• No results found

EV Ecosystem Business Models for urban areas in emerging economies

N/A
N/A
Protected

Academic year: 2021

Share "EV Ecosystem Business Models for urban areas in emerging economies"

Copied!
100
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

Bachelor  Thesis  Business  Studies  

 

EV  Ecosystem  Business  Models  for  

Urban  Areas  in  Emerging  Economies

 

 

University  of  Amsterdam  

Faculty  of  Economics  and  Business  

01-­‐07-­‐2013  

 

 

 

 

 

           

 

 

Author:  

 Wybren  van  der  Vaart  

   

 

 0580910  

 

Supervisor:     René  Bohnsack  MLitt  

(2)

Abstract  

The   coming   twenty   years   the   GDP   of   emerging   economies   is   set   to   grow   rapidly.   People   living   in   cities   will   account   for   the   majority   of   this   growth.   The   income   elasticity  of  vehicle  ownership  for  people  entering  the  middle  class  is  2.0.  In  other   words  vehicle  ownership  will  grow  twice  as  per  capita  income.  With  this  increase  of   vehicle   ownership   emissions   are   also   set   to   increase   creating   dangerously   high   levels  of  air  pollution  in  cities.  Electric  Vehicles  (EVs)  can  provide  a  solution  to  the   problem  with  emissions  while  at  the  same  time  being  able  to  fulfil  the  demand  for   vehicles.   The   EV   is   not   a   standalone   product   however   and   needs   an   ecosystem   to   function  in  properly.  This  ecosystem  consists  of  charging  infrastructure,  smart  grids   and  other  supporting  technologies.  The  development  of  sustainable  business  models   (BMs)   is   imperative   for   the   functioning   and   commercial   viability   of   these   EV   ecosystems.   The   research   question   deals   with   this   issue   and   is   formulated   as   follows:   What   are   appropriate   EV   ecosystem   business   models   for   urban   areas   in   emerging  markets?      

  The   following   methodology   was   used   to   answer   this   research   question.   A  

literature   review   was   conducted   on   the   subjects   of   BM’s,   BM   innovation,   EV   ecosystems   and   BMs   for   EV   ecosystems.   Following   this   a   theoretical   model   combining  the  EV  ecosystem,  a  BM,  and  a  model  for  BM  innovation  was  introduced   for   a   methodological   way   of   building   new   BMs   for   EV   ecosystems.   Five   qualitative   semi-­‐structured   interviews   were   conducted   with   experts   on   EV   ecosystems   from   five   different   countries.   Data   triangulation   was   used   to   lend   extra   validity   to   the   results.   The   defined   parameters   for   EV   ecosystems   were   then   used   to   conduct   general   morphological   analysis   (GMA).   The   GMA   is   used   to   methodologically   build   BMs  for  EV  markets.    

  Regarding  the  response  to  the  research  question  we  found  the  following.  EV  

markets  as  well  as  EV  ecosystems  have  hardly  taken  off  in  emerging  economies,  with   the  notable  exception  of  China.  Market  players  not  just  in  emerging  economies,  but   all  over  the  world,  are  looking  for  BMs  for  the  EV  ecosystem.  We  found  that  a  holistic   and   integrated   approach   is   imperative.   All   players   and   stakeholders   of   the   EV   ecosystem  should  be  involved  in  this  approach.  When  EVs  function  as  an  integrator   between   the   grid,   renewable   energies   and   other   complimentary   technologies,   the   largest   amount   of   value   will   be   added.   From   this   point   of   view   BMs   will   have   the   greatest  chance  to  succeed.    

(3)

  We  draw  the  following  conclusions  regarding  the  research  question.  Having   asked  our  selves  this  research  question  is  a  valid  one.  However  during  our  research   it   became   clear   that   the   role   of   the   government   and   other   players   is   just   as   important   in   the   process   of   creating   an   EV   ecosystem.   It   is   especially   relevant   for   creating   the   right   framework   conditions   for   the   market   players   to   flourish   and   to   devise   sustainable   BMs   for   EV   ecosystems.   We   have   created   an   initial   framework   that   works   from   the   cooperation   between   all   the   stakeholders   towards   individual   BMs.  In  the  end  creating  new  BMs  is  more  like  an  art  than  a  science.  The  field  of  EV   and   EV   ecosystems   needs   visionary   people   who   dare   to   dream   and   envision   more   sustainable  ways  of  doing  business  for  the  transportation  sector.  We  hope  that  with   our   research   we   can   contribute   to   a   playing   field   in   which   these   individuals   and   organisations  can  flourish  and  take  the  market  for  EV  and  EV  ecosystems  forward.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)

Table  of  Contents  

 

1. EV  Ecosystems  in  Urban  Emerging  Economies   2. Literature  Review  

2.1.    Background:  Electric  Vehicles  (EVs)     2.2.     The  EV  ecosystem  

    2.2.1.    Charging  Infrastructure  

    2.2.2.  Physical  Infrastructure  Management  and  Maintenance  

    2.2.3.  Back  Office  Systems  and  Customer  Service       2.2.4.  Smart  Grids,  V2G  and  V2X  

  2.3.     Actors  and  Stakeholders  in  the  EV  Ecosystem  

2.3.1.  Actors  and  Stakeholders  in  the  Charging  Infrastructure                                    Sphere  

2.3.2. Actors  and  Stakeholders  in  the  Utilities  Sphere   2.3.3. The  Role  of  the  Government  in  the  EV  ecosystem  

2.4. Business  Models  (BMs)  

2.4.1. The  Concept  and  Definition  of  Business  Models   2.4.2. Business  Model  Innovation  

2.5. EV  Ecosystems  Business  Models  

2.6. Combining   a   BM   with   the   EV   Ecosystem   in   a   Theoretical   Framework  

3.        Methodology  

3.1.  Research  Design   3.2.  Data  Collection  

3.3.  Data  Analysis  and  Reporting   4.     Results  

    4.1.1.  Findings  on  the  EV  Ecosystems  Market  in  China  

    4.1.2.  Triangulation  of  the  Data  on  the  Chinese  EV  Ecosystems  

      Market  

    4.1.3.  Findings  on  the  EV  Ecosystems  Market  in  Brazil  

    4.1.4.  Triangulation  of  the  Data  on  the  Brazilian  EV  Ecosystems  

      Market  

    4.1.5.  Findings  on  the  EV  Ecosystems  Market  in  India  

(5)

      Market  

    4.1.7.  Findings  on  the  EV  Ecosystems  Market  in  South  Africa       4.1.8.  Triangulation  of  the  Data  on  the  South  African  EV  

Ecosystems  Market     4.2.  Findings  Organised  by  Category  

    4.2.1.  Findings  on  the  Vehicle  and  the  Battery       4.2.2.  Findings  on  the  Charing  Infrastructure  

    4.2.3.  Findings  on  Grid  Integration  and  Systems  Services  

    4.2.4.  Findings  on  Payments  Systems  

    4.2.5.  Additional  Findings  

  4.3.  Conducting  General  Morphological  Analyses  

    4.3.1.  General  Morphological  Analysis  1  

    4.3.2.  General  Morphological  Analysis  –  Systems  Services  for  

      Home  Charging  

    4.3.3.  General  Morphological  Analysis  –  Systems  Services  for  

      Semi-­‐Public  Charging  

5.     Discussion  

  5.1.  General  Discussion  

  5.2.  Three  Possible  BMs  for  EV  Ecosystems  in  Urban  Areas  in  Emerging                            Economies  

    5.2.1.  The  Private  Model       5.2.2.  The  B2B  Model  

    5.2.3.  The  Easy  Access  Model   6.  Conclusion     I.  References   II.  Appendix                      

(6)

   

Introduction    

1.  EV  Ecosystems  in  Urban  Emerging  Economies  

Due  to  the  continued  and  projected  future  economic  growth  of  emerging  economies   –   especially   the   Asian   countries   –   and   the   high   projected   growth   in   vehicle  

ownership,   energy   demand   and   C02  emissions,   new   forms   of   non-­‐fossil   fuel   based  

modes  of  transportation  need  to  be  explored.  Cities  in  emerging  economies  are  set   to   grow   rapidly.   To   prevent   dangerously   high   levels   of   air   pollution   electric   transportation  could  provide  a  sustainable  solution  to  these  issues.  This  paper  seeks   to  explore  the  possibilities  of  making  urban  areas  in  emerging  economies  ready  for   the  full-­‐scale  introduction  of  electric  vehicles  (EV’s).  

  EV’s   are   not   stand-­‐alone   products.   They   need   an   extended   and   often  

complicated   ecosystem   to   function   properly.   The   International   Energy   Agency   (2011)   has   defined   an   EV   ecosystem   as   a   “total   environment   to   support   mass   operation  of  plug-­‐in  electric  vehicles  (PEVs)”.  This  involves  hard  infrastructure  such   as   battery   recharging   infrastructure   and   smart-­‐grids   alongside   soft   infrastructure   such  as  business  models,  law  and  policy.  As  the  International  Energy  Agency  (2011)   says  it  requires  alignment  between  all  the  different  stakeholders  in  this  model,  such   as  governments,  municipalities,  energy  companies  and  the  automotive  industry,  to   create  such  an  ecosystem  in  an  urban  area.  Everything  stands  or  falls  however  with   a  good  business  model  for  the  EV  ecosystem.  The  various  stakeholders  need  to  be   convinced  of  the  value  creation  potential  of  the  innovation  or  emerging  technology.   If  the  entrepreneur  or  the  company  will  not  be  able  to  justify  a  value  creation  model   stakeholders  will  simply  not  invest  their  resources  in  a  new  project.  

The  research  question  for  this  paper  flows  forth  directly  from  this  challenge:   What   are   appropriate   EV   ecosystem   business   models   for   urban   areas   in   emerging   economies?      

 

2.1.  Background:  Electric  Vehicles  (EVs)    

Since   the   market   for   EVs   has   only   seriously   taken   off   a   couple   of   years   ago   the   literature  on  this  subject  is  still  fairly  limited.  This  does  not  mean  that  the  concept  of   a  vehicle  with  an  electric  powertrain  is  an  entirely  new  phenomenon.  In  the  thirties  

(7)

(Høyer,  2007).  During  the  mid  1830s  the  first  lightweight  electric  vehicles  appeared  

in   the   Netherlands,   the   UK   and   the   US.   In   the   beginning   of   the   20th   century   three  

types   of   cars   were   vying   for   market   control.   These   were   a   car   with   the   internal   combustion  engine  (ICE),  a  car  with  a  steam  engine  and  the  EV.  Development  of  the   ICE  and  low  fossil  fuel  prices  however  meant  that  all  other  forms  of  propulsion  in   road  vehicles  than  the  ICE  were  suspended  for  a  long  time.  Climate  change,  higher   prices   for   fossil   fuels   and   strict   new   emission   standards   however   prompted   car   manufacturers   again   to   go   in   search   for   and   develop   alternative   and   more   sustainable  powertrains  for  cars.  During  the  1990s  EVs  attracted  renewed  interest   from  car  manufacturers.  During  these  years  a  lot  of  money  was  spent  on  R&D  and  in   signalled  a  revival  of  the  EV.  

  The   revived   interest   in   EVs   as   alternative   to   the   ICE   was   mainly   due   to   a  

number  of  great  potential  benefits.  These  benefits  include  zero  emissions,  low  noise  

and   very   low   cost   to   run   the   EV   once   it   is   acquired.  However   if   EVs   are   truly   to  

become  successful  a  number  of  challenges  need  to  be  overcome.  Challenges  that  EVs  

have  been  coping  with  since  its  very  inception  in  1830.  

Most  of  these  drawbacks  that  EVs  are  experiencing  are  related  to  the  battery.   The  battery  pack  is  costly  and  only  has  capacity  to  drive  a  limited  distance.  Among   EV  drivers  this  is  famously  known  as  ‘range  anxiety’.  Furthermore  in  most  cases  it   takes   a   long   time   to   recharge   the   battery   and   the   performance   of   the   battery   will   diminish   after   long-­‐term   usage.   Besides   already   on   going   investments   in   R&D   to   improve  these  issues  concerning  the  battery  the  EV  needs  an  ecosystem  to  function   properly.   In   the   next   paragraphs   we   will   outline   the   different   parts   of   the   EV   ecosystem  in  greater  detail.    

 

2.2.  The  EV  Ecosystem    

Before  describing  the  EV  ecosystem  in  greater  detail  we  deem  it  necessary  to  first   briefly   describe   business   ecosystems   in   general   so   as   to   be   clear   what   a   business   ecosystem  entails.  The  term  ecosystem  in  combination  with  business  was  first  used   by  James  Moore  in  a  Harvard  Business  Review  Article  from  1993.  Moore  (1993)  uses   the  term  to  describe  the  interrelations  and  interactions  between  various  actors  and   stakeholders  in  the  field  of  business.  The  precise  definition  he  uses  is  as  follows:      

(8)

An   economic   community   supported   by   a   foundation   of   interacting   organizations   and   individuals—the   organisms   of   the   business   world.   The   economic   community   produces   goods   and   services   of   value   to   customers,   who  are  themselves  members  of  the  ecosystem.  The  member  organisms  also   include  suppliers,  lead  producers,  competitors,  and  other  stakeholders.  Over   time,  they  coevolve  their  capabilities  and  roles,  and  tend  to  align  themselves   with  the  directions  set  by  one  or  more  central  companies.  Those  companies   holding  leadership  roles  may  change  over  time,  but  the  function  of  ecosystem   leader   is   valued   by   the   community   because   it   enables   members   to   move   toward   shared   visions   to   align   their   investments,   and   to   find   mutually   supportive  roles.  (p.26)  

 

The   term   ecosystem   is   especially   applicable   in   the   case   of   the   EV   industry   for   the   great   interdependence   and   interrelatedness   that   is   present   among   the   different   actors   and   stakeholders.   Other   important   trademarks   of   a   business   ecosystem   are   that  the  different  organisms  or  actor  present  in  the  ecosystem  coevolve.  This  means   that  one  part  of  the  ecosystem  cannot  grow  or  change  with  the  other  parts  growing   or  changing  as  well.  Furthermore  it  can  be  noted  that  within  a  business  ecosystem   both  a  high  degree  of  cooperation  and  competition  are  simultaneously  present.    

As  previously  mentioned  in  the  introduction  the  EV  ecosystem  is  defined  as   follows  by  the  IEA  (2011):  “total  environment  to  support  mass  operation  of  plug-­‐in   electric   vehicles   (PEVs)”.     While   we   will   try   to   be   as   inclusive   as   possible   in   the   description   of   the   EV   ecosystem   we   will   maintain   a   strong   focus   on   the   EV   value   chain   throughout   this   article.   The   reason   for   doing   so   is   straightforward:   the   components  of  the  value  chain  ultimately  decide  what  value  propositions  and  hence   what  kind  of  business  models  are  most  appropriate  for  the  EV  ecosystem.   We  will   furthermore  focus  on  the  EV  ecosystems  and  not  include  the  EV  itself  and  the  OEM’s   in   this   paper   since   this   area   of   research   falls   outside   the   scope   of   the   research   question.   In   the   following   sections   we   will   outline   the   different   parts   of   the   EV   ecosystem  and  the  EV  value  chain.  

 

2.2.1.  Charging  Infrastructure  

To  charge  the  battery  of  the  EV  charging  infrastructure  and  technology  is  required.   At  present  three  different  methods  to  recharge  the  battery  pack  are  discussed.  The  

(9)

first   two   are   inductive   (wireless)   charging   and   conductive   (wired)   charging   (Kley,   Lerch,  &  Dallinger,  2011).  The  third  is  swapping  the  entire  battery  pack  at  a  specially   designed   station   (Better   Place,   2009).   At   present   the   most   prevalent   method   is   conductive   charging.   Within   the   charging   infrastructure   three   distinctions   can   be   made.    

  The   first   distinction   is   in   accessibility   of   the   charging   point.   The   charging  

point   can   be   found   on   private   domain,   public   domain,   or   semi-­‐public   domain.   On   private   domains   there   is   the   possibility   of   using   a   domestic   power   outlet   besides   installing  specialised  charging  points.  In  public  and  semi-­‐public  domains  specialised   charging  points  are  used.    

The  second  distinction  concerns  the  power  used  to  charge  the  battery.  This   influences   how   fast   a   battery   can   be   recharged.   Power   connections   usually   range   from   2,3   kW   in   domestic   power   outlets   to   11   kW   in   specialised   charging   points.   These  fall  in  the  category  1-­‐phase  and  the  speed  of  charging  is  normal.  One  step  up   from   this   are   the   so-­‐called   ‘fast   chargers’.   These   come   in   both   alternating   current   and  direct  current.  The  alternating  current  charging  points  deliver  11  or  22  kW  and   the  direct  current  fast  charger  delivers  50  kW  or  more  (Van  Woerkom  &  Hoekstra  

2012).    

  The   third   distinction   concerns   the   connection   from   the   vehicle   to   the  

charging  point.  The  connection  can  either  be  unidirectional,  from  grid  to  vehicle,  or   bidirectional,  both  from  grid  to  vehicle  and  from  vehicle  back  to  the  grid  (Kley  et  al.,   2011).  Not  only  can  the  vehicle  be  used  as  storage  capacity  for  clean  energy  to  serve   it   back   to   the   grid   (V2G)   it   can   also   be   used   to   directly   feed   offices   or   apartment   blocks  (V2X)  or  to  regulate  power  supply  for  the  entire  grid  (Tomic  &  Kempleton,   2007).  

 

2.2.2.  Physical  Infrastructure  Management  and  Maintenance  

The  charging  infrastructure  also  brings  along  a  number  of  other  components  in  the   EV   value   chain.   The   charging   infrastructure   needs   to   be   manufactured   in   the   first   place.   Secondly   it   needs   to   be   installed.   Finally   the   charging   infrastructure   also   needs  to  be  maintained  by  maintenance  companies.  In  practice  the  companies  that   have  installed  the  charging  point  often  do  the  maintenance.    

 

(10)

Integral   parts   of   the   charging   infrastructure   are   the   communication   interface   and   software.   These   information   technology   systems   are   used   for   various   different   purposes.  An  interface  is  needed  for  the  metering  of  the  energy  supply  to  the  car  and   in   the   case   of   V2G   a   smart   interface   is   needed   that   can   keep   track   of   the   energy   supply   in   both   directions.   Technology   and   software   are   needed   as   well   to   retrieve   the  information  for  billing  purposes  (Open  Charge  Point  Protocol,  2013).  In  the  case   EVs  will  be  part  of  a  smart  grid  a  smart  grid  interface  is  needed  as  well.  Last  but  not   least   it   is   important   that   the   various   different   software   systems   are   able   to   communicate  with  each  other.  This  is  called  network  management.  The  data  that  are   communicated  through  the  various  IT  systems  such  as  billing  data  or  metering  can   be  done  at  different  time  intervals.  This  can  be  done  at  the  end  of  a  period  or  a  real   time  data  stream  can  be  provided.    

  It   is   also   of   great   importance   that   a   back   office   system   is   in   place   to   help  

customers   whenever   there   are   problems   charging   at   a   charging   point.   Various   problems  can  arise.  The  power  connector  can  get  stuck  to  the  car,  a  charge  point  can   fail   to   charge   or   the   charge   point   can   fail   to   make   a   connection   with   the   car.   Whenever  such  a  problem  arises  immediate  support  is  needed  for  the  customer  in   the  form  of  back  office  or  direct  assistance.    

 

2.2.4.  Smart  Grids,  V2G  and  V2X    

As  already  briefly  mentioned  in  the  previous  section  about  charging  infrastructure   EVs   can   also   become   part   of   the   energy   networks   or   supply   system   or   serve   as   storage  capacity  for  renewable  energy  sources  and  supply  offices,  large  apartment   blocks   or   homes.   This   phenomenon   is   called   ‘vehicle   to   grid’   (V2G)   or   ‘vehicle   to   home’  (V2H)  or  when  the  vehicle  is  used  for  any  load  it  is  called  V2X.    

These   technologies   have   several   possible   applications.   For   single   EVs   three   distinct   applications   can   be   named.   They   can   provide   base   load   power,   peak   load   power  and  store  renewable  energy  sources.  For  large  fleets  of  EVs  there  is  another   application.  This  application  is  providing  regulation  services  to  the  grid  system  and   is   called   ancillary   services   (Tomic   &   Kempleton,   2007).   As   a   direct   consequence   using   EVs   for   ancillary   grid   services   is   mainly   useful   for   corporations   or   for   large   buildings.  These  technologies  will  be  part  of  so  called  smart  grids  where  there  is  a   bidirectional  flow  of  data  and  energy  in  order  to  ensure  an  as  efficient  as  possible   use  of  the  available  energy.  EVs  will  form  an  integral  part  of  these  smart  grids.    

(11)

 

   

2.3.  Actors  and  Stakeholders  in  the  EV  Ecosystem  

All  the  different  components  in  the  EV  ecosystem  as  described  are  being  provided   for   and   used   by   a   host   of   different   actors   and   stakeholders.   Different   reports   by   consultancy   firms   (Accenture,   2011;   Ernst   &   Young   2011;   McKinsey,   2009)   have   broadly  identified  four  different  spheres  or  industries  in  the  EV  ecosystems  in  which   the  stakeholders  and  actors  reside.  The  first  sphere  identified  is  the  OEM  sphere  or   the   sphere   of   the   car   manufacturers.   The   second   sphere   is   the   charging   infrastructure  sphere.  The  third  sphere  identified  is  the  utility  sphere  and  the  fourth   sphere  mentioned  is  the  battery  sphere.  As  mentioned  before  we  will  limit  ourselves   to  the  spheres  of  the  utilities  and  the  charging  infrastructure.  We  will  not  concern   our  selves  with  the  OEM  sphere  because  we  will  focus  on  the  ecosystem  and  not  on   the   manufacturers   of   the   EVs   and   the   EVs   themselves.   In   the   following   part   a   detailed  description  and  role  of  each  actor  in  the  EV  ecosystem  will  be  given.  

 

2.3.1.  Actors  and  Stakeholders  in  the  Charging  Infrastructure  Sphere  

The  charging  infrastructure  sphere  has  a  number  of  actors  residing  in  it.  First  of  all   there   are   the   manufacturers   of   the   charging   infrastructure   and   technologies.   Secondly   there   are   the   firms   that   install   the   charging   infrastructure.   Thirdly   there   are   the   firms   that   maintain   the   charging   infrastructure   although   in   practice   this   is   often   done   by   the   firms   that   have   installed   the   infrastructure.   The   charging   infrastructure   or   charging   points   as   they   are   often   called   need   to   be   operated   as   well.  This  happens  by  the  charging  infrastructure  operators  (Ernst  &  Young,  2011).   These   are   also   called   mobility   service   providers.   Finally   there   are   the   IT   service   systems  providers  that  ensure  the  flow  of  data  between  the  charging  infrastructure   and  the  car  and  vice  versa  for  billing  and  a  variety  of  other  purposes  that  have  been   explained  in  previous  sections.    

 

2.3.2.  Actors  and  Stakeholders  in  the  Utilities  Sphere  

In   the   utility   sphere   a   number   of   different   actors   and   stakeholder   operate.   The   charging  infrastructure  is  connected  to  the  energy  grid.  The  so-­‐called  grid  operator   operates   the   energy   grid.   The   energy   supplied   through   the   grid   and   to   the   vehicle  

(12)

can  ‘change  hands’  a  number  of  times  before  it  actually  reaches  the  vehicle.  In  the   energy  market  usually  a  number  of  actors  are  active.  Energy  production  companies   produce  the  energy  and  in  some  cases  sell  it  directly  to  the  client  as  well.  More  often   though   energy   traders   and   retailers   buy   the   energy   from   the   producers   before   supplying  it  to  the  client.    

 

2.3.3.  The  Role  of  the  Government  in  the  EV  ecosystem  

Large   parts   of   the   EV   Ecosystem   will   be   present   in   the   public   rather   than   private   space.  This  automatically  means  involvement  of  the  national  and  local  governments.   In  the  next  paragraph  we  will  briefly  outline  the  different  roles  the  local  and  national   governments  can  play  in  the  EV  ecosystem.    

  One  of  the  most  obvious  roles  a  national  or  local  government  can  play  is  by  

stimulating  the  EV  ecosystem  through  various  different  measures.  These  stimulation   measures   usually   involve   subsidies   or   protection   in   one   form   or   another.   Direct   stimulation  can  be  achieved  by  subsidizing  the  electricity  from  the  charging  points.   Another  form  of  direct  stimulation  is  for  local  governments  to  install  and  exploit  the   charging   infrastructure   in   public   space   (Vollers,   2013).   A   measure   introduced   in   Amsterdam   to   stimulate   the   use   of   EVs   is   to   grant   them   free   parking   space   where   normal  ICE  vehicles  are  to  pay  when  they  want  to  park.  Indirect  stimulation  can  be   achieved  by  increasing  taxes  on  cars  that  run  on  fossil  fuels  and  to  increase  taxes  the   fuels   that   these   cars   run   on.   Another   form   of   indirect   stimulation   is   to   subsidise   research   and   development   in   the   EV   industry   and   in   particular   subsidies   for   recharging   technology   and   batteries.   Though   we   do   not   advocate   the   use   of   subsidies   for   reasons   mentioned   in   previous   sections   we   do   acknowledge   the   fact   that  they  can  be  very  useful  in  the  start-­‐up  phase  of  a  new  industry.    

  Another   role   the   government   can   play   has   been   discussed   in   the   section  

about  utilities.  Utilities  are  often  partially  or  in  some  countries  completely  owned  by   the   government.   When   this   is   the   case   the   government   is   automatically   more   involved  in  the  EV  ecosystem  than  in  more  deregulated  markets.    

 

 

2.4.  Business  Models  

2.4.1.  The  Concept  and  Definition  of  Business  Models  

The  academic  field  of  business  model  (BM)  study  is  itself  a  young  field  to  begin  with.   Various  authors  (e.g.  Morris  et  al,  2002;  Schweizer,  2005)  agree  on  the  fact  that  the  

(13)

field   is   still   rather   undeveloped   despite   the   fact   that   in   management   and   entrepreneurial   circles   BM’s   are   widely   used.   To   start   with   an   overview   of   what   business   models   exactly   entail   a   proper   definition   is   necessary.   This   is   where   the   first  challenge  arises.  Throughout  the  literature  authors  have  defined  the  concept  of   business  models  differently  and  also  agree  on  the  fact  that  there  is  not  one  generally   accepted  definition  of  the  BM  (e.g.  Osterwalder,  Pigneur  &  Tucci,  2005;  Zott,  Amit  &   Massa,  2011).  Zott  et  al.  (2011)  also  observe  that  the  literature  is  developing  in  silos.   They  furthermore  observe  that  researchers  often  use  idiosyncratic  definitions  that   fit   the   purpose   of   their   research.   As   a   general   result   cumulative   progress   is   hampered.    

Furthermore   the   conceptualisation   of   the   term   BM   differs   tremendously   among   various   authors.   Zott   et   al.   (2011)   and   Osterwalder   et   al.   (2005)   are   two   examples  of  authors  that  have  tried  to  explain  the  various  different  concepts  used  in   the   literature   on   BM’s.   Osterwalder   et   al.   (2005)   claim   that   a   division   in   the   literature   can   be   made   among   authors   that   use   the   term   BM   to   refer   to   the   way   a   company   does   business   (e.g.   Galper,   2001;   Gebauer   &   Ginsburg   2003)   and   other   authors  that  focus  on  the  model  aspect  (e.g.  Gordijn  2002;  Osterwalder,  2004).    

Osterwalder  et  al.  (2005)  go  on  to  claim  that  a  lot  of  misunderstanding  and   confusion  arises  because  of  the  before  mentioned  problem  of  conceptualisation  and   identify  three  groups  of  authors  within  the  group  that  focuses  on  the  model  aspect   that   each   describes   the   BM   in   a   different   way.   The   first   group   describes   the   BM   concept  as  an  abstract  overarching  concept  to  describe  real  world  businesses.  The   second   group   describes   different   abstract   business   models   that   correspond   with   a   group  of  businesses  with  similar  characteristics.  The  third  group  describes  aspects   of   real   world   business   model   or   a   complete   conceptualisation   of   a   real   world   business  model.    

  Zott  et  al.  (2011)  say  that  despite  the  differences  in  conceptualisation  among  

the   various   authors   four   different   emerging   themes   can   be   discovered   in   the   literature   about   BM’s.   The   first   theme   is   that   the   BM   is   identified   as   a   new   unit   of   analysis   that   is   distinct   from   the   product,   firm,   industry,   or   network.   The   second   theme   they   mention   is   that   BM’s   emphasize   a   system-­‐level,   holistic   approach   to   explain  how  firm’s  do  business.  The  third  emerging  theme  is  that  the  activities  of  a   firm  and  its  web  of  partners  play  an  important  role  in  the  various  BM  concepts  that  

(14)

have   been   proposed.   The   fourth   and   last   theme   identified   by   the   authors   is   that   business  models  try  to  explain  both  value  creation  and  value  capture.    

  Shafer,   Smith   &   Linder   (2005)   have   extensively   studied   the   different  

definitions   available   within   the   literature   on   BM’s.   With   the   help   of   a   so-­‐called   affinity  diagram  (Pyzdek,  2003)  they  have  identified  four  categories  that  were  most   common  in  all  the  different  definitions  used  in  the  BM  literature.  These  categories   are   strategic   choices,   creating   value,   capturing   value   and   the   value   network.   They   have   used   these   four   categories   in   combination   with   the   meaning   of   the   word   business,  the  meaning  of  the  word  model,  and  definitions  coined  in  previous  articles   to   construct   a   new   definition.   The   definition   of   a   BM   by   Shafer   et   al.   (2005)   is   as   follows:  “a  representation  of  a  firm’s  underlying  core  logic  and  strategic  choices  for   creating  and  capturing  value  within  a  value  network”.  

Osterwalder  et  al.  (2005)  have  also  done  an  extensive  study  of  the  different   definitions   available   in   BM   literature.   From   this   study   they   have   come   up   with   a   number  of  building  blocks  that  have  emerged  from  the  literature  they  have  studied   and  that  are  mentioned  by  at  least  two  different  authors.  Furthermore  they  have  left   out   all   the   elements   related   to   competition   and   to   BM   implementation.   They   have   done  this  because  these  concepts  are  related  but  not  an  intrinsic  part  of  the  model   itself.  With  these  different  building  blocks  Osterwalder  et  al.  (2005)  have  come  up   with  the  following  definition:    

A   business   model   is   a   conceptual   tool   that   contains   a   set   of   elements   and   their  relationships  and  allows  expressing  the  business  logic  of  a  specific  firm   it  is  a  description  of  the  value  a  company  offers  to  one  or  several  segments  of   customers  and  of  the  architecture  of  the  firm  and  its  network  of  partners  for   creating,   marketing,   and   delivering   this   value   and   relationship   capital,   to   generate  profitable  and  sustainable  revenue  streams.    

 

It  follows  explicitly  and  implicitly  from  all  the  definitions  used  in  the  literature  on   BMs  as  summarized  by  Osterwalder  et  al.  (2005)  and  by  Shafer  et  al.  (2005)  that  in  a   business   model   at   least   the   following   three   components   are   found   (Doganova   and   Eyquem-­‐Renault,  2009):  

 

(15)

2. The  value  chain  configuration:  the  potential  possibilities  to  design  a  product   or  a  service  taking  into  account  all  the  different  stakeholders.  

3. Revenue  model:  how  do  we  make  money  from  our  product  or  service  or  in   essence  how  do  we  capture  the  value  that  we  have  created?  

 

2.4.2.  Business  Model  Innovation  

Taking   into   account   the   fact   that   the   research   question   deals   with   BM’s   for   an   entirely   new   technological   market   and   extended   technological   ecosystem   we   will   furthermore  review  the  literature  on  BM  innovation.  

  Chesbrough   and   Rosenbloom   (2002)   call   the   BM   concept   a   construct   that  

establishes   the   link   between   an   emergent   technology   and   its   potential   economic   value.   This   illustrates   the   importance   of   the   BM   concept   when   introducing   new   technology  to  the  market.  However   according   to   Kley   et   al.   (2011)   classic   types   of   BM’s  as  described  in  the  literature  cannot  be  applied  to  the  market  for  EV’s  and  EV   ecosystems   due   to   technological   restrictions.   Chamal   &   Caron   (2007)   say   that   it   is   very   important   for   companies   involved   in   technological   innovation   projects   to   be   able  to  imagine  the  value  creation  potential  sufficiently  early  in  an  environment  that   holds  a  lot  of  uncertainty,  both  on  the  technological  side  as  on  the  market  side.  They   go   on   to   say   that   successful   technological   innovations   have   more   often   than   not   innovated   on   their   business   models.   Casadesus   –   Masanell   and   Ricart   (2010)   say   something   in   similar   vein.   The   competitive   game   used   to   be   quite   straightforward   and   the   classical   BMs   functioned   well   enough   for   a   company   to   survive   and   to   sustain   competitive   advantage.   However   drivers   such   as   technological   change,   globalisation   and   deregulation   have   profoundly   altered   the   competitive   environment.  They  found  that  the  best  performing  and  fastest  growing  firms  in  this   new  landscape  are  firms  that  have  used  these  structural  changes  to  innovate  their   BMs.    

In  the  next  paragraph  we  will  review  the  extant  literature  on  business  model   innovation.   We   do   this   because   the   market   for   EV   ecosystems   is   a   young   and   undeveloped  one  and  there  is  still  a  lot  of  uncertainty  on  both  the  technological  side   as  well  as  on  the  market  side.  We  make  the  assumption  that  BM’s  for  EV  Ecosystems   will   change   and   develop   throughout   the   years,   especially   throughout   the   development  and  design  phase.  Therefore  BM  innovation  will  play  a  crucial  role  in   the  success  of  the  EV  ecosystems  and  EV  markets.    

(16)

  BM  innovation,  or  BM  change  and  BM  evolution  as  various  different  authors   also  call  it,  is  a  small  niche  within  the  field  of  BM  literature.  Just  like  the  entire  BM   field  this  is  a  young  and  a  relatively  undeveloped  area  of  research.  Existing  research   on   structured   methodological   approaches   for   BM   change   is   fragmented   (Pateli   &   Giaglis,  2005).  Various  authors  (Pateli  &  Giaglis,  2005;  Chesbrough,  2007;  Sosna  et   al.,   2010)   do   agree   on   a   number   of   points   however.   The   first   point   might   sound   obvious   but   deserves   mention   nonetheless.   They   all   mention   the   fact   that   BM   innovation  is  not  an  easy  issue  to  tackle  for  any  company.  Many  companies  are  very   rooted  in  their  BMs  and  will  invest  sooner  in  R&D  for  new  products  or  services  than   investing   in   changing   their   BMs.   All   authors   agree   on   the   fact   however   that   BM   innovation   is   more   important   than   just   inventing   a   new   technology   or   a   new   product.  A  new  BM  is  often  what  makes  or  breaks  a  product.  The  second  point  the   authors   agree   upon   is   that   one   of   the   main   tools   for   BM   innovation   is   simply   to   experiment.   Chesbrough   (2007)   explicitly   mentions   the   fact   that   experimenting   internally  with  new  BMs  is  the  way  to  go.  An  example  of  this  can  be  pilots  that  are   run  within  a  company  for  several  months  among  employees  to  test  the  marketability   of   a   new   product   or   service   or   combination   of   the   both.   Once   such   a   BM   seems   successful  it  can  be  deployed  on  a  wider  scale.  If  it  is  not  successful  the  new  BM  can   either   go   to   the   bin   or   the   company   can   choose   to   again   alter   it   and   to   keep   experimenting  with  it.  This  implicit  point  from  Chesbrough  (2007)  has  been  made   explicit  by  Sosna  et  al.  (2009)  when  they  say  that  BM  innovation  is  a  trial  and  error   process.    

  Casadesus   –   Masanell   and   Ricart   (2010)   take   a   more   methodological  

approach  though.  They  say  that  there  is  no  clear  agreement  yet  about  the  distinctive   features   of   superior   BMs.   According   to   them   there   is   a   very   clear   reason   for   this   however.   The   reason   for   this   is   that   no   clear   distinction   is   made   between   the   different   constructs   involved   in   the   process   of   BM   innovation.   Three   different   constructs  can  be  named  in  the  process  of  BM  innovation.  The  first  is  strategy,  the   second  is  the  BM  itself  and  the  third  is  tactics.  Strategy  is  all  about  the  choice  of  BM   through   which   the   firm   will   compete.   BM   refers   to   the   logic   of   the   firm,   how   it   creates   and   captures   value.   Tactics   then   refers   to   the   residual   choices   that   are   present  and  that  a  firm  can  employ  because  a  particular  BM  is  chosen.   With   these   three   mentioned   constructs   an   integrative   framework   is   created   that   clearly   separates   the   three   mentioned   constructs   in   order   to   help   practitioners   find   new  

(17)

ways  to  compete  in  the  market  and  turn  a  profit.  The  authors  do  mention  the  fact   however   that   creating   new   BMs   is   closer   to   an   art   than   to   a   science   and   that   they   simply  hope  to  hand  practitioners  a  more  methodological  approach  in  creating  new  

BMs.   In   Fig.   1  the   framework   as   presented   by   Casadesus   –   Masanell   and   Ricart  

(2010)  is  shown.      

 

        Fig.  1,  source:  Casadesus  –  Masanell  and  Ricart  (2010)  

 

2.5.  EV  Ecosystems  Business  Models  

In  the  next  section  we  will  outline  the  different  business  models  that  are  being  used   at   the   moment   for   different   EV   ecosystems   around   the   world.   We   will   outline   the   different  value  chains  present  in  the  EV  ecosystem  and  explain  how  value  is  created   and  captured  by  the  different  actors.    

We  will  start  with  a  general  overview  of  the  entire  EV  ecosystem  value  chain  as   presented   by   Accenture   (2009)   in   their   report   “Betting   on   Science):   Disruptive   Technologies   in   Transport   Fuels”.   Accenture   (2009)   defines   three   different   industries   or   three   different   value   chains   that   have   to   merge   to   make   up   the   EV   ecosystem  or  electrification  value  chain  as  they  call  it.      

(18)

 

              Fig.  2,  source:  Accenture  Analysis  

 

The   three   value   chains   that   merge   in   the   EV   ecosystem   are   the   OEM   value   chain,  the  battery  value  chain  and  the  charging  infrastructure  value  chain.  A  report   by   Ernst   &   Young   (2011)   also   defines   a   number   of   industries   and   different   value   chains  in  the  EV  ecosystem.  Just  like  the  report  from  Accenture  (2009)  they  identify   the  OEM  value  chain  and  the  charging  infrastructure  value  chain.  Unlike  Accenture   (2009)   though   Ernst   &   Young   (2011)   do   not   recognise   the   battery   value   chain   as   separate   but   they   identify   another   value   chain,   which   they   dub   the   utilities   value   chain.  These  three  different  value  chains  or  spheres  as  they  call  them  revolve  around  

the  customer.  The  three  spheres  are  presented  in  Fig  4,  and  5.      

 

   

Figure  4,  source:  Ernst  &  Young:  Beyond  the  plug:  finding  value  in  the  emerging  electric  

(19)

 

Fig  5,  source:  source:  Ernst  &  Young:  Beyond  the  plug:  finding  value  in   the  emerging  electric  vehicle  charging  ecosystem  

 

Another   representation   of   the   EV   ecosystem   value   chain   is   given   by   Weiller  

(2012).  As  can  be  seen  in  the  representation  of  the  model  in  Fig.  2  she  also  broadly  

identifies  a  number  of  industries  that  partake  in  the  EV  ecosystem.      

(20)

  Figure  6,  source:  Weiller  (2012)  

 

She  mentions  the  OEM  industry,  the  charging  industry,  the  battery  industry,  the   utilities   sector,   and   a   number   of   other   peripheral   services   that   can   be   grouped   together   under   services.   From   these   studies   it   follows   that   a   number   of   different   industries  have  to  work  together  and  that  a  number  of  different  value  chains  have  to   merge   to   form   the   EV   ecosystem.   We   will   now   have   a   closer   look   at   the   different   BM’s  for  the  EV  ecosystem  discussed  in  the  literature.    

  In  another  report  from  Accenture  (2011)  they  mention  three  likely  BM’s  for  

the   charging   infrastructure.   The   first   model   they   mention   is   the   ‘public   infrastructure   model’.   This   model   is   designed   for   charging   infrastructure   in   the   public  space  and  is  especially  designed  for  people  who  do  not  have  access  to  home   charging.   The   second   model   mentioned   is   the   ‘private   infrastructure   model’.   This   model  is  designed  for  private  space  and  focuses  on  installing  charging  infrastructure   at  homes  and  other  private  sites  like  offices.  This  model  ensures  higher  usage  and  a   higher   return   on   investment.   The   third   model   mentioned   is   the   ‘end-­‐to-­‐end   solution’.   This   model   provides   an   all-­‐in   solution   to   the   client   with   battery   and   vehicle  maintenance,  charging  and  value  adding  customer  services.  This  minimises   the  client’s  use  of  many  different  interfaces  and  interaction  with  different  actors  and   thus  ensures  a  simplified  solution  for  the  customer.  According  to  Accenture  (2011)   these  different  BMs  for  the  charging  infrastructure  all  have  different  implications  on   cost,   the   grid   and   the   customer.   We   will   briefly   outline   the   differences   mentioned   between  these  three  different  BMs.    

The  ‘public  infrastructure  model’  needs  a  high  amount  of  upfront  investment   and  is  likely  to  have  a  long  payback  period  due  to  low  prices  that  will  be  charged  to   consumers  to  ensure  usage  of  the  charging  points.  Accenture  (2011)  calls  this  model   a   no   return   model   and   therefor   unattractive   to   market   players.   It   will   require   investments   from   municipalities   and   local   governments   and   is   important   to   kick   start   the   market   and   incentivise   consumers.   In   this   sense   it   is   also   to   prevent   the   famous   ‘chicken-­‐and-­‐egg-­‐problem’.   The   impact   on   the   grid   will   be   volatile   as   the   usage   of   the   infrastructure   will   likely   be   unpredictable.   Chances   are   that   it   will  

(21)

increase   peak   load.   This   point   emphasizes   the   fact   that   utilities   will   play   an  

important  role  in  this  model.    

The   private   infrastructure   model’   seeks   a   return   on   investment   and   will   therefore  charge  a  premium  over  public  charging.  However  it  is  expected  that  this   premium   includes   value   added   services   like   integrated   IT   and   billing   and   convenience   of   location.   Accenture   (2011)   says   that   home   charging   will   most   probably  be  a  preferred  option  and  that  multiple  BMs  can  arise  for  home  charging.   They  mention  two  different  options.  Option  one  means  paying  for  the  charging  point   in  one  go.  Option  two  however  means  paying  for  a  whole  integrated  service  package   that  includes  charging,  integrated  IT  services  and  billing.  This  would  mean  that  you   either  lease  the  charging  point  via  a  contract  or  you  pay  for  the  charging  point  over   time.  Another  feature  part  of  the  ‘private  charging  BM’  is  fast  charging.  Fast  charging   means   higher   costs   for   the   consumers   than   regular   charging   but   also   greater   convenience  and  flexibility.  Fast  charging  will  also  have  a  notably  stronger  effect  on   the   grid.   This   is   something   grid   operators   need   to   keep   in   mind.   A   wide   range   of   variations   on   the   ‘private   charging   BM’   are   being   pursued   by   a   range   of   different   actors  such  as  utilities,  oil  companies  and  OEM’s.  Gomez  San  Roman,  Momber,  Rivier   Abbad  and  Sanchez  Miralles  (2011)  also  talk  about  private  charging  and  semi-­‐public   charging.  They  specifically  mention  how  the  market  players  here  can  apply  different   tariffs  during  different  stages  of  the  day  when  the  grid  demand  differs.  Higher  prices   would  be  the  norm  when  the  demand  on  the  grid  is  greater  and  lower  prices  when   grid  demand  is  low.    

The   end-­‐to-­‐end   model   is   a   model   that   has   all-­‐inclusive   service   for   the   customer,   from   the   point   where   the   vehicle   is   purchased   to   maintenance   and   charging.  Different  contracts  will  be  available  but  notable  options  are  battery  swap,   in-­‐vehicle  services  and  managed  charging.  The  market  player  trying  to  exploit  this   BM  was  Better  Place.  It  has  to  be  noted  that  Better  Place  filed  for  bankruptcy  on  May   26  (Financial  Times,  2013).  In  this  light  it  remains  to  be  seen  if  this  particular  BM   will   actually   take   off   and   develop   further.   A   week   after   Better   Place   had   filed   for   bankruptcy   however   Tesla   announced   that   they   would   introduce   a   battery   swap   system  for  their  Model  S  alongside  the  conductive  charging  infrastructure.    

Ernst  &  Young  (2011)  mentioned  five  different  BM’s  or  business  strategies  as   they  call  them  in  their  report  about  EV  ecosystems.  We  will  briefly  discuss  each  BM   discussed   in   their   report.   The   first   BM   mentioned   is   called   ‘the   Builder’.   This   is   a  

(22)

straightforward   BM   where   there   is   a   manufacturer   of   hardware   charging   infrastructure.  The  manufactured  infrastructure  can  then  be  sold  either  branded  or   unbranded.   Revenue   is   made   at   the   point   when   a   charging   station   or   a   set   of   charging   infrastructure   is   sold.   The   second   BM   mentioned   is   ‘the   maintenance   installer’.   The   ‘maintenance   installer’   will   install   and   maintain   the   charging   infrastructure.   An   added   activity   could   be   retailing   of   charging   infrastructure.   Revenue  will  be  made  through  multi-­‐year  service  contracts.  The  third  BM  from  this   report  is  called  ‘the  Broker-­‐Operator’.  The  ‘Broker-­‐Operator’  manages  a  wider  set  of   activities  and  capabilities  than  the  first  two  BMs  mentioned.  Besides  manufacturing   and   installing   the   infrastructure   this   market   player   also   manages   the   energy   delivery   and   the   billing.   According   to   Ernst   &   Young   (2011)   this   player   can   own,   outsource  or  have  a  set  of  partners  for  a  number  of  or  for  all  of  their  activities  in  the   mentioned   activity   set.   With   such   a   wide   set   of   activities   for   this   player   it   is   likely   that  different  variations  of  BMs  will  emerge.  The  fourth  BM  described  is  called  ‘the   Grid  Master’.  The  activities  of  this  player  also  involve  the  management  of  the  energy   supplied  to  the  vehicle  but  more  importantly  it  also  uses  the  batteries  of  the  EVs  as  a   resource  to  manage  the  different  kinds  of  energy  demand  present  during  a  day.  This   aspect   is   also   described   in   previous   chapters   under   V2X.   Gomez   San   Roman   et   al.   (2011)  talk  about  a  similar  BM  that  they  call  ‘the  supplier-­‐aggregator’.  This  market   player   contracts   a   high   number   of   EVs   and   has   a   high   level   of   control   over   the   charging   processes.   This   player   is   therefor   also   responsible   for   the   system   load   management  and  can  thus  hedge  the  risks  in  the  electricity  market.    

The  fifth  and  last  strategy  mentioned  by  Ernst  &  Young  (2011)  is  called  ‘the   Guardian’.  This  BM  encompasses  a  very  wide  range  of  activities  and  competencies.   All  the  before  mentioned  activities  from  the  previous  BMs  could  in  theory  also  fall   under  one  BM  in  the  form  of  ‘Guardian’.  ‘The  guardian’  not  only  extends  its  services   to  EV  owners  but  also  to  other  stakeholders  in  the  EV  ecosystem.  These  value  added   services  may  be  peripheral  to  the  actual  EV  owners  but  are  critical  for  the  upkeep  of   the  EV  ecosystem.  Just  like  the  ‘Broker-­‐Operator’,  ‘The  Guardian  may  own,  outsource   or  manage  its  activities  via  a  web  of  partners.    

 

2.6.  Combining  a  BM  with  the  EV  Ecosystem  in  a  Theoretical  Framework  

Having   reviewed   the   literature   on   BM’s,   BM   innovation   and   the   EV   Ecosystems   a   number   of   points   have   come   to   the   fore.   We   will   briefly   review   these   points   as  

Referenties

GERELATEERDE DOCUMENTEN

The main goal of this redesign is to provide a structure which is beneficial to the degree of success and time to market of Company X’s innovation projects.. Besides

A negative moderation effect of development of the cooperation partner’s economy was found for process innovation within manufacturer firms and for product innovation within

In the framework of a DFID-funded research project entitled ‘Enabling Innovation and Productivity Growth in Low Income Countries (EIP-LIC)’, a team of researchers Tilburg

New urban economies: How can cities foster economic development and develop ‘new urban economies’.. (Urbact

de Carvalho (Eds.), New urban economies: How can cities foster economic development and develop ‘new urban economies’ (pp.. (Urbact

In this publication we will describe the results of the characterization of the catalysts via a number of techniques, like temperature programmed reduction,

In line with the classification of Scott’s (1995) three pillars concept as discussed in the literature review this thesis will include the regulative, normative and

A puzzling and as yet unexplained observation is that superstructures in the temperature ( θ) field are larger than in the vertical-velocity w field (Pandey et al. 2018 ) when