• No results found

The effects and neural correlates of visuomotor scaling of finger movements in virtual reality

N/A
N/A
Protected

Academic year: 2021

Share "The effects and neural correlates of visuomotor scaling of finger movements in virtual reality"

Copied!
38
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

 

 

 

 

 

 

 

 

 

The  effects  and  neural  correlates  of  

visuomotor  scaling  of  finger  movements  

in  virtual  reality  

Research  report  of  second  master  project  performed  at  the  Institute  of  

Neuroinformatics  (ETH  Zurich  and  University  of  Zurich)  in  Zurich,  

Switzerland  

 

 

 

   

Name:  Romy  Bakker   Student  number:  5744385  

Date:  August  27th,  2012  

Master  Brain  and  Cognitive  Sciences:    Cognitive  Neuroscience   Supervisor:  Johannes  Brand  

(2)

Abstract  

The   effects   of   adaptation   to   visuomotor   feedback   distortion   have   been   extensively   studied   in   arm   reaching   movements.   However,   fewer   studies   have   been   done   in   visuomotor   scaling   of   fine   finger   movements.   In   this   study   we   examine   the   behavioral  effects  and  neural  correlates  of  visuomotor  scaling  of  finger  movements  in  a   target  reaching  task.  The  experiment  was  conducted  in  a  behavioral  set-­‐up  (18  subjects)   and   using   Functional   Magnetic   Resonance   Imaging   (9   subjects).   In   both   experiments   subjects   had   to   use   their   right   index   finger   to   move   a   cursor   to   a   target,   in   which   the   target   position   and   the   feedback   gain   varied.   Results   show   that   subjects   were   in   a   persistent   state   of   adaptation   to   the   visuomotor   gains,   presumably   because   of   the   randomization   of   adaptation   and   control   blocks.   They   were   slower   and   had   greater   movement   errors   on   trials   with   increasing   distorted   gain   factors.   Brain   areas   related   with   adaptation   to   the   gain   factors   included   left   precentral   gyrus   and   bilateral   cerebellum,  thalamus,  precuneus,  middle  occipital  gyrus  and  inferior  temporal  gyrus.    

(3)

 

Table  of  contents  

 

Abstract ...1  

Introduction...3  

Methods ...5  

Subjects ...5  

Task  and  procedure  behavioral  experiment ...5  

Task  and  procedure  fMRI  experiment ...8  

Software...9  

Equipment...9  

Data  acquisition ...9  

Statistical  analysis  of  behavioral  experiment...9  

FMRI  preprocessing... 10  

Statistical  analysis  of  fMRI  responses... 10  

Results... 11  

Behavioral  experiment... 11  

Performance ... 11  

Movement  curves ... 11  

Effect  on  conditions  with  reference  gain  factor ... 12  

Effect  on  different  gains... 14  

Effect  of  different  targets ... 16  

fMRI  experiment ... 17  

Behavioral  performance... 17  

Brain  activation ... 17  

Discussion... 21  

Limitations  and  suggestions  for  further  research... 23  

Acknowledgements ... 24  

APPENDIX... 27  

Additional  results  behavioral  experiment... 27  

Tables  fMRI  peak  coordinates  and  areas  of  activation... 31  

Additional  results  fMRI  experiment... 37    

 

 

(4)

Introduction  

 

Humans   have   a   flexible   adaptive   sensorimotor   system,   leading   to   apparently   effortless   smoothing   of   their   movements.   However,   unpredictable   errors   from   the   environment  or  from  the  movements  themselves  could  disturb  goal  directed  behavior.   Therefore,  signaling  of  errors  and  adapting  to  errors  plays  an  important  role  in  motor   control.   Adaptation   to   movement   errors   seems   to   be   often   implicit   (Mazzoni   and   Krakauer,   2006;   Krakauer,   2009).   Also,   intended   movements   seem   to   be   updated   by   internal  loops  (Desmurget  and  Grafton,  2000).      

Until   now,   studies   on   visuomotor   adaptation   mainly   focused   on   inducing   a   sensory   mismatch   during   arm   movements   by   rotating   visual   feedback.   Fewer   studies   have  investigated  adaptation  effects  to  visual  feedback  scaling  and  few  have  done  this   with  fine  finger  movements.  Finger  movements  differ  from  hand  and  wrist  movements,   because   finger   movements   are   optimized   for   dexterous   prehension   tasks   and   hand   movements  more  for  postural  control.  

Diedrichsen  and  colleagues  (Diedrichsen  et  al.,  2005)  compared  neural  correlates   of   different   kinds   of   perturbations   of   arm   reaching   movements.   Subjects   adapted   to   visual  feedback  rotations  of  a  virtual  cursor  even  if  the  rotation  direction  was  alternated   randomly.  They  found  particularly  stronger  activation  in  primary  motor  areas,  anterior   parietal  areas,  dorsal  premotor  cortex  and  cerebellum  during  visuomotor  rotation  tasks   than   during   normal   reaching   movements.   Krakauer   and   colleagues   (Krakauer   et   al,   2000)   compared   adaptation   to   visuomotor   rotation   and   scaling   in   a   behavioral   study.   They   found   that   subjects   were   adapting   much   faster   to   scaling   distortion   than   to   rotations.   In   2004,   the   same   group   examined   whether   different   brain   areas   were   activated   during   adaptation   to   rotation   and   scaling,   using   PET   (Krakauer   et   al,   2004).   Subjects   were   adapting   fast   to   new   scaling   factors,   therefore   they   changed   the   visuomotor  scaling  factor  after  every  16  movements  to  keep  them  in  an  adaptation  state.   Adaptation   to   scaling   activated   the   putamen   and   the   contra   lateral   cerebellum.   Additionally,   adaptation   to   rotation   recruited   the   preSMA,   the   ipsilateral   premotor   cortex,  the  posterior  parietal  cortex  and  the  contralateral  cerebellum.    

Besides   the   PET   study   of   Krakauer   and   colleagues   (Krakauer   et   al,   2004),   no   other   imaging   study   has   investigated   adaptation   to   a   visuomotor   scaling   factor.   Therefore,  in  this  study  we  try  to  get  new  insights  in  the  underlying  neural  mechanisms  

(5)

of   visuomotor   scaling   of   finger   movements.   This   will   be   tested   in   a   paradigm   that   focuses  only  on  visuomotor  gain  factor  amplitude  manipulation  in  a  target  reaching  task,   using   fMRI.   The   study   addresses   the   following   questions:   (1)   do   subjects   adapt   to   changing   visuomotor   gains?   (2)   How   do   changing   visuomotor   gains   influence   the   performance   of   the   finger   movement   task?   (3)   What   are   the   neural   correlates   of   adaptation   to   visuomotor   feedback   scaling   of   finger   movements?   We   expect   that   the   performance   measurements   as   peak   flexing   velocity   and   movement   error   will   be   different   for   visuomotor   adaptation   gains   compared   to   normal   reaching.   Additionally,   we  expect  to  find  activation  changes  in  premotor  cortex,  primary  motor  cortex,  SMA  and   inferior  parietal  lobe  during  the  task.  Finally,  we  expect  that  changing  visuomotor  gains   will   recruit   the   putamen   and   contra   lateral   cerebellum,   as   well   as   parietal   and   motor   related  areas.    

     

 

(6)

Methods  

Subjects  

The   study   was   performed   in   two   separate   experiments.   In   the   first   experiment   subjects  were  tested  solely  on  the  behavioral  level.  In  the  second  experiment  the  same   behavioral  design  was  used  combined  with  fMRI  and  a  visual  observation  condition  was   added.   Subjects   were   only   allowed   to   participate   in   one   of   the   two   experiments,   to   ensure   they   were   naïve   for   the   task.   Twenty   adults   (Mean   age   25.75   years,   SD=   7.56)   participated  in  the  behavioral  part.  In  the  fMRI  phase,  ten  adults  (Mean  age:  25.7  years,   SD=3.97)   participated.   All   were   dominant   right-­‐hand   as   assessed   by   the   Edinburgh   Handedness   Inventory   (Oldfield,   1971):   Behavioral   subjects   had   a   mean   Laterality   Quotient  (LQ)  of  82.4  (SD  =  16.2)  and  mean  Decile  of  6.25.  (SD=  2.9).  The  mean  LQ  of  the   fMRI  subjects  was  90.5  (SD=14.5)  and  mean  Decile  was  8.1  (SD=  2.8).    Both  groups  were   recruited   at   the   University   of   Zurich   and   the   Swiss   Federal   Institute   of   Technology   Zurich.  Subjects  received  compensation  for  their  participation  in  terms  of  CHF  20,  -­‐.  All   had  normal  or  corrected-­‐to-­‐normal  vision  and  did  not  have  any  diseases  affecting  hand   movements  in  any  kind.  They  all  gave  their  written  informed  consent  for  participation   by  signing  a  consent  form.    

 

Task  and  procedure  behavioral  experiment    

Subjects   were   sitting   at   a   desk   with   their   forearms   on   the   table   (Figure   1a   and   1b).  The  task,  which  was  displayed  in  virtual  reality,  was  projected  from  a  LCD  screen   onto  a  mirror  placed  beneath  the  LCD  screen.  Subjects  were  not  able  to  see  their  own   hand,  as  the  mirror  hindered  direct  vision.  The  right  arm  was  fixed  to  the  table  such  that   arm  movements  were  blocked.    

   

(7)

 

Figure  1(a).  Experimental  set-­‐up  behavioral  experiment,  (b)  picture  of  the  setup,  subject  is  wearing  the   data  glove  and  the  hand  is  placed  around  the  blue  tube.  Right  arm  is  fixed  to  the  table.  The  subject  is  

watching  the  task  in  virtual  reality  projected  onto  the  mirror.    

Subjects  performed  a  target-­‐reaching  task  in  virtual  reality,  using  only  their  right   index  finger.  A  5DT  fMRI  compatible  data  glove  was  used  to  obtain  positions  of  the  index   finger.  Their  right  hand  was  placed  around  a  well  fitting  tube,  to  ensure  the  hand  was  in   a   relaxed   and   comfortable   position   and   that   the   index   finger   could   move   easily   from   there   (Figure   2).   There   were   three   different   sized   tubes   that   were   increasing   in   both   diameter   and   length,   to   ensure   subjects   with   various   hand   shapes   could   perform   the   task.   The   movement   range   of   the   task   was   90   %   of   the   full   finger   movement   range,   which   was   calibrated.   For   the   calibration   finger   positions   were   measured   at   three   different  positions:  (1)  Closed  hand  position,  although  relaxed  (Fig  2a),  (2)  extension  of   the   hand,   but   not   completely   (Fig   2b),   (3)   the   middle   position   between   these   two   positions.  The  other  fingers  were  kept  fixed  around  the  tube.  The  extended  position  (Fig   2b)  was  the  starting  position  of  the  task,  and  experiment  movements  were  in  the  flexing   direction.    

  The  position  of  the  finger  was  represented  by  a  blue  cursor  in  virtual  reality.  The   position  of  the  blue  cursor  and  the  finger  were  scaled  as  1:1,  such  that  when  the  finger   moved  the  cursor  moved  with  the  same  speed  on  the  screen.  Task  instructions  included   to   move   the   blue   cursor   from   the   starting   point   (a   yellow   circle)   to   one   of   three   differently  targets  distances  (white  circles)  as  fast  and  accurate  as  possible  (Figure  3).   The   targets   appeared   periodically   every   two   seconds   and   stayed   for   one   second.   The  

(8)

order   of   the   distances   was   randomized.   The   time   course   of   a   trial   consisted   of   (1)   bringing  the  blue  cursor  into  the  starting  position,  (2)  appearance  of  the  white  target,   (3)  moving  the  cursor  to  the  target  and  back  to  the  starting  position  in  one  movement.  

 

Figure  2  Schematic  overview  of  the  subject’s  hand  position  around  the  tube.    (a)  Closed  hand  position,   flexed  position.  (b)  Start  position  of  the  task,  extended  position.    

 

 

 

Figure  3.    Target  presentation  and  percentage  finger  extension.  Yellow  circle  =  starting  position,  white   circles  =  target.  

 

The   task   consisted   of   four   conditions   of   15   blocks   each,   manipulating   the   mapping  of  measured  index  finger  input  to  cursor  movement  on  the  screen  (visuomotor   gain).    Each  block  consisted  of  10  movements  of  2s  to  the  targets.  The  first  part  of  the   experiment   consisted   of   the   Familiarization   condition.   In   this   condition   only   the   reference  gain  was  introduced  (Fig.  4A).  After  the  Familiarization,  the  blocks  of  the  other   three  conditions  were  randomly  shuffled.  These  conditions  consisted  of  the  Downscaling   condition   where   the   reference   gain   was   shuffled   with   the   Downscaling   gain   (Fig.   4B).     Second,  the  Testing  condition  in  which  only  the  reference  gain  was  introduced  (Fig.  4C)   and  the  Upscaling  condition  in  which  the  reference  gain  was  shuffled  with  the  Upscaling   gain   (Fig.   4D).   Hence,   two   different   visuomotor   scaling   gains   were   introduced   to   map   between  the  index  finger  and  the  virtual  cursor.  The  trained  reference-­‐scaling  factor  was   denoted  as  1,  the  Downscaling  factor  was  denoted  as  0.5  and  the  Upscaling  factor  as  2.   For   the   Downscaling   gain   the   cursor’s   speed   is   twice   as   slow   as   during   the   reference   gain,  for  the  Upscaling  twice  as  fast.  

(9)

 

Figure  4.  Example  blocks  for  each  condition  of  the  experiment:  (A)  Familiarization.  (B)  Downscaling,  (C)   Testing,  (D)  Upscaling.  The  gain  factors  are  modulated  in  the  Upscaling  and  Downscaling  conditions  

within  one  block.    

Task  and  procedure  fMRI  experiment    

  The   same   task   was   performed   during   the   MRI   sessions.   The   task   was   slightly   modified   for   the   scanner.   First,   an   additional   condition   was   introduced:   a   visual   observation-­‐only   condition,   which   took   place   after   the   familiarization   (Fig   5).   During   this   condition   subjects   had   to   observe   their   own   movement   trajectories   from   the   familiarization  condition,  which  were  presented  in  a  randomized  order.  They  were  not   allowed  to  make  any  movements.  Hence,  the  fMRI  session  was  the  same  in  procedure  as   the  behavioral  session,  only  with  an  additional  condition.  Second,  the  color  of  the  cursor   was   changed   from   blue   to   red   for   the   MRI   session,   for   better   contrast   on   the   backprojection  system  used  in  the  MRI  scanner.  

 

 

 

Figure  5.  The  design  of  the  fMRI  task:  Similar  to  the  behavioral  design,  only  the  addition  of  the  visual   observation  condition.  In  total,  5  conditions:  Familiarization,  Visual  Observation,  Upscaling,  Testing,  and  

(10)

Software  

The   virtual   environment   of   the   task   in   this   study   was   programmed   using   Unity   (Unity  technologies,  San  Francisco,  USA).    

Equipment  

A   5DT   fMRI   compatible   data   glove   (Fifth   Dimension   Technologies,   Irvine,   California,  USA)  was  used  in  this  experiment  to  measure  the  flexion  of  the  index  finger   with  a  sampling  rate  of  75  Hz.  The  signal  was  smoothed  with  an  average  filter  of  100ms   length  (Lag  in  Games  for  Comparison:  Unreal  Tournament  3:  ca.  133ms,  via  OnLive:  ca.   150ms).  At  every  time  point  we  inferred  the  index  finger  tip  position  from  a  Kochanek-­‐ Bartels   spline   constructed   from   three   calibration   points   at   0%,   50%   and   100%   index   finger  extension  at  the  beginning  of  the  experiment.    

Data  acquisition  

  Scans   were   acquired   using   a   Philips   Achieva   3.0   Tesla   MR   scanner   (Philips   Medical  Systems,  Best,  The  Netherlands)  with  an  8-­‐element  head  coil.  Functional  BOLD   sensitive   images   were   obtained   using   a   single-­‐shot   gradient   echo   EPI   pulse   sequence   (slices  =  30,  repetition  time  =  2s,  echo  time  =  30  ms,  flip  angle  =  77-­‐80˚,  field  of  view=   220,  voxel  size  =  3x3x3)  Using  a  sensitivity  encoding  (SENSE)  with  a  reduction  factor  of   2,  the  influence  of  susceptibility  artifacts  was  minimized.  Additionally,  using  SENSE  the   possible   number   of   slices   acquired   with   one   TR   could   be   maximized.   Following   the   functional   scans   a   high-­‐resolution   anatomical   scan   was   acquired,   using   a   3D   T1-­‐ weighted  gradient  echo  sequence  (TE/TR=  2.3/20  ms,  FOV  =  220x  220  mm2,  matrix  =   256x  256,  slices  =  180,  slice  thickness  =  0.75  mm).  All  images  were  acquired  in  whole   brain  and  in  an  oblique  axial  orientation.    

Statistical  analysis  of  behavioral  experiment  

The   acquired   movement   traces   were   aligned   to   movement   onset.   Features   as   movement  error,  peak  flexing  velocity,  time  to  target,  reaction  time,  time  to  target  were   calculated   and   statistical   outliers   were   removed   using   MATLAB   (MathWorks,   Natick,   Massachusetts,   USA).   The   effect   of   the   visuomotor   scaling   gain,   target   distance   and   condition   of   the   experiment   were   examined.   .   All   data   was   first   checked   for   normality   and   analyzed   using   Statistical   Package   for   the   Social   Sciences   (SPSS,   Chicago,   Illinois,   USA):  Repeated  measures  ANOVA  were  performed  to  normal  distribute  data  to  compare   the  means  and  also  the  standard  deviations.  To  data  that  was  not  normally  distributed,  

(11)

non-­‐parametric   tests   as   the   Friedman   test   were   performed.   All   results   were   post-­‐hoc   corrected  for  multiple  comparisons,  using  Bonferroni  Correction.  

FMRI  preprocessing    

All   fMRI   data   were   preprocessed   and   analyzed   using   Statistical   Parametric   Mapping   (SPM8)   (Welcome   Trust   Centre   for   Neuroimaging,   London).   Images   were   realigned  to  the  mean  of  the  functional  scans,  to  correct  for  head  motion.  Additionally,   the   scans   were   wrapped   in   the   y   direction.   Subsequently,   the   anatomical   scan   was   coregistered   to   the   realigned   functional   scans.   Segmentation   was   conducted   to   the   coregistered   anatomical   scans,   using   unified   segmentation.   The   functional   and   anatomical  scans  were  spatially  normalized  to  the  Montreal  Neurological  Institute  (MNI)   standard  brain.  At  last,  images  were  smoothed  with  a  6-­‐mm  full  width  at  half  maximum   (FWHM)  Gaussian  kernel.    

Statistical  analysis  of  fMRI  responses    

Statistical   fMRI   analysis   at   group   level   was   performed   using   the   general   linear   model   (GLM),   as   implemented   in   SPM8.   A   model   was   created   defining   five   conditions:   Familiarization,   Visual   Observation,   Upscaling,   Testing   and   Downscaling.   As   described   earlier,   a   block-­‐design   was   used   for   this   experiment.   Additionally,   a   high-­‐pass   filter   of   128  seconds  was  applied  to  the  data.  The  model  was  convolved  with  the  standardized   hemodynamic  response  function  of  SPM8,  to  disclose  typical  delays  in  fMRI  responses.    

In  this  report  only  the  group  results  of  the  second  level  analyses  will  be  reported.   The  Second  level  analysis  was  performed  on  the  whole  brain  level.  One-­‐sample  t-­‐tests   were   performed   to   the   contrasts.   Statistics   are   reported   at   p<0.05   significance   level,   corrected   for   multiple   comparisons   using   the   False   Discovery   Rate   (FDR).   Results   are   reported   in   MNI   coordinate   system.   For   the   anatomical   labeling   of   the   nearest   grey   matter,   coordinates   were   first   converted   to   Talairach   coordinates,   using   a   non-­‐linear   transformation.  Anatomical  label  of  nearest  grey  matter  was  determined  using  Talairach   Daemon   atlas   in   the   Talairach   Client   (Research   Imaging   Center,   University   of   Texas,   Health  Science  Center,  San  Antonio)  

(12)

Results  

Behavioral  experiment  

 

Performance  

All  subjects  felt  comfortable  during  the  task  and  accomplished  the  task.  However,   two   subjects   (one   male   and   one   female)   were   excluded   from   the   analysis   due   to   incorrect  movement  traces.  These  incorrect  traces  were  due  to  a  fault  in  calibration  and   due  to  not  correct  execution  of  the  task.  

Movement  curves  

Figure  7  shows  average  curves  over  subjects  of  the  mean  finger  extension  during   the   experiment.   During   the   Familiarization   condition,   the   average   subject’s   finger   movement   minimum   extension   lies   within   the   range   of   the   target   area   (Fig.   5A).   We   found   a   difference   in   behavior   during   the   testing   condition,   which   was   like   the   Familiarization  condition,  also  conducted  with  the  reference  gain  (Fig.  5B.).  The  slopes   of   the   movement   traces   were   less   steep   for   the   testing   condition   compared   to   the   Familiarization   condition.   Additionally,   the   movement   extent   towards   targets   2   and   3   was  decreased.  Furthermore,  traces  with  reference  gain  factor  from  movements  in  the   Upscaling   and   Downscaling   condition   (Adaptation   condition)   were   compared   to   movement  traces  of  the  Testing  condition  (Fig.  5C).    The  slopes  of  the  movement  traces   during  adaptation  were  less  steep  to  target  2  and  3  compared  to  the  testing  condition.   The  comparisons  for  figure  5A  to  5C  were  all  with  the  reference  gain,  the  only  difference   was   the   introduction   of   other   flankering   gains   in   the   latter   two   cases.     The   flankering   gain  movements,  which  were  the  Upscaling  and  Downscaling  gains,  were  not  included  in   the  previous  comparisons,  but  showed  to  have  influence  on  the  gain  1  traces.  

   

   

(13)

 

Figure  6.  The  average  curves  over  subjects  of  the  mean  finger  extension  during  the  experiment.   The  surface  areas  represent  +/-­‐  1  standard  error.  Horizontal  black  lines  mark  the  edges  of  the  3  target  

positions.  The  width  of  the  virtual  cursor  is  not  shown,  but  corresponds  to  the  width  of  the  targets.  

 

Inspection   of   the   movement   traces   with   the   Upscaling   gain   factor   revealed   an   overshoot   in   the   movements   to   the   target   (Fig.   5D,E).   Downscaling   resulted   in   less   steepness  of  the  slope  and  an  undershoot  to  the  target  (5E,F).  Additionally,  corrections   in   undershoot   were   visible   for   the   downscaling   factor;   however   subjects   could   not   entirely  correct  for  the  initial  undershoot.  

Effect  on  conditions  with  reference  gain  factor    

In  this  analysis  we  compared  features  of  the  reference  gain  movements  from  the   Familiarization  condition,  the  Testing  condition  and  the  two  adaptation  (Upscaling  and   Downscaling)   conditions.     A   non-­‐parametric   Friedman   test   revealed   significant   differences  between  the  three  experimental  conditions  to  target  2  (P<0.05)  and  target  3   (P<0.001)  for  peak  flexing  velocity.  After  applying  a  Bonferroni  correction  effects  were   found   in   peak   flexing   velocity   to   target   3   between   familiarization   and   adaptation   condition   (p<0.01)   and   between   testing   and   adaptation   condition   (p<0.001).     Additionally,   there   was   a   significant   effect   found   in   movement   error   for   target   1   (p<0.01)  and  target  3(p<0.01)  both  between  the  three  conditions.  Bonferroni  correction  

(14)

revealed  significant  effects  between  familiarization  and  adaptation  to  target  1  (p<0.01)   and  target  3  (p<0.01).  Additionally,  an  effect  was  found  to  target  3  between  testing  and   adaptation   (p<0.01).   All   significant   effects,   including   also   some   effects   in   movement   error,  are  summarized  in  table  1A  and  1B.      

   

1A Movement Error

T1 T2 T3

Condition Mean STD Mean STD Mean STD

fam-test-adap P<0.01 P<0.001* n.s. P<0.001* P<0.01 n.s. fam-test n.s. n.s. n.s. n.s. n.s. n.s. fam-adap n.s. P<0.001* n.s. n.s. P<0.01 n.s. test-adap P<0.01 P<0.001* n.s. P<0.001* P<0.01 n.s.  

1B Peak Flexing Velocity

T1 T2 T3

Condition Mean STD Mean STD Mean STD

fam-test-adap n.s. P<0.01 p<0.05 n.s. P<0.001 n.s. fam-test n.s. n.s. n.s. n.s. P<0.001 n.s. fam-adap n.s. n.s. n.s. n.s. P<0.001 n.s. test-adap n.s. P<0.01 n.s. P<0.05 P<0.01 p<0.05  

Table   1.   Statistical   differences   in   Means   and   Standard   Deviations   of   (A)   Movement   error   (ME)   and   (B)   Peak   Flexing   Velocity   (PFV)   to   the   three   different   targets   (T1,   T2,   T3)   from   the   Familiarization   (fam),   Testing   (test)   and   Adaptation   (adap).   Non   parametric   tests   were   performed,   corrected   for   multiple   comparison.  *  indicate  the  data  was  normal  distributed,  and  repeated  measures  ANOVA  were  performed.   Fam-­‐test-­‐adap   indicates   difference   between   3   conditions   ((   -­‐   )   indicates   difference   between).     n.s.   =   no   significant  difference  

(15)

   

 

Figure  7.  Boxplots  of  the  Peak  Flexing  Velocity  of  movements  to  target  3  from  the  Familiarization,  the   Testing  and  the  Adaptation  conditions.  The  Asterisks  denote  significant  differences,  obtained  from  a  non-­‐

parametric  Friedman  test,  corrected  for  multiple  comparisons.  

 

Effect  on  different  gains    

To   test   the   differences   between   visuomotor   gains,   data   was   compared   during   gain  1  from  the  Testing  condition  to  data  with  gain  2  of  the  Upscaling  condition  and  to   gain  0.5  of  the  Downscaling  conditions.  As  shown  in  figure  5  and  7  significant  differences   were   found   between   the   three   gains   to   target   2   in   the   Adaptation   block.   Repeated   measures  ANOVA  revealed  a  significant  difference  in  error  movement  between  the  three   gains  (P<0.001).  Post  hoc  analysis  with  Bonferroni  correction  was  applied,  resulting  in  a   significance  level  at  P<0.05  between  gain  0.5  and  gain  1,  P<0.001  between  gain  1  and  2   and   P<0.001   between   gain   0.5   and   gain   2   (Fig.   7A).   Additionally,   a   non-­‐parametric   Friedman  test  showed  a  significantly  difference  in  peak  flexing  velocity  between  gains   (P<  0.001).  Post  hoc  Wilcoxon  Signed-­‐rank  tests  showed  an  effect  between  gain  0.5  and   gain  1  (P<0.01),  between  gain  1  and  2  (P<  0.001)  and  between  gain  0.5  and  gain  2  (P<   0.001)   (Fig.7B).   The   results   are   summarized   in   Table   2.   There   were   also   significant   differences   found   in   movement   error   and   peak   flexing   velocity   between   the   gains   to   target  1  and  3.  

(16)

 

Figure  8.  Boxplots  of  the  Movement  Error  and  Peak  Flexing  Velocity  of  movements  to  target  2  with  the   Downscaling,  reference  and  Upscaling  gain.  The  Asterisks  denote  significant  differences  obtained  from  (a)  

repeated  measures  ANOVA,  corrected  for  multiple  comparisons  (b)  non-­‐parametric  Friedman  test,   corrected  for  multiple  comparisons.    

   

2A Movement Error

T1 T2 T3

Gain Mean STD Mean STD Mean STD

0.5-1-2 x x p<0.001* p<0.001* x x 0.5 -1 x x p<0.05* n.s. P<0.001 n.s. 0.5 -2 x x p<0.001* p<0.001* x x

1 - 2 p<0.001 p<0.001* p<0.001* p<0.001* x x

 

2B Peak Flexing Velocity

T1 T2 T3

Gain Mean STD Mean STD Mean STD

0.5-1-2 x x p<0.001 p<0.001 x x 0.5 -1 x x p<0.01 n.s. P<0.001 n.s. 0.5 -2 x x p<0.001 p<0.001 x x

1 - 2 p<0.001* n.s. p<0.001 p<0.001 x x

 

Table   2.   Statistical   differences   in   Means   and   Standard   Deviations   of   (A)   Movement   error   (ME)   and   (B)   Peak   Flexing   Velocity   (PFV)   to   the   three   different   targets   (T1,   T2,   T3)     from   the   three   different   gains   Upscaling   (2),   Testing   (1)   and   Downscaling   (0.5).   Non   parametric   tests   were   performed,   corrected   for   multiple  comparison.  *  indicate  the  data  was  normal  distributed,  and  therefore  repeated  measures  ANOVA   were  performed.  0.5-­‐1-­‐2  indicates  difference  between  3  gains  ((  -­‐  )  indicates  difference  between).  n.s.  =  no   significant  difference.  X  indicates  not  a  possible  combination.  

(17)

 

Effect  of  different  targets  

Movement   error   significantly   differed   between   proprioceptive   targets   1,2,3   while   the   reference   gain   was   used   (p<0.01).   Correction   for   multiple   comparisons   showed   a   significant   difference   between   target   1   and   2   (p<0.01)   and   between   target   2   and   3   (P<0.01).   There   were   no   significant   differences   found   in   movement   error   during   the   manipulated   gains.   Peak   flexing   velocity   differed   significantly   between   the   3   targets   (P<0.001)   during   the   reference   gain.   Bonferroni   correction   showed   effects   between   target   1   and   2   (P<0.001),   target   2   and   3   (P<0.001)   and   between   target   1   and   3   (P<0.001).   Furthermore,   during   the   downscaling   gain   peak   flexing   velocity   differed   significant  between  target  2  and  3  (P<0.001).  Additionally,  during  the  Upscaling  gain  a   significant  effect  was  found  in  peak  flexing  velocity  between  target  1  and  2  (P<0.001).   An  overview  of  the  effects  are  shown  in  Table  3.    

   

3A Movement Error

Gain 0.5 Gain 1 Gain 2

Target Mean STD Mean STD Mean STD

T1- T2 -T3 x p<0.001* p<0.01 p<0.001 x x T1 -T2 x x p<0.01 n.s. P<0.001 n.s. T1 - T3 x x n.s. p<0.001 x x T2 - T3 n.s. p<0.001* p<0.01 p<0.001 x x

 

3B Peak Flexing Velocity

Gain 0.5 Gain 1 Gain 2

Target Mean STD Mean STD Mean STD

T1- T2 - T3 x x p<0.001 p<0.001 x x T1 -T2 x x p<0.001 P<0.01 P<0.001 p<0.01 T1 - T3 x x p<0.001 p<0.001 x x T2 - T3 p<0.001 p<0.001 p<0.001 p<0.01 x x

   

Table  3.  Statistical  differences  in  Means  and  Standard  Deviations  of  (A)  Movement  error  (ME)  and  B)  Peak   Flexing  Velocity  (PFV)  with  three  different  gains  (gain  0.5,    gain  1,  gain  2)    to  the  three  different  targets   (T1,  T2,  T3).  Non  parametric  tests  were  performed,  corrected  for  multiple  comparison.  *  indicate  the  data   was  normal  distributed,  and  therefore  repeated  measures  ANOVA  were  performed.  T1-­‐T2-­‐T3    indicates   difference  between  3  targets  ((  -­‐  )  indicates  difference  between).  n.s.  =  no  significant  difference  

   

(18)

fMRI  experiment  

Behavioral  performance  

None   of   the   subjects   reported   discomfort   and   except   for   one,   all   subjects   accomplished   the   sessions.   One   female   was   excluded   from   the   analysis   due   to   not   entirely  finishing  of  all  the  tasks.    

The   movement   traces   and   the   behavioral   performance   of   the   task   showed   no   abnormalities   and   seemed   correct   after   a   quick   examination.   The   analyses   of   the   behavioral  data  of  the  fMRI  sessions  are  still  ongoing  and  therefore  not  discussed  in  this   report.    

 

Brain  activation  

  The  neural  correlates  that  are  examined  are  based  on  second  level  analysis  of  in   total   nine   subjects.   The   results   will   be   discussed   per   contrast.   We   studied   various   contrasts   and   the   most   interesting   contrasts   are   discussed   here   and   the   significant   results   on   remaining   contrasts   could   be   found   in   the   appendix.   Additionally,   all   coordinates   of   the   peak   activations   and   activated   areas   could   also   be   found   in   the   appendix.  

Familiarization  versus  rest    

The  first  analysis  examined  brain  activation  during  the  familiarization  condition   versus   rest   (Fig.   8).   Activation   patterns   were   found   in   bilateral   parietal   cortex   (BA   7/40),   as   well   as   in   the   occipital   lobe   (BA   19/37).   Dominant   activation   in   the   left   hemisphere   was   found   in   inferior   parietal   lobe   (IPL),   precentral   gyrus   (BA   6)   and   precuneus   (BA   7).     Furthermore,   right   dominant   areas   as   the   inferior   temporal   gyrus   (ITG),  precuneus  (BA7)  and  middle  occipital  gyrus  (MOG)  were  recruited.      

 

 

Figure  9.  Familirisation  versus  rest    (FDR  corrected  p<  0.05)  T-­‐contrast  vector  =  [  1,  0,  0  ,  0,  0]  

(19)

 

Adaptation  versus  rest    

The  analysis  of  all  conditions  in  adaptation  (Testing,  Upscaling  and  Downscaling)   revealed  strong  activation  in  the  left  hemisphere  as  the  precentral  gyrus  (BA  6),  middle   frontal   gyrus   (MFG),   Inferior   frontal   gyrus   (IFG),   Precuneus   (BA   7),   lentiform   nucleus   (putamen),   thalamus,   insula   (BA   13)   and   IPL.   Additionally,   in   the   right   hemisphere   activation   was   found   in   the   IFG,   MTG,   insula,   putamen   and   inferior   semi-­‐lunar   lobule.   Results  are  summarized  in  Figure  10.    

 

 

Figure  10.  Adaptation    versus  rest  (FDR  corrected  0.05  )  t-­‐contrast  vector  [0,  0,  0.33,  0.33,  0.33]    

 

Upscaling  &  Downscaling  versus  rest  

To   examine   the   effect   of   the   Up-­‐   and   Downscaling   visuomotor   gains   the   same   analysis   was   performed,   but   without   the   testing   condition   versus   rest.   An   activation   pattern   was   visible   in   several   similar   areas   such   as   the   left   precentral   gyrus   (BA   6),   precunues  (BA  7),  inferior  semi-­‐lunar  lobule.  Additionally,  activation  was  found  in  the   right  culmen  (cerebellum),  MTG,  and  inferior  semi-­‐lunar  lobule.  Activation  patterns  are   shown  in  Figure  11.    

 

 

Figure  11.  Upscaling  &  Downscaling  versus  rest  (FDR  corrected  0.05)  t-­‐contrast  vector  [0,  0,  0.5,  0,  0.5]  

(20)

Upscaling  &  Downscaling  versus  Testing    

This   analysis   compared   the   Up-­‐   and   Downscaling   conditions   versus   Testing   (Figure  12).  There  was  little  difference  found.  However,  after  changing  the  significance   level  to  uncorrected  p<0.05  with  an  extended  voxel  treshold  of  133  a  pattern  of  frontal   and  temporoparietal  areas  became  visible.  This  pattern  included  areas  left  hemisphere   areas   as   the   medial   frontal   gyrus   (BA   8),   superior   frontal   gyrus   (BA   8/10),   middle   frontal   gyrus   (BA   10),   insula   (BA   13),   superior   temporal   gyrus   (BA   22).   Right   hemisphere   activations   included   superior   frontal   gyrus   (BA   8),   cingulate   gyrus   and   postcentral   gyrus.   It   has   to   be   investigated   whether   additional   subject   data   will   also   show  these  effects  with  FDR  correction  enabled.    

 

 

Figure  12.  Up  &  Down  versus  testing  (uncorrected  p=  0.05  ext  voxel  treshold  of  133)     t-­‐contrast  vector  [0,  0,  0.5,  -­‐1,  0.5  ]  

 

Familiarization  versus  Visual  Observation    

  When   contrasting   the   Familiarization   versus   the   Visual   Observation,   which   is   a   replay  of  the  Familiarization  movement  traces,  activation  as  found  in  right  cerebellum   (culmen,   inferior   semi-­‐lunar   lobule),inferior   frontal   gyrus   (BA   9/44),   insula   lentiform   gyrus,  postcentral  gyrus.  And  recruited  areas  in  the  left  hemisphere  were  the  precentral   gyrus,  inferior  parietal  lobule  (BA  40),  inferior  frontal  gyrus  (BA  9/44),  insula,  lentiform   gyrus  and  cingulate  gyrus.    

 

 

(21)

Adaptation  versus  Visual  Observation  

Substracting   activation   of   the   visual   control   condition   from   the   adaptation   conditions  (testing,  Upscaling  and  Downscaling)  revealed  activation  in  precentral  gyrus,   middle   frontal   gyrus   (BA   6),   Culmen,   inferior   semi-­‐lunar   lobule,   cingulate   gyrus   and   putamen  (Figure  13).    

 

 

Figure  14.  Adaptation  _  visual  observation  (FDR  corrected  0.05)     t-­‐contrast  vector  [  0,  -­‐1,  0.33,  0.33,  0.33]  

 

Visual  Observation  condition  versus  rest    

Finally,   during   the   visual   observation   condition   in   which   no   movements   were   done,   dominant   activation   was   shown   in   bilateral   temporal   lobe   (BA   21/   22)   and   occipital   lobe   (BA   18/   37).     High   significantly   activated   areas   were   middle   temporal   gyrus  (MTG),  ITG,  MOG,  precentral  gyrus,  precuneus,  middle  and  inferior  frontal  gyrus   and  inferior  parietal  lobe.  Activation  patterns  are  visualized  in  Figure  9.    

   

 

(22)

Discussion    

 

This  was  to  our  knowledge  the  first  imaging  study  to  investigate  the  effects  of  Up-­‐   and  Downscaling  of  feedback  of  finger  movements.  The  results  revealed  that  during  the   Familiarization   condition,   subjects   learned   to   move   the   cursor   to   the   target   location.   However,   introduction   of   Up-­‐   and   Downscaling   gains   around   the   reference   gain   influenced   the   movements.   Movements   became   slower   as   revealed   by   the   decrease   of   peak   flexing   velocity   over   conditions.   Additionally,   movement   errors   increased   over   conditions,   as   more   flankering   Up-­‐   and   Downscaling   gains   were   introduced.   These   findings   show   that   humans   react   to   the   introduction   of   changing   visual   feedback   by   adapting  their  behavior  to  move  more  cautiously.    

Furthermore,   movements   performed   during   the   Upcaling   and   Downscaling   conditions   showed   undershoots   and   overshoots   in   movement   extend   respectively.   Analyses   between   the   different   gains   pointed   out   that   movement   error   was   increased   for  the  Upscaling  and  Downscaling  gains  versus  the  reference  gain.  Peak  flexing  velocity   increased   with   increasing   visuomotor   gain   factor.   Differences   in   movement   error   between   target   distances   were   only   visible   during   the   reference   gain.   There   are   no   differences   found   in   movement   errors   between   targets   while   the   visuomotor   scaling   gains  were  used.  Hence,  the  performance  of  movement  extent  during  visuomotor  scaling   gains  was  impaired  regardless  which  target  the  subjects  had  to  reach  for.  However,  peak   flexing  velocity  did  differ  between  the  targets  for  all  scaled  gains.  The  described  findings   pinpoint   the   fact   that   visuomotor   feedback   scaling   only   can   manipulate   finger   movements.  Even  when  subjects  tried  to  correct  for  the  undershoot  errors  they  made  in   the   Downscaling   condition,   they   were   not   able   to   adapt   entirely   during   the   trials   and   also  not  during  the  entire  experiment.    Concluding,  due  to  the  inability  to  adapt  to  the   errors  in  the  movements,  there  was  no  learning  effect  of  the  scaled  gains  found  during   the   experiment.   These   results   are   in   line   with   the   study   of   Krakauer   and   colleagues   (Krakauer   et   al.,   2003)   who   also   showed   greater   movement   extend   and   peak   flexing   velocity   for   adaptation   to   gain   factors.   Additionally,   their   subjects   could   not   adapt   completely  to  the  new  gain  factor,  because  of  the  changing  of  the  gain  factor  every  16   movements.   However,   they   showed   a   small   rapid   adaptation   however   not   completely,   whereas  in  our  study  subjects  showed  no  adaptation  at  all.  

(23)

With  respect  to  the  first  data  of  the  fMRI  part  of  this  research  project,  activation   patterns   of   the   Familiarization   condition   showed   as   expected   activity   in   the   motor   regions,  left  cerebellum,  parietal  areas,  basal  ganglia  as  well  as  visual  areas  activation.   This  is  in  line  with  earlier  research  on  simple  finger  movements  (Boecker  et  al,  1994;   Ueno  et  al,  2010).    However,  activations  were  mostly  bilateral  instead  of  contra  laterally   to  the  movement,  also  in  motor  regions.  It  may  be  argued  that  the  network  activated  was   more  due  to  cognition  rather  than  just  the  effect  of  the  motor  task  in  the  Familiarization   condition.   In   the   visual   observation   condition,   which   was   a   control   condition   without   movements,   visual   areas   such   as   the   V4,   middle   temporal   and   occipital   gyrus   were   recruited.  In  addition  to  the  visual  areas,  some  frontal  activation  and  parietal  areas  were   also  observed.  The  activated  network  included  some  motor  imagery  areas,  such  as  the   inferior  frontal  cortex  and  somatosensory  cortex  (Ueno  et  al,  2010).      

The   activation   in   the   cerebellum   and   motor   areas   found   in   the   Upscaling,   Downscaling   and   Testing   conditions,   were   as   expected   stronger   activated   contra   laterally   to   the   movement.   Additionally,   other   areas   as   the   putamen,   insula   and   thalamus,   also   recruited   during   these   conditions,   were   activated   bilaterally.   This   was   also   found   by   Krakauer   and   colleagues   (Krakauer   et   al;   2003)   who   reported   putamen   and   contralateral   cerebellum   activation   during   visuomotor   scaling.   Nonetheless,   activation   only   during   the   Upscaling   and   Downscaling   did   not   differ   much   from   the   contrast   with   the   Testing   block.     After   contrasting   the   Upscaling   and   Downscaling   conditions   versus   Testing   activation,   almost   no   activation   was   left.   After   changing   the   significance   level   to   uncorrected   an   interesting   network   was   exposed,   including   the   insula,   frontal   and   temporoparietal   areas.   This   network   resembles   the   salient   distinguishing   network   described   by   Menon   and   Uddin   (Menon   and   Uddin,   2010).   However,   as   it   was   not   corrected   for   multiple   comparisons,   this   finding   should   be   regarded   cautiously.   Finally,   after   contrasting   the   Familiarization   condition   with   the   visual   observation   control   condition,   more   cerebellum   and   inferior   frontal   gyrus   activation  was  visible  than  in  during  only  the  Familiarization  condition.    

Concluding,   this   study   showed   that   a   change   of   the   visuomotor   gain   factor   by   visual   feedback   scaling   has   a   great   impact   on   the   performance   of   a   finger   movement   task.  Continuously  switching  back  to  the  reference  gain  factor  and  randomizing  gains  as   well   as   the   conditions,   kept   subjects   in   a   persistent   state   of   adaptation.   Therefore,   we   conclude   that   our   design   is   suitable   for   examining   brain   mechanisms   of   adaptation   to  

(24)

new   visuomotor   gain   factors.   Neural   correlates   of   visuomotor   gains   show   as   expected   motor  areas,  visual  areas  and  even  areas  of  salient  distinguish  functioning.  

Limitations  and  suggestions  for  further  research  

For   this   report   several   things   could   not   be   taken   into   account   yet,   because   the   analyses  are  still  ongoing.  For  the  experiment  more  subjects  were  already  scanned  and   some   more   might   be   following,   which   could   increase   the   power   of   our   results.   Also,   electromyography   (EMG)   was   measured   during   the   experiment   and   is   currently   analyzed.   With   these   data   we   can   control   for   muscle   movements   in   the   visual   control   condition.  Furthermore,  the  behavioral  data  of  the  fMRI  session  and  the  activation  from   the   first   level   analysis   can   be   correlated   to   get   more   insights   about   the   neural   correlations  of  the  changes  in  behavior  we  observed  in  this  experiment.  

(25)

Acknowledgements  

 

I  would  like  to  thank  a  couple  of  people  who  have  been  a  great  help  during  my   project.  First  of  all  I  would  like  to  thank  Kynan  Eng  for  introducing  me  and  letting  me   taking  part  in  this  project  and  the  rehabilitation  research  group.  I  would  like  to  thank   Kynan,   Marie-­‐Claude   Hepp-­‐Reymond   and   Daniel   Kiper   for   the   great   help,   valuable   feedback,  tips  and  knowledge  during  this  project.  I  would  like  to  thank  Lars  Michels  for   the  great  help  during  planning,  scanning  and  analyses  of  the  fMRI  experiment.  Most  of   all  I  would  like  to  thank  Johannes  Brand:  It  was  really  great  working  together.  Thank  you   for  the  valuable  feedback  and  knowledge  you  brought  me.    I  would  like  to  thank  the  rest   of  the  rehabilitation  group  for  the  advices  during  meetings.  Additionally,  I  would  like  to   thank   the   Institute   for   Neuroinformatics   in   general   for   its   great   hospitable   ,   the   good   atmosphere,  what  made  my  stay  there  great.  Finally,  of  course  I  would  like  to  thank  all   my  other  co-­‐students  who  made  my  stay  in  Zurich  wonderful.    

(26)

References  

 

Boecker,  H.,  Kleinschmidt,  A.,  Requardt,  M.,  Hanicke,  W.,  Merboldt,  K.D.  and  Frahm,  J.   (1994).  Functional  cooperativity  of  human  cortical  motor  areas  during  self-­‐ placed  simple  finger  movements.  A  high-­‐resolution  MRI  study.  Brain,  117,  6,   1231-­‐1239.  

 

Desmurget,  M.  and  Grafton,  S.  (2000).  Forward  modeling  allows  feedback  control  for  fast   reaching  movements.  Trends  Cogn  Sci,  4,  423-­‐431.    

 

Diedrichsen,  J.,  Hashambhoy,  Y.,  Rane,  T.  and  Shadmehr,  R.  (2005).  Neural  Correlates  of   Reach  Errors.  The  Journal  of  Neuroscience,  2005,  25,  9919  -­‐9931.  

 

Krakauer,  J.W.  (2009).  Motor  learning  and  consolidation:  the  case  of  visuomotor   rotation.  Adv  Exp  Med  Biol,  629,  405-­‐421.  

 

Krakauer,  J.W.,  Pine,  Z.M.,  Ghilardi,  M-­‐F.  and  Chez,  C.  (2000).  Learning  of  visuomotor   transformations  for  vectorial  planning  of  reaching  trajectories.  The  Journal  of  

neuroscience  :  the  official  journal  of  the  Society  for  Neuroscience,  20,  8916-­‐24.  

 

Krakauer,  J.W.,  Ghilardi,  M-­‐F.,  Mentis,  M.,  Barnes,  A.,  Veytsman,  M.,  Eidelberg,  D.,  and   Ghez,  C.  (2004).  Differential  cortical  and  subcortical  activations  in  learning   rotations  and  gains  for  reaching:  a  PET  study.  Journal  of  neurophysiology,  91,   924-­‐933.  

 

Mazzoni,  P.  and  J.W.  Krakauer  (2006).  An  Implicit  Plan  Overrides  an  Explicit  Strategy   during  Visuomotor  Adaptation.  Journal  of  Neurophysiology,  26,  3642-­‐3645.    

Menon,  V.  and  Udding,  L.Q.  (2010).  Saliency,  switching,  attention  and  control:  a  network   model  of  insula  function.  Brain  Struct  Funct,  214,  655-­‐667.    

 

Oldfield,  R.C.  (1971).  The  assessment  and  analysis  of  handedness:  the   Edinburghinventory.  Neuropsychologia,  9,  97–113.  

(27)

 

Pearson,  T.S.,  J.W.  Krakauer,  and  P.  Mazzoni  (2010).  Learning  Not  to  Generalize  :  Modular  

Adaptation  of  Visuomotor  Gain.  New  York:  2938-­‐295  

 

Ueno,  T.,  Inoue,  M.,  Matsuoka,  T.,  Abe,  T.,  Maeda,  H.  and  Morita,  K.  (2010).  Comparison   between  real  sequential  finger  and  imagery  movements:  An  fMRI  study   revisited.    

(28)

APPENDIX  

Additional  results  behavioral  experiment  

 

Table  A1.  Statistical  differences  in  Means  and  Standard  Deviations  of  (A)  Movement  error  (ME)  and  (B)   Peak   Flexing   Velocity   (PFV)   to   the   three   different   targets   (T1,   T2,   T3)   from   the   Familirization   (fam),   Testing   (test)   and   Adaptation   (adap).   Non   parametric   tests   were   performed,   corrected   for   multiple   comparison.  *  indicate  the  data  was  normal  distributed,  and  repeated  measures  ANOVA  were  performed.   Fam-­‐test-­‐adap   indicates   difference   between   3   conditions   ((   -­‐   )   indicates   difference   between).     n.s.   =   no   significant  difference  

 

A1.A Time  to  Target  

T1   T2   T3  

Condition Mean   STD   Mean   STD   Mean   STD  

fam-­‐test-­‐ adap   n.s.   p<0.05   p<0.05*   n.s.   p<0.01   p<0.05   fam-­‐test   n.s.   p<0.01   n.s.   n.s.   p<0.01   n.s.   fam-­‐adap   n.s   n.s.   n.s.   n.s.   n.s.   n.s.   test-­‐adap   n.s.   n.s.   p<0.01*   n.s.   n.s   p<0.01    

A1.B Reaction  Time  

T1   T2   T3  

Condition Mean   STD   Mean   STD   Mean   STD  

fam-­‐test-­‐ adap   n.s.   p<0.01   n.s.   p<0.001   n.s.   p<0.01   fam-­‐test   n.s.   p<0.001   n.s.   p<0.01   n.s.   p<0.01   fam-­‐adap   n.s   p<0.001   n.s.   p<0.001   n.s.   n.s.   test-­‐adap   n.s.   p<0.05   p<0.01   p<0.05   p<0.01   p<0.01    

A1.C Time  to  Minimum  

T1   T2   T3  

Condition Mean   STD   Mean   STD   Mean   STD  

fam-­‐test-­‐ adap   n.s.   p<0.01   p<0.001   p<0.05   p<0.001   p<0.01   fam-­‐test   n.s.   n.s.   p<  0.05   n.s.   p<0.001   n.s.   fam-­‐adap   n.s   n.s.   p<0.01   p<0.01   p<0.001   n.s.   test-­‐adap   n.s.   n.s.   p<0.01   n.s.   p<0.001   p<0.01    

(29)

 

A1.D Mean  Flexing  Velocity  

T1   T2   T3  

Condition Mean   STD   Mean   STD   Mean   STD  

fam-­‐test-­‐

adap   n.s.   n.s.   P<0.01   n.s.   p<0.001   p<0.05  

fam-­‐test   n.s.   n.s.   n.s.   n.s.   p<0.001   n.s.  

fam-­‐adap   n.s   n.s.   P<0.01   n.s.   p<0.001   n.s.  

(30)

Table   A2.   Statistical   differences   in   Means   and   Standard   Deviations   of   (A)   Time   to   Target,   (B)   Reaction   Time,  (C)  Time  to  Minimum  and  (D)  Mean  Flexing  velocity  to  the  three  different  targets  (T1,  T2,  T3)    from   the   three   different   gains   Upscaling   (2),   Testing   (1)   and   Downscaling   (0.5).   Non   parametric   tests   were   performed,  corrected  for  multiple  comparison.  *  indicate  the  data  was  normal  distributed,  and  therefore   repeated  measures  ANOVA  were  performed.  0.5-­‐1-­‐2  indicates  difference  between  3  gains  ((  -­‐  )  indicates   difference  between).  n.s.  =  no  significant  difference.  X  indicates  not  a  possible  combination.  

 

A2.A   Time  to  Target  

  T1   T2   T3  

Gain   Mean   STD   Mean   STD   Mean   STD  

0.5-­‐1-­‐2   x   x   P<  0.001   n.s.   x   x  

0.5-­‐  1   x   x   x   n.s.   P<  0.01   P<0.01  

0.5  –  2   x   x   P<  0.01   n.s   x   x  

1-­‐2   P<  0.001   P<0.01   P<  0.001   n.s.   x   x  

 

A2.B Reaction  Time  

T1   T2   T3  

Gain Mean   STD   Mean   STD   Mean   STD  

0.5-­‐1-­‐2   x   x   P<0.05   n.s.   x   x  

0.5-­‐  1   x   x   n.s.   n.s.   n.s.   n.s.  

0.5  –  2   x   x   n.s.   n.s.   x   x  

1-­‐2   n.s.   n.s.   P<0.017   n.s.   x   x  

 

A2.C Time  to  Minimum  

T1   T2   T3  

Gain Mean   STD   Mean   STD   Mean   STD  

0.5-­‐1-­‐2   x   x   p<0.001   p<0.001   x   x  

0.5-­‐  1   x   x   p<0.001   n.s.   p<0.001   n.s.  

0.5  –  2   x   x   p<0.001   p<0.01   x   x  

1-­‐2   n.s.   p<0.001   n.s.   p<0.001   x   x  

 

A2.D Mean  Flexing  Velocity  

T1   T2   T3  

Gain Mean   STD   Mean   STD   Mean   STD  

0.5-­‐1-­‐2   x   x   p<0.001   p<0.05   x   x  

0.5-­‐  1   x   x   p<0.001   n.s.   p<0.001   n.s.  

0.5  –  2   x   x   p<0.001   n.s.   x   x  

1-­‐2   n.s.   p<0.01   n.s.   p<0.01   x   x  

Referenties

GERELATEERDE DOCUMENTEN

Two of the most well- known among those arrested were sheikh Ali bin Khudayr al-Khudayr (b. 1968), both disciples of the late sheikh Hamoud bin Uqla al-Shuaybi, the most famous

Therefore, the nuchal translucency measurement should remain an integral part of prenatal screening in the current NIPT-era (Chapter 5).. When specific prenatal ultrasound

indicating that TDB cannot serve as EP agent.. The results suggest that the additive with B and N elements in molecular structure possesses better load-carrying

Investors based in an emerging market such as Brazil face more exchange rate risk because their home currency is not as stable as those of developed countries but because of

Traces of recurrent jet activity is also observed when extended, low surface brightness emission with amorphous shape is associated with a CSS, GPS or HFP sources (Baum et al.

H1: Politicians perceive fake news and data harvesting on Facebook to be detrimental to public values which inspires government policy debate on safeguarding through a mix

The goal of this study was to develop a microfluidic platform able to generate gradients of compressive mechanical stimulation and multi-modal actuation patterns on an engineered

brunneum Cb15-III for A&amp;K strategy against the major subterranean termite pest species (Microtermes sp.) sampled in cocoa agroforests (Chapter six) showed no