• No results found

The impact of a change of the monetary base on income

N/A
N/A
Protected

Academic year: 2021

Share "The impact of a change of the monetary base on income"

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

   

 

The  impact  of  a  change  of  the  monetary  

base  on  income  

 

Thesis  BSc  Economics  and  Finance    

 

Abstract  

The  impact  of  the  monetary  base  on  income  has  gained  importance  in  central   banking  as  more  central  banks  use  the  monetary  base  as  an  instrument  to   stimulate  the  economy  in  times  of  crisis.  It  is  therefore  important  to  investigate   the  relationship  between  the  monetary  base  and  income.  From  economic  theory   and  previous  research,  it  has  been  found  that  there  is  an  overall  positive  impact   of  the  monetary  base  on  income.  However  several  regression  analysis  on  panel   data  of  214  countries  conclude  a  negligible  impact  of  the  monetary  base  on  GDP   which  is  in  contradiction  with  these  findings.  The  decisive  argument  is  formed  by   taking  the  regression  analysis  into  consideration.  This  yields  the  conclusion  that   a  change  of  the  monetary  base  does  not  impacts  GDP.    

       

Student       Mick  Hendrikx  -­‐  10003325  

Field:         Macroeconomics  

Supervisor       Mr.  R.E.F.  van  Maurik  MSc  

(2)

Table  of  Contents  

1.  INTRODUCTION  ...  3  

2.  LITERATURE  REVIEW  ...  4  

2.1  THE  MONETARY  BASE  AND  ITS  COMPONENTS  ...  4  

2.2  INFLUENCES  ON  THE  MONETARY  BASE  ...  5  

2.3  THE  EFFECT  OF  THE  MONETARY  BASE  ON  INCOME  ...  6  

2.4  SOME  FORMER  AND  RELEVANT  RESEARCH  ...  10  

3.  EMPIRICAL  STUDY  ...  14   3.1  DATA  ...  14   3.2  METHOD  ...  17   4.  RESULTS  ...  20   5.  CONCLUSION  ...  25   6.  REFERENCES  ...  27   7.  APPENDIX  ...  28    

 

                 

 

   

(3)

1.  Introduction  

The  global  financial  crisis  that  emerged  in  august  2007  is  considered  to  be  the   worst  financial  crisis  since  the  Great  Depression.  This  crisis  was  characterized  by   a  severe  financial  turmoil  combined  with  a  sharp  economic  downturn  (Mishkin   et  al,  2012).  The  main  objectives  of  a  central  bank  are  to  maintain  price  stability,   to  maintain  financial  stability  and  to  support  the  state’s  financing  needs  at  crisis   (Goodhart,  2011).  To  enhance  economic  recovery  in  times  of  crisis  central  banks   have  a  variety  of  tools.  This  typically  indicates  the  conduct  of  monetary  policy   through  control  of  short-­‐term  nominal  interest  rates  that  have  the  potential  to   affect  the  economy  to  a  variety  of  channels  (Fawley  &  Neely,  2013).    

Fawley  &  Neely  (2013)  state  that  inflation  expectations  do  not  react  linear   to  changes  in  the  nominal  interest  rates.  Central  banks  can  therefore  also  control   real  interest  rates  over  the  short  and  medium  term  that  in  turn  affects  asset   prices.  The  real  interest  rates  affect  asset  prices  that  positively  impacts  the   willingness  of  banks  to  lend,  firms  to  invest  and  individuals  to  consume  or  invest   in  housing  (Fawley  &  Neely,  2013).  This  increase  in  willingness  stimulates   economic  output.  

When  short  rates  approach  the  zero-­‐lower  bound  (ZLB)  the  conventional   policy  turns  out  to  be  ineffective.  Mishkin  et.  al.  (2012)  argue  that  a  central  bank   can  implement  unconventional  monetary  policies  such  as  quantitative  easing   (QE)  to  pursue  its  goals.  When  a  central  bank  implements  QE  it  purchases   outright  private  and  public  securities  from  bank  and  non-­‐bank  sectors  (Mishkin   et  al,  2012).    In  early  2008/  late  2009  interest  rates  reached  the  ZLB  and  the   Bank  of  Japan  (BOJ),  the  Bank  of  England  (BOE),  the  European  Central  Bank   (ECB)  and  the  Federal  Reserve  (Fed)  used  this  policy  to  stimulate  economic   growth  (Fawley  &  Neely,  2013).    

Open  market  operations,  such  as  QE,  have  a  certain  and  direct  effect  on   the  monetary  base  (Mishkin  et  al,  2012).  With  this  effect  central  banks  aim  to   affect  economic  output  (Mankiw,  2012).  It  is  therefore  worthwhile  to  investigate   whether  the  monetary  base  has  a  significant  effect  on  income.  In  this  thesis  an   answer  will  be  given  on  the  following  research  question;  does  a  change  of  the   monetary  base  impacts  income?  

(4)

The  thesis  proceeds  as  follows.  Section  2  consists  of  a  literature  review.  In   this  review  a  theoretical  analysis  is  done  on;  the  components  of  the  monetary   base,  the  influences  on  the  monetary  base,  how  it  impacts  income  and  finally   some  former  and  relevant  research  is  discussed.  Section  3  lists  all  variables  used   and  includes  the  method  used  in  the  empirical  research.  The  results  of  the   performed  regressions  are  covered  in  section  4.  Section  5  contains  a  conclusion.  

2.  Literature  review    

In  this  section  the  monetary  base  and  its  components  are  first  discussed.  The   influences  on  the  monetary  base  are  analysed  secondly.  In  addition  the  effect  of  a   change  in  the  monetary  base  on  income  is  examined  building  upon  different   macro-­‐economic  models  and  monetary  transmission  mechanisms.  Finally  some   former  and  relevant  research  is  discussed.      

2.1  The  monetary  base  and  its  components  

The  description  of  Mishkin  et.al.  (2012,  pp.  301-­‐307)  is  followed  to  explain  the   monetary  base  and  its  components.  The  monetary  base  (MB)  consists  of  the  sum   of  currency  in  circulation(C)  and  reserves  (R).  Both  currency  in  circulation  and   reserves  are  on  the  liability  side  of  the  central  bank’s  balance  sheet.  Equation  2.1   shows  the  formula  of  the  monetary  base.  

𝑀𝐵 = 𝐶 + 𝑅      (2.1)  

The  currency  in  circulation  refers  to  non-­‐bank  currency  and  accounts  for   the  currency  held  by  the  public.  Banks  also  hold  currency  but  in  contrast  to   currency  in  circulation  the  latter  counts  for  reserves.    

The  reserves  component  of  the  monetary  base  includes  deposits  from   banks  at  the  central  bank  plus  their  vault  cash.  Vault  cash  refers  to  currency  that   is  physically  held  in  vaults  by  banks.  The  deposits  of  banks  held  at  the  central   bank  are  counted  as  a  liability  for  the  central  bank  but  as  an  asset  for  the  banks.   At  any  time,  banks  can  request  payments  on  their  deposits  and  obligate  the   central  bank  to  fulfil  this  request  by  paying  these  banks  with  notes.    

The  monetary  base  can  also  be  divided  into  non-­‐borrowed  monetary  base   (𝑀𝐵!)  and  borrowed  reserves  (BR)  that  are  fully  controlled  and  partially  

(5)

controlled  sequentially  by  the  central  bank.    Equation  2.2  shows  a  modified   equation  of  the  monetary  base.  

𝑀𝐵 = 𝐵𝑅 + 𝑀𝐵!      (2.2)  

With  this  equation  the  influence  that  a  central  bank  can  exert  on  the  monetary   base  is  examined  in  the  following  section.    

2.2  Influences  on  the  monetary  base    

What  influences  the  monetary  base  is  discussed  here  by  following  the  theory  of   Mishkin  et.  al.  (2012).  Mishkin  et.  al.  specify  for  simplicity  a  central  bank’s  asset   side  of  the  balance  sheet  in  two  components:  government  securities  and  loans  to   banks.  Changes  in  these  assets  change  the  liability  side  and  thus  the  monetary   base.  A  central  bank  can  change  these  assets  by  open  market  operations  and   through  its  extension  of  loans  to  banks.  The  process  of  changing  these  assets  in   order  to  change  the  monetary  base  is  explained  in  this  section.  Finally  

quantitative  easing  (QE)  is  discussed  in  addition  as  this  policy  directly  expands   the  monetary  base.    

The  first  component  of  the  asset  side  on  the  balance  sheet  consists  of   government  securities  held  by  a  central  bank.  A  central  bank  can  change  the   monetary  base  by  buying  or  selling  government  bonds,  called  an  open  market   operation  (OMO).  When  a  central  bank  performs  an  open  market  purchase,  a   variant  of  an  OMO,  it  can  purchase  bonds  from  both  commercial  banks  and  from   the  non-­‐bank  public.  Both  are  taken  into  consideration.  

When  a  central  bank  performs  an  open  market  purchase  from  commercial   banks,  it  buys  bonds  from  banks  in  exchange  for  cheques.  These  banks  in  

question  can  decide  whether  to  deposit  the  cheque  in  their  accounts  at  the   central  bank  or  exchange  the  cheque  for  cash  and  hold  it  in  their  vaults.  The   effect  on  the  reserves  component  of  the  monetary  base  is  certain  and  the   reserves  increase.  The  currency  in  circulation  is  not  altered  in  this  case  so  the   monetary  base  increases  by  the  same  amount  as  the  reserves  do.    

A  central  bank  can  also  perform  an  open  market  purchase  from  the  non-­‐ bank  public,  indicating  persons  or  corporations.  When  persons  or  corporations   receive  cheques  from  the  central  bank  after  an  open  market  purchase,  they  have   two  options.  The  first  option  is  that  they  can  deposit  the  cheque  in  a  bank  that  in  

(6)

turn  deposits  the  cheque  in  their  account  with  the  central  bank.  The  effect  on   reserves  is  in  this  case  the  same  as  an  open  market  purchase  from  a  commercial   bank.  This  increase  in  reserves  increases  the  monetary  base  by  the  same  amount.   The  second  option  is  that  they  can  cash  the  cheque  for  currency  at  a  bank.  In  this   case  the  currency  in  circulation  increases  but  the  reserves  are  unchanged.  

Nevertheless  the  monetary  base  increases  with  the  same  amount  of  the   purchase.    

A  central  bank  thus  has  full  control  over  the  monetary  base  when  

performing  an  OMO  and  can  thus  directly  increase  the  monetary  base  through  an   open  market  purchase  because  the  effect  on  the  monetary  base  is  always  certain.    

The  second  asset  Mishkin  et.  al.  (2012)  describe  consists  of  loans  to   banks.  Central  banks  can  use  these  loans  to  banks  to  provide  the  banking  system   additional  reserves.  A  central  bank  charges  on  these  borrowed  reserves  an   interest  rate,  named  the  lending  rate.  A  change  in  borrowed  reserves  changes  the   monetary  base  by  the  same  amount.  However  the  central  bank  has  no  full  control   on  borrowed  reserves  as  banks  decision  to  borrow  play  a  role  too.    

When  a  central  bank  is  at  the  zero-­‐lower  bound  (ZLB)  it  is  unable  to   stimulate  the  economy  by  lowering  the  interest  rate.  Therefore  a  central  bank   may  implement  an  unconventional  monetary  policy  tool  such  as  QE.  This  policy   tool  is  a  variant  of  an  open  market  purchase  that  consists  of  an  outright  purchase   of  public  and  private  securities  from  bank  and  non-­‐bank  sector.  Because  at  the   ZLB  a  central  bank  cannot  lower  the  interest  rate  any  further,  it  aims  at  

increasing  the  quantity  of  non-­‐borrowed  reserves.  Fig.  8.1  presents  this   mechanism.  By  increasing  the  non-­‐borrowed  reserves  a  central  bank  can  even   with  interest  rates  near  the  ZLB  still  expand  the  monetary  base.        

Summarized,  a  central  bank  can  control  the  monetary  base  fully  by  open   market  operations  even  in  the  case  at  the  ZLB  by  implementing  QE.  However  a   central  bank  can  control  the  monetary  base  less  tightly  by  providing  loans  to   banks.  

2.3  The  effect  of  the  monetary  base  on  income      

The  effect  of  a  monetary  base  expansion  on  income  is  discussed  here.  First  it  is   explained  how  a  change  in  the  monetary  base  changes  the  money  supply.  

(7)

Thereafter  it  will  be  discussed  how  a  change  in  the  money  supply  changes   income.  Finally,  some  monetary  transmission  channels  are  discussed  that   capture  the  effect  of  the  monetary  base  on  aggregate  demand.  

With  the  direct  effect  of  an  open  market  purchase  on  the  MB,  a  central   bank  may  want  to  influence  the  money  supply  within  an  economy.  When  a   central  bank  succeeds  in  expanding  the  money  supply  this  affects  income  within   an  economy  explained  by  both  the  Quantity  Theory  of  Money  and  the  Aggregate   Demand  (AD)  –  Aggregate  Supply  (AS)  model.  

The  Traditional  Money  Multiplier  model,  drawn  from  Mishkin  et.  al.,   explains  how  a  central  bank  can  target  the  money  supply  (2012,  p.  312)  This   model  states  that  the  money  supply  (𝑀!)  is  fully  and  precisely  controlled  by  the   central  bank  through  changes  in  the  monetary  base  (MB).    Equation  2.3  

formalizes  this  relationship.  

𝑀! = 𝑚 ∗ 𝑀𝐵      (2.3)  

In  this  research  the  same  assumption  as  in  Poole’s  model  on  optimal  instruments   is  used  (Poole,  1970).  This  assumption  entails  a  stable  money  multiplier.  Given   this  assumption  one  can  conclude  that  a  central  bank  changes  the  money  supply   within  an  economy  by  directly  influencing  the  monetary  base.  

The  Quantity  Theory  of  Money  states  that  an  increase  in  the  money   supply  results  in  an  expansion  of  nominal  income  or  real  income  depended  on   the  stickiness  of  prices  (Gärtner,  2009,  p.  15).  This  theory  states  that  the  money   supply  (M)  times  the  velocity  (V)  of  money  in  circulation  equals  nominal  income   (PY),  assuming  V  is  constant.  Where  P  is  the  price  level  and  Y  denotes  real   income.  If  P  does  not  change  as  a  result  of  a  change  in  money  supply,  i.e.  prices   are  sticky,  then  changes  in  the  money  supply  affect  real  income  Equation  2.4   formalises  this  relationship.  

𝑀 ∗ 𝑉 = 𝑃 ∗ 𝑌      (2.4)  

Gärtner  shows  that  besides  the  Quantity  Theory  of  Money,  the  AD-­‐AS  model  can   explain  too  what  happens  with  income  when  the  money  supply  increases  (2009,   pp.  197-­‐200).  Gärtner  states  that  central  banks  cannot  influence  the  money   supply  when  exchange  rates  are  fixed.  Therefore  the  AD-­‐AS  model  is  taken  into   consideration  that  only  allows  flexible  exchange  rates.  Changes  in  the  AD-­‐AS   model  build  upon  changes  within  the  Keynesian  cross,  Mundell-­‐  Fleming  model  

(8)

and  the  labour  market.  The  theory  of  Gärtner  is  further  analysed  here  to  explain   the  mechanism  after  an  increase  in  the  money  supply.  

  When  the  money  supply  increases,  the  LM  curve  shifts  to  the  right  within   the  Mundell-­‐Fleming  model.  Within  this  model  the  downward  pressure  on  the   interest  rate  drives  up  the  exchange  rate,  indicating  a  depreciation  of  the  home   currency  that  shifts  the  IS  curve  to  the  right  too.  These  shifts  of  both  the  IS  and   LM  curve  leads  to  an  increase  of  equilibrium  income  to  𝑌!′  as  can  be  seen  in  fig.   8.2  model  (b).      

Within  the  model  of  the  Keynesian  cross  the  depreciation  of  the  home   currency  leads  to  an  increase  in  exports.  The  aggregate  expenditure  (AE)  curve   sums  up  all  planned  expenditures  and  therefore  shifts  up.  In  the  Keynesian  cross   in  model  (a)  of  fig.  8.2,  equilibrium  income  rises  with  the  same  amount  as  it  does   within  the  Mundell-­‐Fleming  model.    

Within  the  AD-­‐AS  model  in  model  (c)  of  fig.  8.2,  the  upward  shift  of  AE   moves  the  AD  curve  to  the  right  for  constant  prices.  Demand  for  output  then   exceeds  supply,  as  the  latter  has  not  changed  so  far.  This  excess  demand  drives   up  prices  that  influence  both  the  supply  as  the  demand  side  of  the  model.  From   the  perspective  of  the  supply  side,  the  increase  in  prices  drives  down  the  real   wages  in  the  labour  market  raising  employment  and  demand  for  labour  shown  in   model  (f)  of  fig.  8.2.  The  rise  in  employment  and  demand  for  labour  result  in  an   upward  move  on  the  AS  curve,  model  (e)  of  fig.  8.2.  From  the  demand  

perspective  this  rise  in  prices  lowers  the  real  monetary  supply  and  the  exchange   rate.  In  model  (a)  the  lower  exchange  rate  shifts  the  AE  curve  down  in  the  

Keynesian  cross  due  diminished  exports.    The  IS  and  the  LM  curve  are  also   altered  by  the  lower  exchange  rate  in  model  (b).  Both  curves  move  to  the  left  in   the  IS-­‐LM  model.  Finally,  there  is  an  upward  move  along  the  AD  curve  in  model   (c)  where  prices  rise  to  make  supply  increase  and  demand  falls  until  the  excess   demand  is  eliminated  and  equilibrium  income  is  higher  than  the  initial  level.    

This  theory  that  builds  upon  the  AD-­‐AS  model,  the  Mundell-­‐Fleming   model,  the  Keynesian  cross  and  the  labour  market  states  that  the  new   equilibrium  income  is  higher  than  the  initial  equilibrium  income.    

There  are  several  channels  through  which  an  increase  in  the  monetary   base  affects  aggregate  demand.    From  the  AD-­‐AS  model  explanation,  an  increase  

(9)

in  the  money  supply  increases  aggregate  demand  that  within  this  model   increases  equilibrium  income.  Kuttner  &  Mosser  (2002)  wrote  a  paper  on  the   conference  of  Financial  Innovation  and  Monetary  Transmission  in  which  they   summarize  the  major  monetary  transmission  channels  that  have  been  

distinguished  in  the  literature.  These  transmission  channels  are  displayed  in  fig.   8.3.  The  channels  that  capture  the  influence  of  the  monetary  base  on  aggregate   demand  are  taken  into  consideration  to  examine  the  impact  of  the  monetary   base  on  income.  These  channels  include;  the  interest  rate  channel,  the  exchange   rate  channel  and  the  monetarist  channel.  The  aggregate  demand  that  is  analysed   is  based  on  the  Mundell-­‐  Fleming  model  of  a  large  open  economy.  Equation  2.5   presents  a  formula  for  aggregate  demand  that  is  used  to  explain  the  interest  rate   and  the  exchange  rate  channel.    

𝐴𝐷 = 𝐶 + 𝐼 + 𝐺 + 𝑋 − 𝑀      2.5    

According  to  Kuttner  &  Mosser  the  interest  rate  is  the  primary  monetary   transmission  mechanism  at  work  in  conventional  macro-­‐economic  models.  They   explain  that  given  some  degree  of  price  stickiness  a  decrease  in  nominal  interest   rates  lowers  real  interest  rates.  A  decrease  in  the  real  interest  rate  decreases  the   cost  of  owning  capital  that  in  turn  leads  to  an  increase  in  consumption  (C)  and   investments  (I)  and  thus  increases  aggregate  demand  (AD)  as  can  be  seen  from   equation  2.5  (Kuttner  &  Mosser,  2002).  This  mechanism  lies  behind  the  

traditional  IS  curve  of  the  Keynesian  macroeconomic  models.    

In  addition  Kuttner  &  Mosser  state  that  the  exchange  rate  channel  is  an   important  channel  in  conventional  open-­‐economy  macro-­‐economic  models.  They   explain  that  the  transmission  runs  from  interest  rates  to  the  exchange  rate  via   the  uncovered  interest  rate  parity.  This  parity  relates  interest  differential   movements  to  expected  exchange  rate  movements  (Pilbeam,  2013).  If  the   interest  differential  decreases,  indicating  a  lower  interest  rate  compared  to   foreign  interest  rates,  the  home  currency  will  depreciate.  This  depreciation   improves  the  country’s  international  trade  position  and  increases  the  net   exports.  From  equation  2.5  it  can  be  seen  that  this  rise  in  net  exports  increases   aggregate  demand.    

Finally  there  is  the  monetarist  channel.  This  channel  focuses  on  the  direct   effects  of  changes  in  relative  quantities  of  assets  within  an  economy  rather  than  

(10)

interest  rates  (Kuttner  &  Mosser,  2002).  Kuttner  &  Mosser  state  that  many   relative  asset  prices  are  just  as  important  as  interest  rates  in  the  monetary  policy   transmission  mechanism.  Their  paper  considers  various  assets  as  imperfect   substitutes  in  investors’  portfolios.  Expansionary  monetary  policy  by  a  central   bank,  such  as  an  open  market  purchase  that  expands  the  monetary  base,   increases  the  relative  quantity  of  outstanding  assets  within  an  economy.  This   increase  in  relative  quantity  decreases  the  relative  price  of  these  assets.  If  the   relative  price  of  assets  decreases,  this  can  have  a  real  positive  effect  on  aggregate   demand.    

Summarizing,  the  traditional  money  multiplier  model  explains  under  the   assumption  of  a  stable  money  multiplier  how  an  increase  in  the  monetary  base   increases  the  money  supply.  The  increase  in  the  money  supply  has  a  positive   effect  on  income  shown  both  by  the  quantity  theory  of  money  and  the  AD-­‐AS   model.  The  AD-­‐AS  model  has  shown  that  an  increase  in  aggregate  demand  

increases  income.  Finally  the  interest  rate,  exchange  rate  and  monetarist  channel   have  shown  how  the  monetary  base  positively  influences  aggregate  demand  and   thus  income.    

2.4  Some  former  and  relevant  research    

In  this  section  the  research  applied  so  far  on  the  influence  of  monetary  base   within  an  economy  is  discussed.  In  addition  some  research  on  economies  in  a   crisis  is  discussed.  Both  the  crisis  in  Japan  as  well  as  the  Great  Depression  will   pass  the  discourse.  

Meltzer  (2001)  presents  in  his  research  empirical  evidence  for  the  

significant  effect  of  real  monetary  base  growth  on  consumption  growth  in  the  US.   He  uses  quarterly  data  and  controls  for  the  short-­‐term  real  interest  rate.  Meltzer   states  that  open  market  operations  affect  both  the  nominal  interest  rate  and  the   monetary  base.  If  prices  are  sticky,  this  in  turn  affects  both  the  real  interest  rate   and  the  real  monetary  base.  Meltzer  argues  that  the  short-­‐term  real  interest  rate   does  not  fully  capture  the  effect  of  monetary  policy  on  the  economy.  In  his   research  he  finds  empirical  evidence  that  besides  the  real  interest  rate  the   changes  in  real  monetary  base  affect  aggregate  demand  too.    

(11)

Nelson  (2002)  also  examines  the  direct  effect  of  the  real  monetary  base   on  total  output.  He  shows  that  real  monetary  base  growth  is  a  significant   determinant  of  total  output.  In  contrast  to  Meltzer’s  research,  he  captures  

besides  the  US  also  the  UK  economy.  When  the  long-­‐term  nominal  interest  rate  is   included  in  the  money  demand  function,  Nelson  (2002)  shows  that  the  standard   IS-­‐LM  model  can  prove  that  real  monetary  base  growth  is  a  determinant  of  total   output.  When  prices  are  sticky,  changes  in  the  long-­‐term  nominal  interest  rate   changes  the  real  long-­‐term  interest  rate.  The  long-­‐term  real  interest  rate  matters   for  aggregate  demand.  Thus  once  the  long-­‐term  nominal  rate  is  included,  the   effect  of  nominal  money  stock  changes  on  aggregate  demand  increases.    

Kimura  et.  al.  (2002)  investigates  the  effect  of  QE  by  the  BOJ  in  2001.  This   implemented  monetary  policy  resulted  in  a  monetary  base  growth  of  20  percent   per  year.  Since  the  Japanese  economy  was  at  that  time  at  the  ZLB  the  

effectiveness  of  the  policy  was  questioned.  In  their  research,  a  VAR  with  time-­‐ varying  coefficients  is  used  to  extract  the  effect  of  the  monetary  base  on  prices.   In  their  research  the  change  in  monetary  policy  and  the  possible  non-­‐linear   money  demand  at  the  ZLB  is  taken  into  consideration.  They  conclude  from  this   VAR  analysis  that  the  monetary  base  previously  had  a  positive  effect  on  prices   but  that  at  the  ZLB  this  effect  is  not  present.  To  investigate  why  there  is  no   positive  effect  at  the  ZLB,  they  estimate  a  money  demand  function  in  order  to   test  whether  a  satiation  level  exists  of  the  demand  for  monetary  base  at  the  ZLB.   They  conclude  from  this  estimate  that  there  is  a  satiation  level  and  thus  an   increase  in  the  monetary  base  can  stimulate  the  economy  at  the  ZLB.  However   the  results  of  both  the  VAR  analysis  and  the  estimation  of  the  money  demand   function  are  controversial.  Kimura  et.  al.  explain  these  controversial  results  in  a   way,  namely  that  the  effect  of  an  increase  of  the  monetary  base  on  economic   output  is  highly  uncertain  and  limited.  

Girardin  &  Moussa  (2011)  examine  the  effectiveness  of  monetary  policy   on  the  Japanese  economy  during  the  “lost”  decade  that  was  characterized  by   symptoms  of  stagnation  and  deflation.  By  an  empirical  framework  they  provide   analysis  on  the  effect  of  QE  on  the  Japanese  economic  activity  and  price  level.   When  a  central  bank  applies  QE  the  monetary  base  expands.  They  show  with  a   combination  of  a  Markov-­‐switching  VAR  methodology  and  factor  analysis  that  

(12)

this  policy  prevents  the  economy  from  a  further  recession.  Moreover  they  find   evidence  that  this  policy  stimulates  both  output  and  prices  through  the  interest   rate  factor.  In  their  analysis  this  same  property  holds  when  fiscal  policy  is  taken   into  account.  However  they  conclude  from  this  first  experience  of  QE  by  the  Bank   of  Japan  that  this  policy  only  reduces  the  symptoms  of  an  economy  in  recession.   In  order  for  the  Japanese  economy  to  recover,  dramatic  restructuring  in  the   financial  framework  is  additionally  required.    

Schenkelberg  &  Watzka  (2013)  also  apply  research  on  the  QE  experience   of  Japan  at  the  ZLB.  They  examine  the  real  effect  of  QE  when  the  short-­‐term   interest  rate  is  constrained  by  the  ZLB  using  a  Structural  VAR  analysis.  In  their   research  monthly  data  is  used  from  the  Japanese  economy  since  1995.  Moreover,   they  use  restrictions  from  Eggertsson’s  (2010)  New  Keynesian  DSGE  model  at   the  ZLB.  The  QE  shock  increases  reserves,  and  thus  the  monetary  base,  by  7   percent.  They  find  that  this  shock  results  in  a  significant  decrease  in  long-­‐term   interest  rates  and  that  after  two  years  industrial  production  increases  by  0.4   percent.  In  contrast  prices  are  only  temporarily  affected  by  this  shock  that   results  in  a  mixed  evidence  of  the  success  fullness  of  this  QE  policy  in  Japan.   Under  the  assumption  that  the  shock  is  a  small  one,  they  conclude  in  their  paper   that  real  economic  activity  increases  but  that  it  does  not  increase  prices  in  such  a   way  that  Japan  could  exit  its  deflationary  period.      

McCallum  (1990)  raises  the  question  whether  a  monetary  base  rule  could   have  prevented  the  Great  Depression.  The  monetary  base  rule  specifies  the  size   of  the  monetary  base  and  according  to  this  rule  the  nominal  GNP  of  the  US  would   have  been  growing  smoothly  at  a  rate  of  3  percent.  In  his  research  the  

proposition  that  the  GNP  growth  rate  would  have  kept  the  real  GNP  en   employment  from  their  deep  declines  is  taken  for  granted.  Counterfactual   historic  simulations  for  1923-­‐1941  are  used  and  implemented  by  the  policy  rule   and  a  small  model  of  nominal  GNP  determination.  With  his  research  he  shows   that  nominal  GNP  would  have  been  kept  at  a  steady  3  percent  over  the  period  of   time  if  the  rule  had  been  in  effect.    

Thornton  (1993)  investigates  the  relationships  between  money,  output   and  stock  prices  within  the  economy  of  the  UK.    He  uses  Granger’s  causality  as   method  to  investigate  these  relationships.  One  of  the  findings  that  relates  to  the  

(13)

topic  of  this  thesis  is  that  he  finds  evidence  that  the  monetary  base  leads  real   GDP.    

Feldstein  &  Stock  (1994)  investigate  the  ability  of  monetary  aggregates  to   target  nominal  GDP.  A  central  bank  might  be  able  to  reduce  inflation  and  the   volatility  of  real  GDP  if  this  feature  holds.  They  examine  the  strength  and  the   stability  of  the  predictive  content  of  the  monetary  base  on  nominal  GDP.  In  their   research  quarterly  time  series  data  is  used  on  money,  output,  prices,  and  interest   rates  from  1959:1  -­‐  1992:2  within  the  US.  From  fig.  8.4a-­‐c  it  can  be  concluded   that  there  is  no  clear  cyclical  link  between  the  monetary  base  and  nominal  GDP.   They  apply  regression  analysis  with  different  specifications  and  find  no  strong   predictive  content;  the  𝑅!′𝑠  range  only  from  0.09-­‐0.20.  Besides,  after  including   the  interest  rate  in  the  regression,  the  monetary  base  fails  to  be  statistically   significant  at  the  5  percent  level.  Moreover,  the  stability  of  the  predictive  content   is  examined  by  tests  for  parameter  constancy.  Almost  all  regressions  that  are   performed  reject  a  stable  link  between  the  monetary  base  and  nominal  GDP  at   the  1  percent  level.  From  their  paper  it  can  be  concluded  that  the  monetary  base   does  not  have  a  significant  strong  nor  stable  link  with  nominal  GDP.      

  Summarizing,  there  is  some  evidence  in  favour  and  some  against  the  issue   whether  or  not  the  monetary  base  impacts  income.  Real  monetary  base  growth   has  a  positive  effect  on  consumption  (Meltzer,  2001)  and  total  output  (Nelson,   2002).  The  QE  policy  from  the  BOJ  is  also  taken  into  consideration  as  the   monetary  base  expands  when  this  policy  is  applied.  According  to  Kimura  et.  al.   (2002)  the  monetary  base  had  a  positive  effect  on  prices  before  Japan  entered   the  stage  of  QE.  However  at  the  ZLB  this  effect  is  not  present  and  they  conclude   that  the  effect  of  a  monetary  base  expansion  on  economic  output  is  highly   uncertain  and  limited.  In  contrast  Girardin  &  Moussa  (2011)  state  that  besides   output  the  policy  stimulates  prices  at  the  ZLB  and  explain  this  by  the  interest   rate  factor.  Moreover,  because  real  economic  activity  increases  but  prices  do  not   Japan  is  unable  to  exit  its  deflationary  period  (Schenkelberg  &  Watzka,  2013).   McCallum  (1990)  investigates  the  Great  Depression  and  concludes  that  nominal   GDP  would  have  been  kept  at  3  percent  if  there  had  been  a  monetary  base  rule  at   work.  Thornton  (1993)  finds  that  the  monetary  base  leads  real  GDP.  Feldstein  &  

(14)

Stock  (1994)  ends  this  section  by  proving  that  the  monetary  base  does  not  have   a  significant  strong  nor  stable  link  with  nominal  GDP.      

3.  Empirical  study  

This  section  starts  with  the  description  of  the  dataset  that  is  used  with  its   corresponding  variables.  Thereafter  the  method  of  the  econometric  research  is   explained  together  with  its  corresponding  models.      

3.1  Data  

In  order  to  empirically  investigate  the  relationship  between  the  monetary  base   and  income  the  data  of  214  countries  are  taken  into  consideration.  The  

dependent  variable  that  is  used  is  the  difference  natural  logarithm  of  GDP   (dlnGDP)  and  the  independent  variable  is  the  natural  logarithm  of  the  monetary   base  (lnMB).  In  addition  the  following  control  variables  are  used;  a  lag  of  GDP   (lagGDP),  a  lag  of  MB  (lagMB),  human  capital  (HC),  total  population  (Pop),  net   exports  (NX),  savings  (S)  inflation  (Inf)  exchange  rate  (ER)  and  employment   (Empl).  In  this  research  a  three-­‐year  lag  of  the  monetary  base  (lllagMB)  is  used   to  test  for  simultaneous  causality  bias.  Table  8.5  presents  the  descriptive  

statistics  of  the  variables  used.  All  currency  variables  are  expressed  in  US  dollars.   The  control  variables  are  used  to  make  sure  that  there  is  no  omitted  variable  bias   in  the  performed  regression.  First  the  dependent  variable  and  the  control  

variables  are  taken  from  the  World  Databank.  This  data  is  annually  and  ranges   from  the  period  of  1960  up  to  2013.  Second  the  independent  variable  is  taken   from  Undata.  This  data  is  also  annually  and  typically  ranges  from  the  period   1948  up  to  2009.  In  order  to  match  the  data  for  all  these  countries,  years  and   variables  only  a  few  complete  observation  sets  are  left.  Because  the  complete   dataset  used  ranges  from  1960  up  to  2009  the  panel  data  that  is  used  in   considered  as  balanced.  The  number  of  observations  is  dependent  on  which   regression  is  used  and  ranges  between  400  and  500.      

The  Gross  Domestic  Product  (GDP)  is  used  as  an  indicator  of  income.  The   GDP  includes  the  value  added  of  all  goods  and  services  that  are  produced  within   a  country  (Pilbeam,  2013).  If  the  net  factor  income  abroad  and  the  net  unilateral   transfers  are  neglected,  GDP  is  a  good  indicator  for  income  according  to  Pilbeam  

(15)

(2013).    To  measure  the  percentage  change  of  GDP,  the  natural  logarithm  is   taken  into  account.  As  the  natural  logarithm  of  GDP  is  not  a  stationary  variable,   the  difference  of  the  natural  logarithms  is  taken  into  account.  This  variable  is   indicated  as  dlnGDP.      

Data  on  the  monetary  base  are  taken  from  Undata.  The  variables  taken   from  this  online  database  are;  base  money,  base  money  M0,  M0,  monetary  base   and  money  base.  These  terms  are  used  interchangeably  in  the  literature  and   every  country  uses  its  own  definition  of  what  is  considered  to  be  the  monetary   base.  Therefore  these  variables  are  all  treated  as  the  monetary  base.  The  natural   logarithm  is  used  to  capture  the  percentage  change  of  the  monetary  base.       Two  control  variables  that  are  used  in  this  research  are  lags  of  the  

monetary  base  (lagMB)  and  GDP  (lagGDP).  These  lags  are  values  of  the  monetary   base  and  GDP  with  a  one-­‐year  delay.  The  reason  these  lags  are  taken  into  

consideration  is  that  both  affect  the  dependent  variable  dlnGDP.  If  MB  is  higher   in  the  previous  year  within  a  country  it  is  more  likely  that  GDP  increases  because   there  are  more  resources  for  banks  available  to  extend  loans  to  investors  and  to   stimulate  the  economy.  The  GDP  from  previous  year  also  impacts  the  current   GDP  as  the  current  GDP  moves  up  or  down  from  the  previous  GDP.  

  Human  Capital  (HC)  is  used  as  a  control  variable  as  it  is  able  to  filter  the   effect  on  GDP.  In  this  research  human  capital  is  measured  as  secondary  

education  that  includes  the  total  number  of  pupils  enrolled  at  secondary  level  in   public  and  private  schools.  The  higher  the  enrolments  number  the  more  likely   the  overall  education  level  within  a  country.  This  higher  education  level  results   in  a  higher  income  per  person  and  thus  positively  impacts  GDP.      

  Total  population  is  taken  into  account  and  counts  all  residents  regardless   of  legal  status  or  citizenship  for  the  country  in  question.  These  numbers  are  mid-­‐ year  estimates  and  come  from  the  World  Databank.  The  more  people  live  in  a   country  the  more  value  they  can  add  to  goods  and  services  and  thus  the  higher   the  GDP.  A  country  with  a  very  small  population  has  a  limit  to  its  production  of   goods  and  services  and  thus  its  GDP.  In  this  research  there  is  controlled  for  the   impact  of  the  population  on  GDP.  

  The  net  exports  include  a  country’s  exports  of  goods  and  services  in   current  US  dollars  minus  its  imports.    If  a  country’s  exports  exceed  its  imports  it  

(16)

contributes  to  the  GDP.  In  contrast  if  imports  exceed  exports  GDP  decreases.   These  factors  that  change  GDP  are  accounted  for  by  including  them  in  the   regression.  Equation  2.5  shows  this  algebraically.  

  Savings  include  a  country’s  net  national  savings  in  current  US  dollars.  The   net  national  savings  consists  of  gross  national  savings  minus  the  value  of  

consumption  on  fixed  capital.  The  higher  the  national  savings  of  a  country  the   more  money  is  saved  by  people  on  average.  If  we  assume  that  the  consumption   pattern  by  people  and  the  investment  pattern  by  corporations  are  constant  a   higher  level  of  savings  indicates  a  higher  level  of  GDP.  However  for  a  given   income  if  people  save  more,  their  consumption  decreases  and  thus  GDP   decreases.  A  higher  national  savings  level  however  also  indicates  given  a  

resources  constraint  for  corporations  that  the  number  of  investments  is  reduced.   This  reduction  in  investments  affects  GDP  negatively.  Summarized,  it  is  obvious   that  savings  can  filter  the  effect  on  GDP,  therefore  savings  are  added  as  a  control   variable  to  the  regression.    

  Inflation  is  also  used  as  a  control  variable  and  is  measured  by  the   consumer  price  index.  This  index  measures  the  growth  rate  of  the  prices  for  a   consumer  to  obtain  is  specific  basket  of  goods  and  services.  A  higher  level  of   inflation  increases  the  prices  of  goods  and  services  and  thus  the  willingness  of   consumers  to  spend.  An  increase  in  spending  increases  GDP.  However  if  the   inflation  level  decreases  it  can  turn  into  deflation.  When  there  is  an  extended   period  of  deflation  within  an  economy,  goods  and  services  become  cheaper  and   consumers  delay  their  consumption.  This  reduction  in  spending  decreases  GDP.   Inflation  is  therefore  an  important  variable  to  control  for  because  it  filters  the   effect  on  GDP.    

  The  exchange  rate  (ER)  is  used  as  an  additional  control  variable  in  order   to  perform  Robustness  check  I,  a  test  for  robustness  of  the  model.  This  check  will   be  discussed  in  section  3.2.  The  exchange  rate  is  defined  as  the  price  of  a  US   dollar  expressed  in  local  currency  units  and  is  determined  by  national  

authorities.  This  annual  rate  is  computed  by  taking  the  monthly  averages.    When   a  country  has  a  higher  exchange  rate  its  terms  of  trade  improve  as  exports  

become  relatively  cheaper  for  the  foreign  country  and  imports  become  relatively   more  expensive  for  the  home  country.    Exports  increase  and  imports  decrease  

(17)

that  positively  impacts  GDP.  The  opposite  holds  when  a  country  has  a  lower   exchange  rate,  there  is  a  negative  effect  on  GDP.  Because  of  these  impacts  on  GDP   it  is  important  to  include  it  as  a  control  variable.    

  Employment  (Empl)  is  used  as  an  additional  control  variable  to  ensure   robustness  of  the  model.  This  variable  is  relevant  because  a  higher  employment   rate  results  in  a  higher  production  in  goods  and  services  and  thus  contributes  to   GDP.  Moreover,  if  more  people  are  employed  there  is  more  income  within  a   country  that  stimulates  consumption  and  investments  and  thus  adds  to  GDP.     The  opposite  case  holds  too,  when  the  employment  rate  is  low  there  is  less   produced  within  an  economy  and  less  money  to  spend  on  goods  and  services.       A  lag  of  three  years  on  the  monetary  base  (lllagMB)  is  used  as  an   instrument  variable  because  it  is  likely  to  fulfil  both  conditions  for  a  valid   instrument.  First  because  of  its  relevance;  the  three-­‐year  lag  of  the  monetary   base  is  likely  to  be  correlated  with  lnMB,  the  regressor  of  interest.  Second   because  of  its  exogeneity;  the  instrument  is  likely  to  be  uncorrelated  with  the   error  term.  The  value  of  the  monetary  base  three  years  ago  does  not  seem  to   affect  current  GDP.  If  this  second  assumption  holds  one  can  say  that  the  

instrument  does  not  explain  the  variations  in  the  value  of  the  dependent  variable   dlnGDP.                  

3.2  Method  

From  the  literature  review  there  has  been  already  some  research  done  on  the   impact  of  the  monetary  base  on  income.  Most  of  the  research  applied  so  far   contains  VAR  analysis  or  a  Granger  causality  test.  To  investigate  the  impact  of   the  monetary  base  on  income  several  econometrical  tests  will  be  done  on  a   multiple  regression  model  using  significance  levels  of  1  and  5  percent.  First  the   model  will  be  tested  with  an  OLS  regression  analysis.    Second  a  Robustness   check  will  be  done  by  replacing  control  variables.  Thereafter,  a  regression  that   excludes  country  fixed  and  time  fixed  effects  is  performed.  Finally  the  model  will   be  tested  on  simultaneous  causality  by  performing  an  Instrument  Variable  (IV)   regression.    

In  the  multiple  regression  model  the  dependent  variable  is  dlnGDP  and   the  independent  variable  is  lnMB.  In  addition  the  control  variables;  lagGDP,  

(18)

lagMB,  HC,  Pop,  NX,  S  and  Inf  are  used.    Equation  3.1  shows  this  regression   model.  In  the  following  models  𝑖  denotes  each  state  (𝑖 = 1, … , 214)  and    𝑡   denotes  the  year  (𝑡 = 1960, … , 2009).    

𝑑𝑙𝑛𝐺𝐷𝑃!,! = 𝛽!+ 𝛽!∗ 𝑙𝑛𝑀𝐵!,! + 𝛽!∗ 𝐺𝐷𝑃!,!!!+ 𝛽!∗ 𝑀𝐵!,!!!+ 𝛽! ∗

𝐻𝐶!,!+ 𝛽!∗ 𝑃𝑜𝑝!,!+ 𝛽!∗ 𝑁𝑋!,! + 𝛽!∗ 𝑆!,! + 𝛽!∗ 𝐼𝑛𝑓!,!+ 𝑢!,!      (3.1)                                                           An  OLS  regression  analysis  will  be  done  on  equation  3.1.  Control  variables  are  

used  to  eliminate  the  possibility  of  omitted  variable  bias.  However  by  including   these  variables  the  variance  of  the  estimates  of  the  coefficient  of  interest  can   increase.  In  the  OLS  regression  robustness  is  assumed.  This  assumption  is  made   because  the  variance  of  the  error  term  is  not  allowed  to  be  homoscedastic.  To   test  whether  the  OLS  regression  is  robust  a  Robustness  check  will  be  done.  How   the  core  regression  estimates  will  behave  when  variables  are  replaced  will  result   from  this  check.  First  the  control  variable  inflation  will  be  replaced  by  the  

exchange  rate;  Robustness  check  I.  Equation  3.2  shows  this  regression.     𝑑𝑙𝑛𝐺𝐷𝑃!,! = 𝛽!+ 𝛽!∗ 𝑙𝑛𝑀𝐵!,! + 𝛽!∗ 𝐺𝐷𝑃!,!!!+ 𝛽!∗ 𝑀𝐵!,!!!+ 𝛽! ∗

𝐻𝐶!,!+ 𝛽!∗ 𝑃𝑜𝑝!,!+ 𝛽!∗ 𝑁𝑋!,! + 𝛽!∗ 𝑆!,! + 𝛽!∗ 𝐸𝑅!,!+ 𝑢!,!      (3.2)                                       Second  the  control  variable  inflation  will  be  replaced  by  employment;  

Robustness  check  II.  Equation  3.3  shows  the  regression  used.    

𝑑𝑙𝑛𝐺𝐷𝑃!,! = 𝛽!+ 𝛽!∗ 𝑙𝑛𝑀𝐵!,! + 𝛽!∗ 𝐺𝐷𝑃!,!!!+ 𝛽!∗ 𝑀𝐵!,!!!+ 𝛽!

𝐻𝐶!,!+ 𝛽!∗ 𝑃𝑜𝑝!,!+ 𝛽!∗ 𝑁𝑋!,! + 𝛽!∗ 𝑆!,! + 𝛽!∗ 𝐸𝑚𝑝𝑙!,!+ 𝑢!,!      (3.3)                 One  should  hold  into  account  that  OLS  estimates  are  not  the  most  reliable.    

OLS  coefficients  are  known  to  be  inefficient  when  errors  are  correlated.  In  this   research  errors  are  likely  to  be  correlated.  This  is  in  the  first  place  because  time   series  data  are  used  that  often  have  errors  that  are  serially  correlated.    In  the   second  place  because  the  dataset  has  errors  that  can  be  correlated  within  the   country.  Therefore  one  might  consider  the  method  of  OLS  regression  not  as  the   most  appropriate.      

Due  to  the  shortcomings  of  an  OLS  regression,  fixed  effects  are  taken  into   consideration.  First  country  fixed  effects  are  excluded  from  the  model.  In  a   Country  Fixed  Effect  regression  there  is  controlled  for  omitted  variables  that   vary  across  countries  but  do  not  change  over  time.  In  this  regression  the  

coefficients  of  the  regresssors  are  estimated  by  holding  constant  the  unobserved   country  characteristics  𝐶.  

(19)

Let  𝛼! = 𝛽!+ 𝛽!∗ 𝐶!  then  the  regression  model  becomes  the  one  indicated  by   equation  3.4.  

𝑑𝑙𝑛𝐺𝐷𝑃!,! = 𝛼! + 𝛽! ∗ 𝑙𝑛𝑀𝐵!,!+ 𝛽!∗ 𝐺𝐷𝑃!,!!!+ 𝛽!∗ 𝑀𝐵!,!!!+ 𝛽!∗ 𝐻𝐶!,!+ 𝛽! ∗ 𝑃𝑜𝑝!,! + 𝛽!∗ 𝑁𝑋!,!+ 𝛽!∗ 𝑆!,!+ 𝛽!∗ 𝐼𝑛𝑓!,!+ 𝑢!,!      (3.4)     Second  the  time  fixed  effects  are  hold  into  account.  In  a  Time  Fixed  Effect   regression  there  is  controlled  for  omitted  variables  that  are  constant  across   countries  but  evolve  over  time.    In  this  regression  the  coefficients  of  the   regresssors  are  estimated  by  holding  constant  the  unobserved  time  

characteristics  𝑆.  Let  𝛾! = 𝛽!+ 𝛽!∗ 𝑆!  then  the  regression  model  becomes  the   one  indicated  by  equation  3.5.  

𝑑𝑙𝑛𝐺𝐷𝑃!,! = 𝛾!+ 𝛽!∗ 𝑙𝑛𝑀𝐵!,!+ 𝛽!∗ 𝐺𝐷𝑃!,!!!+ 𝛽! ∗ 𝑀𝐵!,!!!+ 𝛽!∗ 𝐻𝐶!,!+ 𝛽! ∗ 𝑃𝑜𝑝!,!+ 𝛽!∗ 𝑁𝑋!,!+ 𝛽! ∗ 𝑆!,!+ 𝛽! ∗ 𝐼𝑛𝑓!,! + 𝑢!,!      (3.5)       Finally  the  multiple  regression  model  will  be  tested  on  unobserved   omitted  variables  that  are  correlated  with  lnMB,  errors  in  variables  and  

simultaneous  causality  bias  that  makes  the  error  term  correlated  with  lnMB.  In   this  model  it  is  assumed  that  causality  runs  from  the  independent  regressor   (lnMB)  to  the  dependent  regressor  (dlnGDP).  However  the  causality  can  also  run   from  the  dependent  to  the  independent  regressor.  In  this  case  there  is  

simultaneous  causality  in  which  omitted  variable  bias  cannot  be  excluded  by   adding  variables  to  the  model.  If  this  treat  occurs,  the  estimates  of  the  

coefficients  are  biased  and  inconsistent.  By  performing  an  IV  regression  an   instrument  variable  is  added  to  the  model  that  can  mitigate  simultaneous   causality.  The  instrument  is  a  variable  that  needs  to  fulfill  two  conditions.  First   the  variable  should  be  relevant.  If  an  instrument  𝑍!,!  is  relevant,  then  variation  in   the  instrument  is  related  to  variation  in  the  regressor  𝑋!,!.  Equation  3.6  presents   this  property.  

Corr(𝑍!,!, 𝑋!,!) ≠ 0      (3.6)  

The  second  property  of  a  valid  instrument  is  exogeneity.  If  an  instrument  fulfils   this  condition  then  part  of  the  variation  in  𝑋!,!,captured  by  the  instrumental   variable,  is  exogenous.  Equation  3.7  presents  this  property.  

(20)

In  order  to  test  the  exogeneity  of  the  instrument  a  variable  is  generated  that   represents  the  error  term  𝑢!,!.  This  error  term  is  measured  by  taking  the   difference  between  the  actual  observed  values  of  dlnGDP  and  the  predicted   values  of  dlnGDP  by  the  IV  regression  model.    

With  IV  regression  the  coefficient  𝛽!can  be  estimated  using  an  IV   estimator  called  two  stage  least  squares  (TSLS).  Equation  3.8  shows  the  first-­‐ stage  regression  model.    

𝑙𝑛𝑀𝐵!,! = 𝜋!+ 𝜋!∗ 𝑀𝐵!,!!!+ 𝜋!∗ 𝐺𝐷𝑃!,!!!+ 𝜋!∗ 𝑀𝐵!,!!!+ 𝜋!∗ 𝐻𝐶!,! + 𝜋!

∗ 𝑃𝑜𝑝!,!+ 𝜋! ∗ 𝑁𝑋!,!+ 𝜋!∗ 𝑆!,!+ 𝜋! ∗ 𝐼𝑛𝑓!,! + 𝑣!,!      (3.8)   In  the  second  stage  of  TSLS  the  coefficients  from  equation  3.1  are  estimated  by   OLS,  except  that  𝑙𝑛𝑀𝐵  is  replaced  by  its  predicted  value  𝑙𝑛𝑀𝐵!,!  drawn  from  the   first-­‐stage  regression  model.  Equation  3.9  shows  the  second-­‐stage  regression   model.    

𝑑𝑙𝑛𝐺𝐷𝑃!,! = 𝛽!+ 𝛽!∗ 𝑙𝑛𝑀𝐵!,!+ 𝛽!∗ 𝐺𝐷𝑃!,!!!+ 𝛽!∗ 𝑀𝐵!,!!!+ 𝛽!∗ 𝐻𝐶!,!+ 𝛽! ∗ 𝑃𝑜𝑝!,!+ 𝛽!∗ 𝑁𝑋!,!+ 𝛽!∗ 𝑆!,!+ 𝛽!∗ 𝐼𝑛𝑓!,! + 𝑢!,!      (3.9)   The  resulting  estimators  are  the  TSLS  estimators.  Stata  12,  the  software  used  in   this  econometric  research,  performs  these  two  stages  automatically  within  TSLS   estimation  commands.    The  OLS  estimate  of  𝛽!  from  equation  3.9  is  the  

coefficient  that  is  excluded  from  simultaneous  causality  bias.    

Summarized,  there  will  be  an  OLS  regression  performed  where  the  

robustness  of  the  model  is  tested  by  a  Robustness  check.  Since  the  OLS  method  is   not  the  most  appropriate,  main  emphasize  is  put  on  the  results  from  the  Country   Fixed  Effect,  Time  Fixed  Effect  and  IV  regression.  The  next  section  illustrates  the   results  found.  

4.  Results  

In  this  section  the  results  will  be  discussed  on  the  performed  regressions.  First   the  OLS  regression  together  with  two  Robustness  checks  are  analysed.  

Thereafter  regressions  that  hold  time  and  country  fixed  effects  into  account  are   discussed  together  with  IV  regression.  This  research  emphasizes  on  the  latter   comparison  of  results,  as  the  OLS  estimates  are  not  found  to  be  the  most   appropriate  for  this  dataset.          

(21)

  In  table  4.1  the  results  from  the  regression  performed  on  equation  3.1,  3.2   &  3.3  are  shown.  The  𝑅!  is  the  fraction  of  the  sample  variance  of  lnGDP  explained   or  predicted  by  the  regressors.  The  𝑅!  is  the  measure  of  fit  with  a  maximum   value  of  1.  As  can  be  seen  from  table  4.1  the  𝑅!  is  equal  to  0.0272  in  the  original   model  which  means  that  2.72  percent  of  the  variance  in  dlnGDP  is  explained  by   the  regressors.  In  addition  the  coefficient  of  lnMB  is  0.0058.  Given  that  GDP  is   defined  in  difference  natural  logarithms  and  the  monetary  in  natural  logarithms   this  means  that  given  a  1  percent  increase  in  the  monetary  base  the  marginal  

   

percentage  change  of  GDP  increases  by  0.0058  percent.  This  value  is  incredibly   small,  the  effect  of  the  monetary  base  on  GDP  can  therefore  be  neglected  in  this  

Referenties

GERELATEERDE DOCUMENTEN

The non-normal incidence of thin-film guided, in-plane unguided optical waves on straight, possibly composite slab waveguide facets is considered.. The quasi-analytical,

Best Offer Rejected displays the highest certainty-equivalent ratio (CER) (= bank offer / expected value of remaining prizes) the contestant chose to reject (No Deal).. Offer

Paragraph 5.1 will report on the results regarding the degree of internal democracy regarding the selection process of lobby points within the refugee

Systems vary in 1) the number of required, sometimes manually labeled, example pages; 2) the type of features used for extraction. Some methods treat a page as a se- quence of

van die reeks besluite aan om die Sap-pers, die Sap-liberaliste en die Torch Commando daaraan te hcrinner dat bulle geen ongunstige kommentaar op die konfcrensie se

This method requires the operator to measure crack growth at selected intervals when the test machine is stopped and is often used to verify the initial and final

This study aimed to investigate the dynamic effects of unexpected monetary policy shocks on inflation, exchange rate, the monetary aggregate M3, industrial production and the

The assembly of this protein coat in a polyhedral lattice on the cytosolic face of the plasma membrane requires the interplay between clathrin, the major component of the coat, and