyplayabeneficialrole increasingfitnessofthewholepopulation.

Metabolicheterogeneityamongcellsdoesnotnecessarily

have a unimodal form. For example, under the same

conditions, the microalga Chlamydomonas reinhardtii

appears in fast and slowlygrowingsubpopulations [32].

The extreme case of metabolic heterogeneity is the

occurrenceofnon-dividingcellsinagrowingpopulation. In diauxie, after depletingthe favorable carbon source, Lactococcuslactis formsasubpopulation of dormantcells [4]. Similarly, a shift from glucose to gluconeogenic carbon sources generates bistability in E. coli’s central carbonmetabolism,resultinginafractionofnon-growing or slowly growingcells [5,33,34].Furthermore, starved yeast cells provided with glucose or galactose form a subpopulationthatdoesnotmanagetobalanceglycolysis and thus undergoes growth arrest [6]. These findings show thatmetabolicheterogeneitycanbealsobimodal. Moreover,itseemsthatsuchmultiplestablephenotypes tendtoemergefromaunimodalpopulationduetoarapid changein theenvironment.

How can such multi-stability of metabolism emerge

within one population? The space of metabolic fluxes couldhaveseveralattractors,andinagivenenvironment cells would be situated around one of them [35]. A nutrient changecouldpositioncells onadifferent loca-tion in the space of metabolic fluxes, where there is comparable influence of two different attractors. If the cellshadslightlydifferentmetabolicfluxesdueto molec-ular noise, flux-sensing circuits, like E. coli’s positive

feedback FBP-Cra [28,36] and negative feedback

cAMP-Crp [37],woulddistribute thecells betweenthe two attractors. Thus, building on molecular noise and assistedbynutrientchanges,feedbackmechanismscould assigncellsofonepopulationtodifferentattractors,that is,differentmetabolicphenotypes.

Cellsdrawnintoanattractorofnoorslowgrowth repre-sentahighlyrelevantphenomenonastheycanturninto so-called persisters, that is, cells that exhibit tolerance towardsantibiotics[35].Recently,themetabolic pheno-type of E. coli’spersistershasbeen unraveled,whereit wasfoundthattheirproteomeischaracterizedbyaglobal stress response, and that these cells are metabolically active with upregulated catabolism, very slow buildup ofbiomassandreducedmetabolitepools[34].Persisters oftheGram-positivebacteriumS.aureushavebeenfound tohavedecreasedlevelsofATP[38],whichmayreflecta strongperturbationoftheirmetabolichomeostasis,which wasfoundtotriggerpersistenceinE.coli[34,35]. Inter-estingly,recentfindingsindicatethatpersistersoccurnot only in bacteria. Cells resistant to harsh environmental conditions,includingdrugtreatment,alsoappearinyeast [39].Overall,dormantand,particularly,persistercellsare anexampleofextrememetabolicheterogeneitythatcan bepresentin aclonalpopulationof microbes.

Experimental

tools

to

uncover

metabolic

properties

of

single

cells

Tofurtheruncovermetabolicheterogeneityinmicrobial populations and mechanisms generating it, single-cell measurementsofmetabolicpropertiesarerequired. How-ever,herewearestillconfrontedwithgrandchallenges.

MetabolicheterogeneityTakhaveevandHeinemann 33

(6)

First,unlikeproteins,metabolitescannotbefluorescently tagged.Second,eveniftheconcentrationofametabolite canbemeasured,inmostcasestheconcentrationdoesnot saymuchabouttheactivityof thecorresponding meta-bolicpathway.

Below, we illustrate recent exciting developments that havebeenmadetowardsquantifyingthelevelsof metab-olitesandbiomasscomponentsinsinglecells.Measuring fluxesthroughspecificmetabolicpathwaysinsinglecells is,however,stillunattainable.Onlytheresultingactivity of many metabolic pathways, for example, the flux to biomass,thatis,thegrowthrate,canbegauged,evenwith high precision. Next to determining single-cell growth ratesfrommicroscopictime-lapsedata[29–31],arecent technologyexploitsresonantmasssensorstomeasurethe buoyantmassandhencethegrowthrateofsinglecellsin high-throughput manner [40]. Another microresonator set-up has quantified the total mass of a single cell andunexpectedlyrevealeditsfluctuationsinthesecond range, which seem to be linked to water transport and ATPsynthesis[41].

Metabolicactivitycanalsobecrudelyassessedinsingle cells via the assimilation of externally provided com-pounds,thatis,theaccumulationofcertainatomsinside the cells. Particularly, nanometer-scale secondary ion massspectrometry(NanoSIMS)hasidentified heteroge-neity in the activityof CO2and N2fixation withinthe populationofChlorobiumphaeobacteroidesincubatedwith thelabelledgases[42].Furthermore,recentNanoSIMS experimentshaveshownthatS.aureuscells incorporate heavywaterwithmarkedlydifferentrates[43].Ofnote, the cells analyzed in these two studies were extracted fromnaturalhabitats,thustheidentifiedmetabolic vari-abilitycouldalsobeduetogeneticdifferences.Arecent NanoSIMSstudy,usingaclonalE.colipopulationgrown ona mixtureof isotope-labelled arabinoseand glucose, hasdisclosedthatindividualcellsassimilatethesesugars withdifferentpreferences[44].Thus,NanoSIMS with the help of labelled nutrients can assess the resulting assimilation flux in single cells and identify metabolic

heterogeneityamongthem.

To measure metabolite levels in single microbial cells, mass spectrometry can be utilized (Table 1). Here,

through microarrays for mass spectrometry (MAMS),

single or few cells have been isolated in ‘wells’ with subsequent matrix-assisted laser desorption/ionization (MALDI)oftheircontent.Withthistechnique,19 metab-olitesofcentralcarbonmetabolismcouldbeidentifiedin tens of single yeast cells. On the basis of such data, two subpopulations with either low or high amounts of fructose-1,6-bisphosphate could be distinguished [45].

Recent experiments employing MAMS have allowed

high-throughput screening of thousands of individual C. reinhardtii cells with measuring 22 highly abundant

lipidsandpigments[46].Withanothertechnique,aerosol time-of-flightmassspectrometry(ATOFMS),individual cellsofthesamealgaexperiencingfourdaysofnitrogen limitationhavebeenanalyzedatthefrequencyof50Hz. Ithasbeenfoundthatontheseconddaythevariability amongcellsinthelevelofonelipidis40%biggerthanon any other day, suggesting a subpopulation with slower response to nitrogen deprivation [47]. Given the high throughputpossibilityof thesesingle-cellmass spectro-metrictechniques, it should now bepossible to screen individualcellsofentiremicrobialpopulations.However, thenumberof identified metabolitesis still rather lim-ited,and theirlevelsareonly qualitativelyassessed. Single-cell concentrations of some metabolites can be assessedbyexploitingtheirintrinsicspectroscopic prop-erties, particularly their autofluorescence. In a recent

study using the autofluorescence of NAD(P)H, it has

been shown that metabolite oscillations exist in single cellsofbuddingyeast[7].AssessingNAD(P)H concen-trationviaitsautofluorescencehasrecentlybecome pos-sible even in the much smaller cells of E. coli, whose metabolism seems to oscillate as well during the cell divisioncycle[20].

By means of fluorescence-lifetime imaging microscopy (FLIM),itisevenpossibleto decomposethesignals of

NADPH and NADH in single-cellmeasurements [48].

Furthermore, the FLIM-phasor technique could

deter-minetheratiobetweenprotein-boundtofreeNAD(P)H molecules.Recently,ithasbeenshown thatsingle cells ofdiversebacteria,includingE.coli,B.subtilisand Staph-ylococcus epidermidis, modulate this ratio in response to environmental conditions. Particularly, increased free NAD(P)Happearswith antibiotictreatment[49]. WithRamanspectroscopy,utilizingtheinelastic scatter-ing of light by chemical bonds, it is also possible to measure a number of biomolecules in single microbial cells.Coherentanti-StokesRamanspectroscopy(CARS) couldquantifyneutrallipidsinindividualyeastcells[50]. WithstimulatedRamanscattering(SRS)microscopyitis feasibleto measure DNAas wellas proteins and lipids [51].SRS,beingafasttechnique,hasrecentlyrevealed variabilityinlipid,paramylonandchlorophyllcontentin the motile microalga Euglena gracile [52]. In labelling experimentswithheavywater,single-cellRaman

micro-spectroscopy has been elegantly applied to estimate

bacterialviabilityunderantibioticinfluence,specifically, bytrackingsubstitutionofC–HbyC–Dbondin macro-molecules[53].

Through application of different single-cell techniques on the very same cell, interesting insights have been obtained. For instance, first, fluorescent and Raman microscopieswere usedto determineconcentrations of thepigmentschlorophyllandastaxanthininsinglecellsof

(7)

the algaeHaematococcus pluvialis. Thereafter, the abun-dances of13primary metabolitesweremeasuredin the same cellsusingMAMS. Here,acrossthepopulationof cells beingin various stagesof encystment,it hasbeen

found that ATP/ADP ratio anti-correlates with the

ratio between astaxanthin and chlorophyll contents

[54].Thus,beforedisruptingcellsformassspectrometry, they can be studied spectroscopically to maximize the information gain.

If dynamicsingle-cell measurementsof metabolites are necessary, but the metabolites are not fluorescent or cannotbeaccessedviaRamanspectroscopy,then geneti-callyencodedbiosensors,selectivelyreportingmetabolite concentrations,arethemethodofchoice.Here,inrecent years, three different approaches exploiting interaction of targetmetaboliteswith proteinshave beenexplored: transcription factor-based, single fluorescent protein-basedandFRET-(i.e.Fo¨rsterResonanceEnergy Trans-fer) basedbiosensors (Table1).

Transcriptionfactorsthatbindspecificmetaboliteshave beenengineeredintosensorsdrivingtheexpressionofa fluorescent protein and thus providing a proxy for the metaboliteconcentration.Withsuchtranscription factor-based biosensors, populations of E. coli,Corynebacterium glutamicumandSaccharomycescerevisiaehaverecentlybeen sortedinsearchofsubpopulationswiththehighestlevel of industrially desired metabolites [55,56]. Relying on fluorescent protein expression, these sensors, however, cannot be used for tracking fast changes in metabolite concentration.

Contrarily, another sensor concept,where ametabolite binding domain isfused to asingle fluorescent protein andinduceschangesinitsfluorescence,allowsreporting transientmetaboliteconcentration.Recently,sensors

uti-lizing this concept have been developed for NADPH

[57] and theratio of NADH and NAD+ [58].Grafting

GFPintoammoniumtransceptorshasproduced

biosen-sorswhosefluorescentresponsecorrelateswiththe trans-port activity, however, this may represent sensing of extracellular ammonium concentration only rather than the flux itself [59]. The disadvantage of some of such sensors, and also of all transcription factor-based ones, is that their read-out (fluorescence) can be easily con-foundedbysensorexpressionlevels.

FRET-based sensors are a solution against such

con-founding effects, because they are intrinsically ratio-metric. In most of these sensors, a metabolite binding domain links two fluorescent proteins and affects the

efficiency of FRET between them upon metabolite

binding.WithaFRET-basedsensorexpressedin Myco-bacterium smegmatis, it has been found that maintaining high ATP levels during antibiotic exposure correlates withcells’abilitytoresumegrowthinnormalconditions

[60]. A sensor homologous to the previous one has

recentlydisclosedATPoscillationsinsinglecellsofyeast [7]. Interestingly, a pyruvate FRET-sensor has been used to infer the flux of this metabolite into the mito-chondria,withtheapplicationofaninhibitorwhichstops thepyruvateinfluxintothecell[61].FRET-based sen-sors can also rely on one fluorescent protein. Here, a sensor dimerizesupon metabolitebinding and causesa decrease in steady-state fluorescence anisotropy, thus reportingtheconcentrationofthesubstrate.Suchsensor hasbeendevelopedforNADP+[62].FRET-sensorsare excellent tools offering real-time dynamic read-outs of metabolite concentration. However, the set of protein domains able to bind metabolitesand appropriately re-orientthefluorescentproteinstoenableFRETseemsto belimitedinnature[63].

Nucleic acid-based sensors might be an alternative, as theycouldbedevelopedfor anymetabolite dueto effi-cientinvitroselectionofaptamers,namelySELEX[64], andversatilityofnaturallyoccurringriboswitches[65].In

recent RNA-based sensors, mRNA encoding a

fluores-cent protein contains an aptamer and a self-cleaving ribozyme so that, upon metabolite binding, the former modulates the latter, eventually controlling translation [66]. In another design, an invitro selected aptameror riboswitchbindsametaboliteandenablesanother apta-mer,specificallySpinachorSpinach2,toactivate fluores-cenceofanexternallyaddedchemical.Studies

employ-ing such sensors have reported a large cell-to-cell

variabilityintheconcentrationofS-adenosylmethionine [63] and thiamine 50-pyrophosphate [67] in cells of an E. colipopulation.RNA-basedsensorscanleadto 5–25-fold increases in fluorescence upon metabolite binding [63,66–69]whichisdramaticallyhigherthanrather mod-estresponsesofFRET-basedsensors.Newfluorophores with different spectral properties[70] and recently dis-covered alternative fluorophore-binding aptamers, like baby Spinach [71] and Broccoli [72], may further fuel developmentofRNA-basedsensors.Suchfurtherworkis necessaryasthecurrentlyavailableRNA-based metabo-lite sensors can measure only large heterocyclic com-pounds, and unfortunately not yetthe small and nega-tively-chargedmetabolitesof primarymetabolism.

Future

avenues

As shown in this review, the cells of clonal microbial populationscanexhibitsignificantmetabolic heterogene-ity, which in the most extreme case leads to the co-existenceofgrowingandnon-growingcells.Manyopen questions exist,forexample,onthesourceofmetabolic oscillations during the cell division cycle and on the originsofageing-associatedchangesinmetabolism. Fur-ther, the mechanisms causing microbial populations to

end up in metabolically different phenotypes remain

mostly unknown.

MetabolicheterogeneityTakhaveevandHeinemann 35

(8)

Keytounravelthesequestionswillbemethodstoprobe metabolism on the single cell level. Here, significant advanceshavebeenmadeinrecentyears.Nevertheless, manyofthecurrenttoolsarestillattheproof-of-concept level,meaningthatthoroughinvivovalidationis neces-sarybeforethesetoolscanberoutinelyappliedforactual research.Duetothetheoreticallyunlimitedversatilityof nucleic acid-based metabolite sensors, we expect that theywillbecomethestandardtoolto dynamically visu-alize metabolite levels in single cells, although, admit-tedly, still many technicalproblems need to besolved withsuchsensors.

The ultimate challenge, however, will be to devise

methods to sense or visualize the functional output of metabolism,thatis,themetabolicfluxesthroughspecific metabolicpathways,insinglecells.Measuringmetabolic fluxes in single cells,ideallyin dynamic fashion, repre-sents an extreme technical challenge, and even onthe conceptuallevel itis notclear how thiscould bedone. Onepossibilitymightbetoexploitflux-signaling metab-olites, whose concentration strictly correlates with the corresponding metabolic flux [27,36], and develop bio-sensorsfor these metabolites to obtain dynamic single-cellfluxmeasurements.

Author

contribution

VT and MH conceived the study and wrote the

manuscript.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. ElowitzMB,LevineAJ,SiggiaED,SwainPS:Stochasticgene expressioninasinglecell.Science(80-)2002,297:1183-1186. 2. GoldingI,PaulssonJ,ZawilskiSM,CoxEC:Real-timekineticsof geneactivityinindividualbacteria.Cell2005,123:1025-1036. 3. RajA,vanOudenaardenA:Nature,nurture,orchance:

stochasticgeneexpressionanditsconsequences.Cell2008, 135:216-226.

4. SolopovaA,vanGestelJ,WeissingFJ,BachmannH,TeusinkB, KokJ,KuipersOP:Bet-hedgingduringbacterialdiauxicshift. ProcNatlAcadSci2014,111:7427-7432.

5. KotteO,VolkmerB,RadzikowskiJL,HeinemannM:Phenotypic bistabilityinEscherichiacoli’scentralcarbonmetabolism.Mol SystBiol2014,10736-736.

6. VanHeerdenJH,WortelMT,BruggemanFJ,HeijnenJJ, BollenYJM,Planque´ R,HulshofJ,O’TooleTG,WahlSA, TeusinkB:Lostintransition:start-upofglycolysisyields subpopulationsofnongrowingcells.Science(80-)2014, 343:1245114.

7.

 PapagiannakismetabolicoscillationsA,NiebelrobustlyB,WitEC,gateHeinemanntheearlyM:andAutonomouslatecell cycle.MolCell2017,65:285-295.

ThispapershowsthatinsinglecellsofyeastthelevelsofNAD(P)Hand ATPoscillateduringthecellcycleandalsoinitsabsence.Thisstudy exploitsmicrofluidics,metaboliteautofluorescenceandaFRET-based sensor.

8. KameiY,TamadaY,NakayamaY,FukusakiE,MukaiY:Changes intranscriptionandmetabolismduringtheearlystageof replicativecellularsenescenceinbuddingyeast.JBiolChem 2014,289:32081-32093.

9. JanssensGE,MeinemaAC,Gonza´lezJ,WoltersJC,SchmidtA, GuryevV,BischoffR,WitEC,VeenhoffLM,HeinemannM:Protein biogenesismachineryisadriverofreplicativeaginginyeast. Elife2015,4:e08527.

10. XiaoY,BowenCH,LiuD,ZhangF:Exploitingnongenetic cell-to-cellvariationforenhancedbiosynthesis.NatChemBiol2016, 12:339-344.

11. NagarajanS,KruckebergAL,SchmidtKH,KrollE,HamiltonM, McInnerneyK,SummersR,TaylorT,RosenzweigF:Uncoupling reproductionfrommetabolismextendschronologicallifespan inyeast.ProcNatlAcadSci2014,111:E1538-E1547.

12. CampbellK,Herrera-DominguezL,Correia-MeloC,ZelezniakA, RalserM:Biochemicalprinciplesenablingmetabolic cooperativityandphenotypicheterogeneityatthesinglecell level.CurrOpinSystBiol2017http://dx.doi.org/10.1016/j. coisb.2017.12.001.

13. CampbellK,VowinckelJ,Mu¨llederM,MalmsheimerS, LawrenceN,CalvaniE,Miller-FlemingL,AlamMT,ChristenS, KellerMAetal.:Self-establishingcommunitiesenable cooperativemetaboliteexchangeinaeukaryote.Elife2015,4. 14. CampbellK,VowinckelJ,RalserM:Cell-to-cellheterogeneity

emergesasconsequenceofmetaboliccooperationina syntheticyeastcommunity.BiotechnolJ2016,11:1169-1178. 15. LiuJ,PrindleA,HumphriesJ,Gabalda-SagarraM,AsallyM,

LeeDYD,LyS,Garcia-OjalvoJ,Su¨elGM:Metabolic co-dependencegivesrisetocollectiveoscillationswithin biofilms.Nature2015,523:550-554.

16. PrindleA,LiuJ,AsallyM,LyS,Garcia-OjalvoJ,Su¨elGM:Ion channelsenableelectricalcommunicationinbacterial communities.Nature2015,527:59-63.

17.

 SagarraLiuJ,Martinez-CorralM,Garcia-OjalvoR,PrindleJ,Su¨elGM:A,LeeCouplingDYD,LarkinbetweenJ,Gabalda-distant biofilmsandemergenceofnutrienttime-sharing.Science(80-) 2017,356:638-642.

ThispapershowsthatneighbouringbiofilmsofB.subtiliscommunicate viaelectricalsignallingandgrowwithanti-phaseoscillatingspeeds.

18.

 BlankJohnsonHM,CD,PerezBankaitisR,HeVA,C,MaitraKennedyN,MetzBKetR,al.:HillTranslationalJ,LinY, controloflipogenicenzymesinthecellcycleofsynchronous, growingyeastcells.EMBOJ2017,36:487-502.

ThispapershowsthatthetranslationalefficiencyofmRNAsencoding lipogenicenzymeschangesthroughoutthecellcycle.

19. LoriC,OzakiS,SteinerS,Bo¨hmR,AbelS,DubeyBN,SchirmerT, HillerS,JenalU:Cyclicdi-GMPactsasacellcycleoscillatorto drivechromosomereplication.Nature2015,523:236-239. 20. ZhangZ,Milias-ArgeitisA,HeinemannM:Dynamicsingle-cell

NAD(P)Hmeasurementrevealsoscillatorymetabolism throughouttheE.colicelldivisioncycle.SciRep2018,8:2162. 21. YaginumaH,KawaiS,TabataKV,TomiyamaK,KakizukaA,

KomatsuzakiT,NojiH,ImamuraH:DiversityinATP

concentrationsinasinglebacterialcellpopulationrevealedby quantitativesingle-cellimaging.SciRep2014,4:6522. 22. WalkerN,NgheP,TansSJ:Generationandfilteringofgene

expressionnoisebythebacterialcellcycle.BMCBiol2016, 14:11.

23. LiX,SnyderMP:Yeastlongevitypromotedbyreversing aging-associateddeclineinheavyisotopecontent.npjAgingMech Dis2016,2:16004.

24. NikolicN,BarnerT,AckermannM:Analysisoffluorescent reportersindicatesheterogeneityinglucoseuptakeand utilizationinclonalbacterialpopulations.BMCMicrobiol2013, 13:258.

25. WelkenhuysenN,BorgqvistJ,BackmanM,BendriouaL, Gokso¨rM,AdielsCB,CvijovicM,HohmannS:Single-cellstudy

(9)

linksmetabolismwithnutrientsignalingandrevealssources ofvariability.BMCSystBiol2017,11:59.

26.

 StochasticityKivietDJ,NgheofP,metabolismWalkerN,BoulineauandgrowthS,Sunderlikovaatthesingle-cellV,TansSJ: level.Nature2014,514:376-379.

Thispapershowsthatfluctuationsintheexpressionofsinglecatabolic enzymespropagateintochangesofacell’sgrowthrate,which,inturn, affecttheexpressionofgenes,includingunrelatedones.

27. LitsiosA,OrtegaA´D,WitEC,HeinemannM:Metabolic-flux dependentregulationofmicrobialphysiology.CurrOpin Microbiol2018,42:71-78.

28. KochanowskiK,VolkmerB,GerosaL,HaverkornvanRijsewijkBR, SchmidtA,HeinemannM:Functioningofametabolic fluxsensorinEscherichiacoli.ProcNatlAcadSci2013, 110:1130-1135.

29. HashimotoM,NozoeT,NakaokaH,OkuraR,AkiyoshiS, KanekoK,KussellE,WakamotoY:Noise-drivengrowthrate gaininclonalcellularpopulations.ProcNatlAcadSci2016, 113:3251-3256.

30. CerulusB,NewAM,PougachK,VerstrepenKJ:Noiseand epigeneticinheritanceofsingle-celldivisiontimesinfluence populationfitness.CurrBiol2016,26:1138-1147.

31. RochmanN,SiF,SunSX:Togrowisnotenough:impactof noiseoncellenvironmentalresponseandfitness.IntegrBiol 2016,8:1030-1039.

32. DamodaranSP,EberhardS,BoitardL,RodriguezJG,WangY, BremondN,BaudryJ,BibetteJ,WollmanFA:Amillifluidicstudy ofcell-to-cellheterogeneityingrowth-rateandcell-division capabilityinpopulationsofisogeniccellsofChlamydomonas reinhardtii.PLoSOne2015,10:e0118987.

33. AmatoS,OrmanM,BrynildsenM:Metaboliccontrol ofpersisterformationinEscherichiacoli.MolCell2013, 50:475-487.

34.

 RadzikowskiHeinemannM:JL,BacterialVedelaarpersistenceS,SiegelD,isOrtegaanactiveA´D,SchmidtsSstressA, responsetometabolicfluxlimitation.MolSystBiol2016, 12:882.

ThispapercharacterisesthemetabolicphenotypeofE.colipersisters. Particularly, it shows that they are metabolically active and have decreasedmetabolitepools.

35. RadzikowskiJL,SchramkeH,HeinemannM:Bacterial persistencefromasystem-levelperspective.CurrOpin Biotechnol2017,46:98-105.

36. KotteO,ZauggJB,HeinemannM:Bacterialadaptationthrough distributedsensingofmetabolicfluxes.MolSystBiol2010, 6:355.

37. HermsenR,OkanoH,YouC,WernerN,HwaT:Agrowth-rate compositionformulaforthegrowthofE.colionco-utilized carbonsubstrates.MolSystBiol2015,11801-801.

38. ConlonBP,RoweSE,GandtAB,NuxollAS,DoneganNP,ZalisEA, ClairG,AdkinsJN,CheungAL,LewisK:Persisterformationin StaphylococcusaureusisassociatedwithATPdepletion.Nat Microbiol2016,1:16051.

39. YaakovG,LernerD,BenteleK,SteinbergerJ,BarkaiN:Coupling phenotypicpersistencetoDNAdamageincreasesgenetic diversityinseverestress.NatEcolEvol2017,1:16. 40. CermakN,OlcumS,DelgadoFF,WassermanSC,PayerKR,

MurakamiMA,KnudsenSM,KimmerlingRJ,StevensMM, KikuchiYetal.:High-throughputmeasurementofsingle-cell growthratesusingserialmicrofluidicmasssensorarrays.Nat Biotechnol2016,34:1052-1059.

41.

 Martı´nez-Martı´n D,BeerliC,MercerJ,Fla¨schnerGerberC,G,Mu¨llerGaubDJ:B,InertialMartinS,picobalanceNewtonR, revealsfastmassfluctuationsinmammaliancells.Nature 2017,550:500-505.

Thispaperpresentsatooltomeasurethetotalmassofasinglecellwith picogramsensitivityandmillisecondresolution.Thismethodrevealscell massfluctuationsinthesecondrangethatseemtobelinkedtoATP synthesisandwatertransport.

42. ZimmermannM,EscrigS,Hu¨bschmannT,KirfMK,BrandA, InglisRF,MusatN,Mu¨llerS,MeibomA,AckermannMetal.: Phenotypicheterogeneityinmetabolictraitsamongsingle cellsofararebacterialspeciesinitsnaturalenvironment quantifiedwithacombinationofflowcellsortingand NanoSIMS.FrontMicrobiol2015,6:243.

43. KopfSH,SessionsAL,CowleyES,ReyesC,VanSambeekL,HuY, OrphanVJ,KatoR,NewmanDK:Traceincorporationof heavywaterrevealsslowandheterogeneouspathogen growthratesincysticfibrosissputum.ProcNatlAcadSci2016, 113:E110-E116.

44.

 LittmannNikolicN,S,SchreiberKuypersF,MMM,DalCoAckermannA,KivietM:DJ,Cell-to-cellBergmillerT,variation andspecializationinsugarmetabolisminclonalbacterial populations.PLoSGenet2017,13:1-24.

ThispapershowsthatinclonalE.colipopulationgrownonamixtureof glucoseandarabinose,individualcellsassimilatethesemetaboliteswith differentpreferences.Theassimilationofthesugarsismeasuredwith NanoSIMS.

45. Iba´n˜ezAJ,FagererSR,SchmidtAM,UrbanPL,JefimovsK, GeigerP,DechantR,HeinemannM,ZenobiR:Mass

spectrometry-basedmetabolomicsofsingleyeastcells.Proc NatlAcadSci2013,110:8790-8794.

46. KrismerJ,SobekJ,SteinhoffRF,FagererSR,PabstM,ZenobiR: ScreeningofChlamydomonasreinhardtiipopulationswith single-cellresolutionbyusingahigh-throughputmicroscale samplepreparationformatrix-assistedlaserdesorption ionizationmassspectrometry.ApplEnvironMicrobiol2015, 81:5546-5551.

47. CahillJF,DarlingtonTK,FitzgeraldC,SchoeppNG,BeldJ, BurkartMD,PratherKA:Onlineanalysisofsingle Cyanobacteriaandalgaecellsundernitrogen-limited conditionsusingaerosoltime-of-flightmassspectrometry. AnalChem2015,87:8039-8046.

48. BlackerTS,MannZF,GaleJE,ZieglerM,BainAJ,SzabadkaiG, DuchenMR:SeparatingNADHandNADPHfluorescenceinlive cellsandtissuesusingFLIM.NatCommun2014,5:3936. 49. BhattacharjeeA,DattaR,GrattonE,HochbaumAI:Metabolic

fingerprintingofbacteriabyfluorescencelifetimeimaging microscopy.SciRep2017,7:3743.

50. ChumnanpuenP,BrackmannC,NandySK,

ChatzipapadopoulosS,NielsenJ,EnejderA:Lipidbiosynthesis monitoredatthesingle-celllevelinSaccharomyces cerevisiae.BiotechnolJ2012,7:594-601.

51. LuF-K,BasuS,IgrasV,HoangMP,JiM,FuD,HoltomGR, NeelVA,FreudigerCW,FisherDEetal.:Label-freeDNAimaging invivowithstimulatedRamanscatteringmicroscopy.Proc NatlAcadSci2015,112:11624-11629.

52. WakisakaY,SuzukiY,IwataO,NakashimaA,ItoT,HiroseM, DomonR,SugawaraM,TsumuraN,WataraiHetal.:Probingthe metabolicheterogeneityofliveEuglenagraciliswith stimulatedRamanscatteringmicroscopy.NatMicrobiol2016, 1:16124.

53.

 Metabolic-activity-basedTaoY,WangY,HuangS,ZhuassessmentP,HuangofWE,antimicrobialLingJ,XuJ:effects byD2O-labeledsingle-cellramanmicrospectroscopy.Anal Chem2017,89:4108-4115.

ThispapershowsthatusingsinglecellRamanmicrospectroscopyand heavywateritispossibletoassesstheviabilityofpathogenicmicrobes bytrackingtheshiftfromC–HtoC–Dbond.

54. FagererSR,SchmidT,Iba´n˜ezAJ,PabstM,SteinhoffR, JefimovsK,UrbanPL,ZenobiR:Analysisofsinglealgalcellsby combiningmassspectrometrywithRamanandfluorescence mapping.Analyst2013,138:6732.

55. LiS,SiT,WangM,ZhaoH:Developmentofasynthetic malonyl-CoAsensorinSaccharomycescerevisiaeforintracellular metabolitemonitoringandgeneticscreening.ACSSynthBiol 2015,4:1308-1315.

56. SiedlerS,KhatriNK,Zsoha´rA,KjærbøllingI,VogtM,HammarP, NielsenCF,MarienhagenJ,SommerMOA,JoenssonHN: Developmentofabacterialbiosensorforrapidscreeningof

MetabolicheterogeneityTakhaveevandHeinemann 37

(10)

yeastp-coumaricacidproduction.ACSSynthBiol2017, 6:1860-1869.

57.

 TaoSuNR,etZhaoal.:GeneticallyY,ChuH,WangencodedA,ZhufluorescentJ,ChenX,ZousensorsY,ShiM,revealLiuR, dynamicregulationofNADPHmetabolism.NatMethods2017, 14:720-728.

Thispaperpresentsaratiometricgeneticallyencodedbiosensor mea-suringNADPHconcentration.

58. ZhaoY,HuQ,ChengF,SuN,WangA,ZouY,HuH,ChenX, ZhouHM,HuangXetal.:SoNar,ahighlyresponsiveNAD +/NADHsensor,allowshigh-throughputmetabolicscreening ofanti-tumoragents.CellMetab2015,21:777-789.

59. DeMicheleR,AstC,Loque´ D,HoCH,AndradeSLA,LanquarV, GrossmannG,GehneS,KumkeMU,FrommerWB:Fluorescent sensorsreportingtheactivityofammoniumtransceptorsin livecells.Elife2013,2013:e00800.

60. Maglica,O¨ zdemirE,McKinneyJD:Single-celltrackingreveals antibiotic-inducedchangesinmycobacterialenergy metabolism.MBio2015,6:e02236-e2314.

61. SanMartı´n A,CeballoS,Baeza-LehnertF,LerchundiR, ValdebenitoR,Contreras-BaezaY,Alegrı´a K,BarrosLF:Imaging mitochondrialfluxinsinglecellswithaFRETsensorfor pyruvate.PLoSOne2014,9:e85780.

62. CameronWD,BuiCV,HutchinsonA,LoppnauP,Gra¨slundS, RocheleauJV:Apollo-NADP+:aspectrallytunablefamilyof geneticallyencodedsensorsforNADP+.NatMethods2016, 13:352-358.

63. PaigeJS,Nguyen-DucT,SongW,JaffreySR:Fluorescence imagingofcellularmetaboliteswithRNA.Science(80-)2012, 335:1194.

64. EllingtonAD,SzostakJW:InvitroselectionofRNAmolecules thatbindspecificligands.Nature1990,346:818-822. 65. MellinJR,CossartP:Unexpectedversatilityinbacterial

riboswitches.TrendsGenet2015,31:150-156.

66. TownshendB,KennedyAB,XiangJS,SmolkeCD: High-throughputcellularRNAdeviceengineering.NatMethods 2015,12:989-994.

67. YouM,LitkeJL,JaffreySR:Imagingmetabolitedynamicsin livingcellsusingaSpinach-basedriboswitch.ProcNatlAcad Sci2015,112:E2756-E2765.

68. KellenbergerCA,WilsonSC,Sales-LeeJ,HammondMC: RNA-basedfluorescentbiosensorsforlivecellimagingofsecond messengerscyclicdi-GMPandcyclicAMP-GMP.JAmChem Soc2013,135:4906-4909.

69. KellenbergerCA,ChenC,WhiteleyAT,PortnoyDA,

HammondMC:RNA-basedfluorescentbiosensorsforlivecell imagingofsecondmessengercyclicdi-AMP.JAmChemSoc 2015,137:6432-6435.

70. SongW,StrackRL,SvensenN,JaffreySR:Plug-and-play fluorophoresextendthespectralpropertiesofspinach.JAm ChemSoc2014,136:1198-1201.

71. WarnerKD,ChenMC,SongW,StrackRL,ThornA,JaffreySR, Ferre´-D’Amare´ AR:Structuralbasisforactivityofhighly efficientRNAmimicsofgreenfluorescentprotein.NatStruct MolBiol2014,21:658-663.

72. FilonovGS,MoonJD,SvensenN,JaffreySR:Broccoli:rapid selectionofanRNAmimicofgreenfluorescentproteinby fluorescence-basedselectionanddirectedevolution.JAm ChemSoc2014,136:16299-16308.

73. SchmidtAM,FagererSR,JefimovsK,BuettnerF,MarroC, SiringilEC,BoehlenKL,PabstM,Iba´n˜ezAJ:Molecular phenotypicprofilingofaSaccharomycescerevisiaestrainat thesingle-celllevel.Analyst2014,139:5709-5717.

74. TengL,WangX,WangX,GouH,RenL,WangT,WangY,JiY, HuangWE,XuJ:Label-free,rapidandquantitative

phenotypingofstressresponseinE.coliviaramanome.Sci Rep2016,6:34359.

75. SiedlerS,SchendzielorzG,BinderS,EggelingL,BringerS,BottM: SoxRasasingle-cellbiosensorforNADPH-consuming enzymesinEscherichiacoli.ACSSynthBiol2014,3:41-47. 76. KnudsenJD,CarlquistM,Gorwa-GrauslundM:

NADH-dependentbiosensorinSaccharomycescerevisiae: principleandvalidationatthesinglecelllevel.AMBExp2014, 4:1-12.

77. ZhangJ,BarajasJF,BurduM,RueggTL,DiasB,KeaslingJD: Developmentofatranscriptionfactor-basedlactam biosensor.ACSSynthBiol2017,6:439-445.

78. NadlerDC,MorganSA,FlamholzA,KortrightKE,SavageDF: Rapidconstructionofmetabolitebiosensorsusing domain-insertionprofiling.NatCommun2016,7:12266.

79. HungYP,YellenG:Live-cellimagingofcytosolicNADH-NAD+ redoxstateusingageneticallyencodedfluorescent biosensor.MethodsMolBiol2014,1071:83-95.

80. ZhaoY,JinJ,HuQ,ZhouHM,YiJ,YuZ,XuL,WangX,YangY, LoscalzoJ:Geneticallyencodedfluorescentsensors forintracellularNADHdetection.CellMetab2011, 14:555-566.

81. PerozaEA,EwaldJC,ParakkalG,SkotheimJM,ZamboniN:A geneticallyencodedFo¨rsterresonanceenergytransfer sensorformonitoringinvivotrehalose-6-phosphate dynamics.AnalBiochem2015,474:1-7.

82. ImamuraH,HuynhNhatKP,TogawaH,SaitoK,IinoR, Kato-YamadaY,NagaiT,NojiH:VisualizationofATPlevelsinside singlelivingcellswithfluorescenceresonanceenergy transfer-basedgeneticallyencodedindicators.ProcNatlAcad Sci2009,106:15651-15656.

83. KlarenbeekJ,GoedhartJ,VanBatenburgA,GroenewaldD, JalinkK:Fourth-generationEpac-basedFRETsensorsfor cAMPfeatureexceptionalbrightness,photostabilityand dynamicrange:characterizationofdedicatedsensorsfor FLIM,forratiometryandwithhighaffinity.PLoSOne2015,10: e0122513.

Referenties

GERELATEERDE DOCUMENTEN

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/10/222/s1 , Figure S1: Comparison of three diversity indices of the bryophyte

The first-trimester exposure to the EFV-based treatment (0.87 [95% CI 0.12–6.40]) was not associated with an increased risk compared to births not exposed to ART in the

Door toepassing van preventieve maatregelen kan bij de alternatieve, niet-chemische en reguliere bestrijding veel op deze herbiciden, maar ook op energie en kosten, worden

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

De afvoerkanaaltjes die werden aangetroffen zijn moeilijk te dateren door gebrek aan archeologisch vondstenmateriaal maar zij werden vermoedelijk aangelegd (en vervangen)

In het zuidelijke deel van de site, waar een laag met aardewerk uit de metaaltijden werd aangetroffen, moet in een vervolgonderzoek goed uitgekeken worden naar vage

Dit rapport vormt de weergave van het archeologische vooronderzoek en de vondsten gedaan tijdens het vooronderzoek met proefsleuven, uitgevoerd o p de terreinen van