• No results found

Earth observation for drought risk financing in pastoral systems of sub-Saharan Africa

N/A
N/A
Protected

Academic year: 2021

Share "Earth observation for drought risk financing in pastoral systems of sub-Saharan Africa"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Earth

observation

for

drought

risk

financing

in

pastoral

systems

of

sub-Saharan

Africa

Francesco

Fava

1

and

Anton

Vrieling

2

Asclimate-relatedcrisesincreaseglobally,climaterisk

financingisbecominganintegralpartoffinancialprotection

andresiliencebuildingstrategiesofAfricancountries.

Drought-inducedcrisesresultindevastatinghumanimpactsandhigh

costsforvulnerablecountries,threateninglonger-term

investmentsanddevelopmentefforts.Whileearthobservation

(EO)hasbeenwidelyusedfordroughtearlywarning,new

opportunitiesemergefromintegratingEOdataandmethods

intoindex-baseddroughtriskfinancing(IBDRF)instruments.

Suchinstrumentsaimatsupportinganeffectiveandtimely

responseduringdroughtshocksandimprovingtheresilience

ofsmall-holderfarmersandlivestockkeepers.Thisreview

documentsthecurrentstatus,anddiscussesfutureprospects

andpotentialchallengesforEOutilizationinIBDRF

applicationsinsub-SaharanAfrica.Wefocusonpastoral

systems,whicharehotspotsintermsofvulnerabilitytoclimate

andenvironmentalchange,foodinsecurity,poverty,and

conflicts.Inthesesystems,EO-basedIBDRFinterventionsare

rapidlyscalingupaspartofnationalandinternationalrisk

managementstrategies.

Addresses

1InternationalLivestockResearchInstitute(ILRI),P.O.Box30709,

Nairobi00100,Kenya

2UniversityofTwente,FacultyofGeo-informationScienceandEarth

Observation,P.O.Box217,7500AEEnschede,TheNetherlands

Correspondingauthor:Fava,Francesco(f.fava@cgiar.org)

CurrentOpinioninEnvironmentalSustainability2020,48:44–52 ThisreviewcomesfromathemedissueonThedryland social-eco-logicalsystemsinchangingenvironments

EditedbyBojieFu,MarkStaffordSmithandChaoFu

Received:01June2020;Accepted:14September2020

https://doi.org/10.1016/j.cosust.2020.09.006

1877-3435/ã2020TheAuthor(s).PublishedbyElsevierB.V.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons. org/licenses/by/4.0/).

Introduction

Crisis risk financing refers to mechanisms that aim at reducingadversesocio-economicorecologicalimpactsof potentialcrises[1].Thiscanincludepaying toprevent

and reduce therisk, or to prepare for and respond to a shock. Climate risk financing (CRF) targets climate-related shocks (e.g. drought, floods and heat waves) andisbecominganintegralpartofclimaterisk manage-mentframeworksaskeycomponentsoffinancial protec-tionstrategicplanningforlowandmiddleincome coun-tries [2]. Multiple CRF approaches exist, including market-basedinstruments(e.g.insuranceschemes, cata-strophic bonds and swaps), contingent financing (e.g. credit), or budgetary tools (i.e. dedicated reservefunds or contingency budgets). These approaches are all designedtoincreasefinancialresiliencetoclimate-related crises,linkingtheresponseactionstopre-defined mech-anisms for timely release of financial resources. In this way,theyaimatensuringrapidandcost-effective prepa-ration,assistance,recoveryor reconstructionefforts. Droughts,definedasperiodswithwaterdeficitrelativeto normalconditions,areoneofthemostdisruptingnatural disasters, each year affecting millions of people world-wide with devastating impacts [3,4]. Severe droughts cause massive disruptions to national economies and dramaticimpactson thelivelihoodand foodsecurity of small-holder farmers and livestock keepers. Standard responsestodroughtinAfricancountries,suchas human-itariansupportin theformofcash or foodtransfers,are important instruments to support drought-affected vul-nerable populations. However, these responses have proventobeoftentooslow,cost-ineffective,andtofoster dependencyrather than resilience, especiallywhennot integratedintoholisticrisk managementstrategies[2]. Among the different CRF instruments, index-based approacheshavegainedconsiderabletractionoverthelast two decades, particularly for targeting drought shock impactsonAfricansmall-holderfarmingsystems. Index-baseddroughtriskfinancing(IBDRF)usestrigger mecha-nismsthatrelyonatransparentandobjectivelymeasured indicatorofdrought(i.e.theindex).Theunderlyingindex mustbehighlycorrelatedwithdrought-relatedeconomic lossestobeusefulintracking,and,therefore,transferring, therisk.Payoutsaremadewhentheindexvaluesfallbelow a pre-defined threshold, normally derived from historic indexrealizations.Whencomparedtoex-postloss verifica-tion(e.g.traditionalinsurance),IBDRFlimitsinformation asymmetry issues, such as adverse selection and moral hazards,3reduces transaction and verification costs, and

3Thisterminologyoriginatesfrominsuranceliterature:adverseselectionoccurswhenpotentialpolicyholdersmakedecisionsbasedoninformation

abouttheirriskexposurethatisnotavailabletotheinsuranceprovider.Moralhazardoccurswhenthepolicyholdersengageinactivitiesthatincrease theirexposuretorisk,leavingtheinsurerexposedtohigherriskthanhadbeenassessedforpremiumratedetermination.

(2)

enablesmoreeffectiveandtimelydistributionofpayouts. However,theseadvantagescomeatthecostofthe inher-entlyimperfectcorrelationbetweenindexandactualloss, alsoknownasbasisrisk[5].

Pastoral production systems dominate the African dry-lands,coverabout43%ofAfrica’slandmass,andarethe main livelihood for about 268 million people in these areas[6].Droughtis adistinctivefeatureand over mil-leniathepastorallivelihooddevelopedto dealwith this [7]. However, particularly in SSA, the combination of increasingrainfallvariability[8]andotherpressures(e.g. changes in land use and tenure, population growth, rangeland degradation [9]) is weakening the resilience of pastoral communities and the effectiveness of tradi-tional drought coping mechanisms (e.g. mobility, re-stocking).Severedroughtscanleadtocatastrophicherd lossesinpastoralregions,andassuchcausefood insecu-rityandpovertytrapdynamics,anddramaticallyreduce national GDPsof SSA countries[5].Consequently, the development and implementationof drought risk man-agementstrategiesforpastoralregions,includingIBDRF initiatives, isakey component of thepolicyagendasof developmentinstitutions andnationalgovernments. Thescarcityandpoorqualityofgrounddataandnational statistics in SSA pastoralregions[10] hasmadein most casesEarthobservation(EO)bysatellitestheonlyviable optionfor designing IBDRFinstruments for large-scale implementation. Thegrowingavailability andincreased qualityoflong-termEOdatasetsofrainfallproductsand vegetation indices [11] have been instrumental in designing indicesthat are thought to reliably represent drought risks. Furthermore, the close interlinkage betweenrangelandconditionandimpactsonproductive assets (i.e. livestock)and livelihoods has facilitated the designoffinancialtriggeringmechanismsthatlinkimpact to payouts.Therefore,datasetsobtainedthrough multi-temporalsatelliteimageryarecurrentlyakeycomponent of IBDRFinitiativesin pastoralregions.

However,whilstthescientificliteratureondrought mon-itoringisvast,onlyafewstudiesreviewedthe contribu-tion ofEO toinsurance[12,13],andcurrentlyno over-view exists of the IBDRF initiatives, challenges, and prospectsin sub-SaharanAfrica.

Evolution

of

IBDRF

in

pastoral

Africa

During the last decade IBDRF initiatives in African pastoraldrylandshavegainedsignificantmomentum,also thankstolargeinternationalinitiativessuchasthe InsuR-esilience Investment Fund [14] and the Global Index-InsuranceFacility(GIIF).WhileforseveralyearsIBDRF schemes have largely remained at the pilot level, con-strainedbythelimiteddemandforretailmicro-insurance products[15,16],theseschemesarenowgradually cover-ing larger areas, given their growing integration in

country-widesocialprotectionanddroughtrisk manage-ment programs. This caused a significant increase in volumeoffinancialtransactionsandagrowing participa-tionofinternationalre-insurancecompanies,which facil-itatesrisktransfertowardinternationalfinancialmarkets, and promotes larger investments by governments and internationalorganizations.

Table 1 summarizes operational IBDRF initiatives in

SSA.. These initiatives, initially launched as retail micro-level index-insurance schemes (IBLI), more recently have expanded their scope and modality of implementation, including fully subsidized insurance programstargetingvulnerablepastoralists(KLIP,SIIPE), sovereign-levelinsuranceschemes(ARC),andscalability mechanisms of shock responsive safety nets programs (HSNP, NUSAF). At the same time, IBRDF product design evolved from indices designed to assess an observedloss(i.e.theIBLIlivestockmortalityscheme), thustriggeringwhendroughtisalreadyimpacting pasto-ralistassets,toindicesdesignedtoidentifydeteriorating forage condition, thus triggering at the earlier drought stages,withtheaimofsupportingpastoraliststo protect their assets (i.e. livestock or livelihood) or countries implementingearlyresponseactions.

While fully operational initiatives in pastoral areas are concentratedlargelyinEastAfricaand,toalesserextent, in the Sahel, several insurance providers and organiza-tions arelaunching similar IBDRFsolutions on aretail basisacrossSSA, includinginNiger, ZambiaandSouth Africa.Inaddition,feasibilitystudiesarebeingconducted in Somalia,Senegal,Burkina Faso,andMali. Thus les-sons gatheredfrom early implementation efforts are of keyrelevancefor sustainablescaling ofIBDRFin SSA.

EO-based

index

design

in

operational

IBDRF

schemes

Similartomostdroughtearlywarningsystems[e.g.Refs.

17,18,19],existingIBDRFschemesforpastoralsystems predominantlyusevegetationindicesorrainfallestimates (RFE) as input (Table 1). These EO products should meet the fundamental operational requirements for IBDRF,whichinclude 1)fulltransparencyand accessi-bilityofthesourcedata,2)availabilityofhistoricalrecords forfinancialriskmodellingandpricingofideally20years ormore,3)nearreal-timeavailability,and4)anexpected remaining lifetime of at least a few years. Satellite-derivedRFEcanprovideadirectindicationof meteoro-logicaldrought,whichlargelydetermineswater availabil-ityin rangelands.While availabilityof drinkingwateris important for livestock health, monitoringthis for large areasiscumbersome,giventhatmuchwaterforlivestock comesfromwellsorsmallwaterbodiesthatcannoteasily bemonitoredwithEO data. RFEsare insteadtypically usedinIBDRFtoestimatetheavailablewaterfor vege-tation, for exampleusing simple water-balance models.

(3)

Thewater requirementsatisfactionindex (WRSI)used byARCissuchamodel;itestimatesevapotranspiration demandsofvegetationandcomparesthiswithasimple ‘bucket’ model of the soil that gets filled with rainfall [20,21].Twomaindrawbacksexistwhenusing rainfall-basedindicesforlarge-scalepastoralIBDRF:1)despite thegrowingavailabilityofgriddedrainfallproducts,the quality,accessibility,anddensityofrainfallstationdata in pastoral SSA is generally low [22,23], resulting in unknown orpoor accuraciesin these areas [24]; 2)the link between rainfall and the vegetation’s water avail-abilityiscomplex,anddependsonvegetation character-istics,soil,andrainfalldistribution[25,26],whichcannot becharacterizedsufficiently with10-daily rainfallsums [27].

For extensive pastoral systems, forage availability is a keydeterminantoflivestock health,asalternative feed resources are largely unavailable or inaccessible. To overcome drawbacks of RFEs, optical sensors onboard satellitescanbeusedtomeasurethevegetation’s reflec-tance. Dense healthy vegetation reflects much in near infrared(NIR),andlittleinredwavelengths,and spec-tral vegetation indices, like the normalized difference

vegetationindex(NDVI),usethistomonitorvegetation condition. Fordroughtmonitoring, NDVI imagesfrom coarse-resolutionsatellites(250mandup)aregenerally used,because1)longtimeseriesexisttodescribe long-termvariability inforageconditions,2)their dailydata collections allow for more cloud-free observations to describe vegetation changes throughout the season, and3)documentedevidenceexistsforastrong relation-ship between rangeland biomass and NDVI [28,29]. Requiredpre-processingstepstoeffectivelyuseNDVI for anomaly analysis include temporal compositing [transforming daily to, e.g. 10-day data, keeping the best-qualityobservationforeachpixel;30],and smooth-ingtofurtherreduceatmosphericeffects [31].

TotransformNDVIoralternativedroughtindicesintoa usefulindexforpastoralIBDRFschemes,threestepsare required:

1) Spatial aggregation; geographic units are normally larger than grid cells, both for operational reasons and to reflect that herds move. Aggregation within units generally incorporates amask of where range-landsoccur.

Table1

SummaryofoperationalIBDRFprogramstargetingpastoraldrylands,orderedchronologicallywithinsuranceprogramslistedfirstand non-insuranceprogramsatthebottom

Programa Years Scope Satelliteb

sensor/indicator

Indexc Area Households(nr)

IBLI 2010 2015 Retail micro-insurancefor droughtrelated livestockmortality

AVHRRNDVI Livestockmortality Marsabit(Kenya), Borana(Ethiopia)

5983

IBLI 2015–present Retail micro-insurancefor assetprotection

MODISNDVI z-scoreseasonalNDVI NorthernKenya andBorana (Ethiopia)

7000

KLIP 2015–present Subsidized insurancefor assetprotection

MODISNDVI z-scoreseasonalNDVI Northernand EasternKenya

18000

SIIPE 2017-present Subsidized insurancefor assetprotection

MODISNDVI z-scoreseasonalNDVI Somaliregion (Ethiopia)

5000

ARC 2017-present Sovereignlevel insurance

RFE–multiple datasets

WRSI(RFEbased) EastAfricaand Sahel

N/ad

ARC 2019-present Sovereignlevel insurance

MODISNDVI z-scoreNDVIorVCI EastAfricaand Sahel

N/ad

HSNP 2015-present Socialprotection scalability mechamism

MODISNDVI VCIrunningaverage NorthernKenya >100000

NUSAF 2017-present Socialprotection scalability mechanism

MODISNDVI NDVIpercentanomaly Karamoja (Uganda)

25000

a

IBLI=Index-basedLivestockInsurance,KLIP=KenyanLivestockInsuranceProgram,SIIPE=SatelliteIndex-InsuranceforPastoralistsinEthiopia, ARC=AfricanRiskCapacity,HSNP=HungerSafetyNetProgram,NUSAF=NorthernUgandaSocialActionFund.

bAVHRR=AdvancedVeryHighResolutionRadiometer.MODIS=ModerateResolutionImagingSpectroradiometer,NDVI=NormalizedDifference

VegetationIndex,RFE=RainfallEstimates(usingsatellitedata).

cZ-scoreissometimesreferredtoasstandardscore,WRSI=WaterRequirementSatisfactionIndex,VCI=VegetationConditionIndex. d

AsARCisasovereign-levelinsurancescheme,therecipientofthepayoutisthecountryandthenumberofhouseholdscoveredwilldependonthe country’scontingencyplans.ARCisofferinginsurancecoverforrangelandsintheentireSahelandHornofAfricaandplanstoofferitalsoinCentral andSouthernAfrica.TheNDVIproducthasbeenlaunchedinChad,Niger,Mali,Mauritania,andKenya.

(4)

2) Temporal aggregation; most schemes aim to assess seasonal forage scarcity, requiring expert or EO-derived [32] knowledge on rainfall/vegetation seasonality.

3) Normalization to compare the current index value againsthistoricindexrealizationsinpastyears.Multiple options exist, suchas forexamplez-scoring (subtract meananddividebystandarddeviation),linearscaling between minimum and maximum historic values [i.e. the vegetation condition index, or VCI; 33], or percentilecalculation.

Theterm‘indexdesign’inIBDRFrefersto:a)thechoice ofinputdata,b)theprecisemethodsforperformingthe above-mentionedthreesteps,c)thesequencingofthese steps, and d) the testing of the resulting index against drought-relatedlossestimates.Eventually,thechoicefor a design will at least partly depend on the IBDRF instrument’spurpose,satisfactionofstakeholderson his-toric and current index readings, and (scientific) back-groundof the‘designers’.Giventhatdroughtsnormally affectlargeregionsandaresimultaneouslycharacterized byreducedprecipitationandvegetationgrowth,itiswell possible that alternative designs provide similar index outcomesduringmaindroughtevents.

Opportunities

and

challenges

for

EO

contribution

to

IBDRF

RecenttargetedresearcheffortsforEOsupportto inno-vativedesignofIBRDFsolutions,madeintheframework of the programs listed in Table 1, helped to remove criticalbarriers for scalingIBDRFinitiatives in pastoral drylands. Here, we discuss four emerging trends in IBDRFwherethedemandforinnovativesolutionsfrom EOresearchisstrong.Whilewearguethatthequalityof IBDRF product design differsand thatEO-aided solu-tions canplayanimportant role to improve operational programs, we also emphasize that each solution is con-text-specificandneedstoconsiderthetrade-offbetween a)timingand accuracyof theassessment, b) cost-effec-tivenessoftheresponseaction,andc)thecomplexityof the interaction between drought shocks and the socio-ecological pastoral systems (Figure 1) with the goal of mitigatingimpactsandspeeding-uprecoveryintheshort term,whilebuildinglong-termsocialandenvironmental resilience.

EmergingEOdataproductsforIBDRF

EO data products used for IBDRF index design in pastoral areas have evolved over time in response to stakeholder feedbacksand with emergingtechnologies. For example,theARC productforextensiverangelands hasrecentlytransitionedfromWRSItoNDVI(Table1), meeting the demand of key stakeholders. However, besidesvegetationindex(e.g.NDVI)productsthat pro-videadirectmeasureofforagestatus,drought character-istics can be obtained, for example, from EO-derived

precipitation[35],soilmoisture[36,37],or evapotranspi-ration[38]products[forreviewsonEOdrought monitor-ing options see also Refs. 11,39]. A variety of these productshavealreadybeen proposedandinsomecases integratedintodroughtindex-insurancepilotprojectsfor crops inAfrica,for example,throughdataservice provi-sion by commercial EO companies [e.g. Refs. 40–43]. Theseeffortsprovidepromisingalternativedrought indi-cesforinnovativeIBDRFdesignbyaddressingmultiple phases of drought progression and thus merit further analysis.

IBDRFdesigncouldalsotakeadvantageofthe continu-ous streamof free10 30m resolutionEO datathatare providedbysatellitessuchasSentinel-1,Sentinel-2,and Landsat-8. Given their high observation frequency, timelyfine-scaleestimatesofseasonalityandforage con-ditionscanbeprovided[44],evenifcloudcoverremainsa concernfor short vegetationseasons [45].Arguably pas-toral IBDRF may not require fine-scale data because droughtsgenerallyaffectlargeareas, butwheredrought impactsdifferduetogreaterlandscapevariability(e.g.in agro-pastoral systems) they could prove beneficial. As historical archivesof 10 30mresolution dataare build-ing, and tools to analyze resulting large data amounts become commonplace [46], finer-scale droughtanalysis will likelyfinditswayintoIBDRF.

Remotesensingadvancesforimprovedproductdesign

Thespatialcomponentofbasisrisk(i.e.impactsarenot equallydistributedwithinageographicinsuranceunit)is arecurrentissueforIBDRFproductsinpastoralareas,as administrativeunitscannotfullyreflectthe agro-ecologi-cal variability and herd mobility patterns. This type of basisriskhasbeenreportedfor someinsuranceunitsin Kenya and Ethiopia, especially at the fringe between agro-pastoral and extensive pastoral systems. To deal with this issue, administrative units could be replaced by more meaningful ecological units, for example, defined based on similar temporal behavior of NDVI [47]. In addition, high resolution EO data can help to improve rangeland mapping and characterization [48], allowing to better spatially focus coarser-resolution droughtindicesontheareaswithininsuranceunits that mattermostforforageproduction.

Payouttimingandtemporalaggregationisanothercritical componentofproductdesign.Triggeringearlyactionfor expectedadverseeventscanmakedisasterresponsemore cost-effective [49,61]. Because drought is aslow-onset shock,indicatorscanbedesignedthatdetectearlystages of thedrought progression[11].EO has supportedthe anticipationoftheresponsebyeffectivelycharacterizing between-yearvariabilityofforageconditionsearlierinthe season through shortening temporal aggregation win-dows, with the aim of designing assetprotection insur-ance products[49,62,63].Thishasbeenafundamental

(5)

step for the IBLI and KLIP programs to increase the uptakeandgainpoliticalsupporttowardgeographic scal-ing.However,indicesthatallowforearlytriggeringmust alsobebackedbyefficient payoutdeliverymechanisms toavoidnegative impactsonprogram sustainability. Morerecently,forecastingapproachesbasedontimeseries analysisandmachinelearningtechniqueshavebeen devel-opedtopredicttime-integrated(seasonal)NDVIanomalies fromlagged NDVI,rainfall,andclimateindices[64–68]. Whileresearch ondroughtforecasting modelsisgaining momentum, particularly for early warning systems (e.g. HSNP, Table 1), the implementation of forecasts into IBDRFinstruments is challenginggiventheforecasts’ large uncertaintyatlocalscalesandlongertimelags[69].Using forecastsasatriggeringindexcouldthusincreasebasisrisk andleadtooperationalimplementationchallenges(e.g.in caseoffalsealarmandunneededresponse)[61,70]. More-over,decidingonthresholdsforresponsetriggeringcould becomplexbecausethisrelatesnotonlytothelevelofthe impact, but also to itsprobability. A differentchallenge emerges when forecastsare not directly used but could nonethelessaffectIBDRFinstrumentssuchasinsurance.

Forexample,sinceinsurancepremiumsarebasedon his-toricalrealizationsoftheindex,reasonablyaccurate fore-castsmadebeforeinsurancesales[possiblythrough indige-nous indicators: 71] could lead to adverse selection if prospectivepurchasers have informationabout expected payoutsthattheproduct’spricingdoesnotaccountfor[e.g. Ref.15].Overall,whileanticipatoryriskfinancingbasedon forecastsisapromising innovationin IBDRF, its opera-tionalimplementationwouldrequireacarefulassessment ofassociatedrisksandeffectiveharmonizationwithother IBDRFinstruments.

QualityassuranceofIBDRF

Basis riskremains acriticalconcern for thequality and sustainabilityofIBDRFschemes.Foroperational initia-tivesafewrecentstudiescomparedresultsfrommultiple index designs [41,47,49,50]. Notwithstanding, these studieshighlightedthatevaluationoftheresulting indi-cesremainscomplexgiventhescarcityofand/ordifficulty tocollectgood-qualityin-situdataondroughtoutcomes. While EO product development and improved index design havepotentialto reducebasis risk,ultimately it remainsan empirical questionwhether this potentialis

Figure1 DROUGHT PROGRESSION IN PASTOROL SOCIO-ECOLOGICAL SYSTEMS TIMING & ACCURACY

COST-EFFECTIVENESS COST OF RESPONSE

TYPE OF RESPONSE

ACCURACY OF ASSESMENT / BASIS RISK TRIGGER TIMING

Current Opinion in Environmental Sustainability

GroundandsatelliteEOapplicationscancontributetomonitordroughtprogressionanditsecologicalandsocio-economicimpactstosupport context-specificdesignofIBDRFinstruments.TheupperpartoftheFigureillustratestheprogressionofdroughtimpactsfollowingMishraand Singh[34].Whiledroughtevolvesfrommeteorologicaltosocio-economic,IBRDFdesignneedstoconsidertrade-offstomaximizethe social-ecologicalbenefits,whileaccountingforeconomiccoststoascertainlong-termsustainabilityoftheinstruments.Forexample,anEO-basedindex designedwithanearlytriggerisexpectedtobemoreaccurateindetectingmeteorologicaloragriculturaldrought,butmightbelesseffectivein assessingsocio-economicimpacts.Thissourceofbasisriskmay(ormaynot)becounterbalancedbythesavingsineconomiccostsassociated withassetprotectionandearlyresponse.Theseassumptionsarecontext-specificandproductqualityassessmentisthusfundamentaltoevaluate trade-offs.

(6)

realized.Thisquestiongoesbeyondthetraditional accu-racy assessment approachesin the EO domain (e.g. an evaluationifsoilmoistureisaccuratelyrepresented ina soil moisture product),as it should encompass also the socio-economicvalueoftheproposedsolution[49],and be formalized through quality metrics, minimum stan-dards and robust assessment frameworks [1,51]. The overarchinggoalshouldbetodesignrigorousquantitative metricsandapproachestoassessandcomparetheutility of IBDRFinterventions.

A main challenge is collecting and analyzing relevant reference data on drought outcomes, given the limited formal data sets [52]. Potential data sources include multi-year forage biomass measurements [53], drought recallexercises[52],andrepetitivehouseholdsurveyson droughtoutcomessuchaslivestockmortality[49]orchild nutrition[54].Giventhecost-intensiveandlabor-intensive nature of collecting such data, ground-based EO approachescanprovideausefuladdition.Agoodexample istherepetitiveobservationofthesamevegetation,either bypermanentcameras[55,56],orthroughcrowdsourcing platforms[57].Forcrops,thishasalreadyledtotheideaand implementation of ‘picture-based-insurance’ whereby farmersrepeatedlycollectpicturesoftheirfieldsfor verifi-cation of insuranceclaims[58]. Thisidea could be extended to rangeland and livestock conditions, possibly taking advantage of computer-visionbased automationof body scoringtechniques[59,60].Increasedeffortsinreference datacollectionareurgentlyneededtoanswertheempirical questionandprovidequalityinsuranceproducts.

Socio-economicandenvironmentalimpactevaluation

With the geographic expansion and growing number of households covered, the need for impact evaluation of IBDRFinitiativeshasincreased.Traditionallyimpact eval-uationofdroughtcrisesonsmall-holderfarmersand live-stock keepers largely focused on socio-economic factors through mixed qualitative-quantitative household-level surveys [72].However,the highcosts andcomplexityof such surveys haveprevented asystematic integrationof impactassessmentstudies in IBDRF initiatives, so that only fewrobustassessmentsareavailableinpastoralregions[e.g. Ref.73].Inaddition,environmentalimpacts have been poorlyconsidered so far, while scalingIBDRFinterventions to a large number of households might have relevant ecological impacts. For example, reduced herd losses may result in increased grazing pressure on rangelands [74,75],althoughempiricalstudiessuggestonthecontrary thatinsuredpastoralistskeepsmallerherdsbecausethey reducetheiruseoflivestockasprecautionarysavings[76]. EOapproachesforrangelandhealthmonitoringarewell established [e.g. Ref. 77]. However, only few studies, focused on land restoration, have integrated these approachesinto impactassessment of largeprogramsin drylands[78,79].Recentliteraturealsoshowedpotential

for assessing food security and household wealth [80,81,82], but pointed out that satellite EO capacity to directly monitor socio-economic indicators of house-hold wellbeing and rapid land use dynamics during drought events (e.g. land accessibility, land tenure changes, migration)is limited. Impact evaluation could beimprovedbycombiningsatelliteEOinformationwith in-situcollectedenvironmentalandsocial-economicdata [83], which are increasingly available via mobile and crowdsourcing platforms also in rural Africa [e.g. Refs.

84,85,86].Thiscanbesupportedbyadvancesinmachine learning algorithms, allowing to extract patterns and understandspatialconnectionsfromdiversedatasources [87]. Datadriven approachesshould be, however, used with caution and framed within a robust set of causal hypotheses, taking into account the cross-scale interac-tionsbetweenphysicalandsocio-economicfactors[81].

Conclusions

IBDRF initiatives are scaling up as part of the policy agendasofSSAcountriesanddevelopmentorganizations onresiliencebuilding,povertyreduction,andsustainable development.EOplaysakeyroleinsustainingthistrend in pastoral drylands, with the potential of significant societalandpolicyimpactintheregion.Innovationsfrom groundandsatelliteEOtechnologiescouldcontributeto design more accurate, cost-effective, and harmonized droughtriskfinancingprograms,aswellastoassesstheir effectiveness during shocks and their longer-term impacts. However,thiscan onlybeachievedif theEO communitydoesnotlimititsroletoproviding technolog-icalsolutionsandservices,butratherbecomesanintegral partoftheinterdisciplinaryframeworktoaddressdrought risk management in complex socio-ecological systems, understandingsynergiesandtrade-offsbetweenresearch, operationalimplementation,and policyformulation.

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

TheCGIARResearchprogramonLivestockandcontributorstothe CGIARTrustFundareacknowledgedforsupportingthisresearch.Anton VrielingwasfundedbytheDutchResearchCouncil(NWO),Spacefor GlobalDevelopment(WOTRO)programme,aspartofthe CGIAR-Netherlandspartnership.WethankNathanielJensen(ILRI)andJames Hassell(SmithsonianGHP)fortheirvaluablecommentsandinputsonthe manuscript.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest 1.

 PooletoAction.L,ClarkeLondon,D,SwithernUK:CentreS:TheforFutureDisasterofCrisisProtection;Financing:2020ACall https://www.disasterprotection.org/crisisfinance.

Thereportprovidesanoverviewofcrisisfinancingandareferencefor terminology, setting out a new vision for effective crisis financing packagesandinstruments.

(7)

2. TheWorldBank:DisasterRiskFinanceasaToolforDevelopment: ASummaryofFindingsfromtheDisasterRiskFinanceImpact AnalyticsProject. WashingtonDC:TheWorldBank;2016https:// openknowledge.worldbank.org/handle/10986/24374.

3. Carra˜oH,NaumannG,BarbosaP:Mappingglobalpatternsof droughtrisk:anempiricalframeworkbasedonsub-national estimatesofhazard,exposureandvulnerability.GlobalEnviron Change2016,39:108-124.

4. MezaI,SiebertS,Do¨llP,KuscheJ,HerbertC,RezaeiEE,NouriH, GerdenerH,PopatE,FrischenJetal.:Global-scaledroughtrisk assessmentforagriculturalsystems.NatHazardsEarthSystSci 2020,20:695-712.

5. BarrettCB,BarnettBJ,CarterMR,ChantaratS,HansenJW, MudeAG,OsgoodD,SkeesJR,TurveyCG,WardMN:Poverty TrapsandClimateRisk:LimitationsandOpportunitiesof Index-BasedRiskFinancingIRITechnicalReportNo.07-02.2007. 6. FAO:PastoralisminAfrica’sDrylands;ReducingRisks,Addressing

VulnerabilityandEnhancingResilience. Rome,Italy:Foodand AgricultureOrganizationoftheUnitedNations;2018. 7. ButtB,ShortridgeA,WinklerPrinsAMGA:Pastoralherd

management,droughtcopingstrategies,andcattlemobilityin SouthernKenya.AnnAssocAmGeogr2009,99:309-334. 8. SloatLL,GerberJS,SambergLH,SmithWK,HerreroM,

FerreiraLG,GoddeCM,WestPC:Increasingimportanceof precipitationvariabilityongloballivestockgrazinglands.Nat ClimateChange2018,8:214-218.

9. HallerT,VanDijkH,BolligM,GreinerC,SchareikaN,GabbertC: Conflicts,securityandmarginalisation:institutionalchangeof thepastoralcommonsina’glocal’world.OIERevue ScientifiqueetTechnique2016,35:405-416.

10. ZezzaA,FederighiG,KalilouAA,HiernauxP:Milkingthedata: measuringmilkoff-takeinextensivelivestocksystems. ExperimentalevidencefromNiger.FoodPolicy2016, 59:174-186.

11.

 WestmonitoringH,Quinn&impactN,Horswellassessment:M:Remoteprogress,sensingpastfordroughtchallenges andfutureopportunities.RemoteSensEnviron2019,232 111291.

Acomprehensivereviewsummarizingthelatestdevelopmentsofremote sensingtechnologiesfordroughtmonitoringandassessment,withaclear vision toward the future roleof new missions, sensor technologies, algorithmsandanalytics.

12. deLeeuwJ,VrielingA,SheeA,AtzbergerC,HadguK,BiradarC, KeahH,TurveyC:Thepotentialanduptakeofremotesensing ininsurance:areview.RemoteSens2014,6:10888-10912. 13.

 Vroege–areviewW,DalhausforEuropeT,FingerandNorth-America.R:IndexinsurancesAgricforSystgrasslands2019, 168:101-111.

Thisreviewsprovidesanoverviewofemergingtrendsinindex-insurance forgrasslandsinEuropeandNorthAmerica,settingthestageforfuture opportunities.

14. InsuResilience:JointStatementontheInsuResilienceGlobal Partnership.14November2017.Bonnhttps://www.insuresilience. org/wp-content/uploads/2017/11/

20171205-Joint-Statement-InsuResilience-Global-Partnership. pdf:Accessed:29May2020.

15. JensenND,MudeAG,BarrettCB:Howbasisriskand spatiotemporaladverseselectioninfluencedemandforindex insurance:evidencefromnorthernKenya.FoodPolicy2018, 74:172-198.

16. TakahashiK,IkegamiM,SheahanM,BarrettCB:Experimental evidenceonthedriversofindex-basedlivestockinsurance demandinsouthernEthiopia.WorldDev2016,78:324-340. 17.

 RemboldHoyosA,LemoineF,MeroniG,M,LeoUrbanoO,NegreF,CsakT:ASAP:G,KerdilesanewH,globalPerez-early warningsystemtodetectanomalyhotspotsofagricultural productionforfoodsecurityanalysis.AgricSyst2019, 168:247-257.

Thisstudydescribesanewglobalearlywarningsystem,whichprovides timelywarningsthroughauser-friendlypubliconlinewebGIS. State-of-theartEOmethods areusedtoderiveagriculturalproductiondeficit

warning categories, which are integrated by comprehensive expert analyses.

18. FritzS,SeeL,BayasJCL,WaldnerF,JacquesD,Becker-ReshefI, WhitcraftA,BaruthB,BonifacioR,CrutchfieldJetal.:A comparisonofglobalagriculturalmonitoringsystemsand currentgaps.AgricSyst2019,168:258-272.

19. Becker-ReshefI,JusticeC,BarkerB,HumberM,RemboldF, BonifacioR,ZappacostaM,BuddeM,MagadzireT,ShitoteC etal.:Strengtheningagriculturaldecisionsincountriesatrisk offoodinsecurity:theGEOGLAMcropmonitorforearly warning.RemoteSensEnviron2020,237.

20. VerdinJ,KlaverR:Grid-cell-basedcropwateraccountingfor thefamineearlywarningsystem.HydrolProcess2002, 16:1617-1630.

21. TarnavskyE,ChavezE,BoogaardH:Agro-meteorologicalrisks tomaizeproductioninTanzania:sensitivityofanadapted WaterRequirementsSatisfactionIndex(WRSI)modelto rainfall.IntJApplEarthObservGeoinf2018,73:77-87. 22. NicholsonSE,FunkC,FinkAH:RainfallovertheAfrican

continentfromthe19ththroughthe21stcentury.Global PlanetaryChange2018,165:114-127.

23. MaidmentRI,GrimesD,BlackE,TarnavskyE,YoungM, GreatrexH,AllanRP,SteinT,NkondeE,SenkundaSetal.:Anew, long-termdailysatellite-basedrainfalldatasetforoperational monitoringinAfrica.SciData2017,4170063.

24. NicholsonSE,KlotterD,ZhouL,HuaW:Validationofsatellite precipitationestimatesovertheCongoBasin.JHydrometeorol 2019,20:631-656.

25. WilcoxKR,ShiZ,GherardiLA,LemoineNP,KoernerSE, HooverDL,BorkE,ByrneKM,Cahill JJr,CollinsSLetal.: Asymmetricresponsesofprimaryproductivitytoprecipitation extremes:asynthesisofgrasslandprecipitationmanipulation experiments.GlobalChangeBiol2017,23:4376-4385. 26. ZeppelMJB,WilksJV,LewisJD:Impactsofextreme

precipitationandseasonalchangesinprecipitationonplants. Biogeosciences2014,11:3083-3093.

27. KimaniMW,HoedjesJCB,SuZ:Anassessmentof satellite-derivedrainfallproductsrelativetogroundobservationsover EastAfrica.RemoteSens2017,9:430.

28. SchucknechtA,MeroniM,KayitakireF,BoureimaA: Phenology-basedbiomassestimationtosupportrangelandmanagement insemi-aridenvironments.RemoteSens2017,9.

29. DingaanMNV,TsuboM:Improvedassessmentofpasture availabilityinsemi-aridgrasslandofSouthAfrica.Environ MonitAssess2019,191.

30. FensholtR,AnyambaA,StisenS,SandholtI,PakE,SmallJ: Comparisonsofcompositingperiodlengthforvegetation indexdatafrompolar-orbitingandgeostationarysatellitesfor thecloud-proneregionofWestAfrica.PhotogrammEng RemoteSens2007,73:297-309.

31. CaiZ,Jo¨nssonP,JinH,EklundhL:Performanceofsmoothing methodsforreconstructingNDVItime-seriesandestimating vegetationphenologyfromMODISdata.RemoteSens2017,9. 32. ZengL,WardlowBD,XiangD,HuS,LiD:Areviewofvegetation

phenologicalmetricsextractionusingtime-series, multispectralsatellitedata.RemoteSensEnviron2020,237 111511.

33. KlischA,AtzbergerC:OperationaldroughtmonitoringinKenya usingMODISNDVItimeseries.RemoteSens2016,8:267. 34. MishraAK,SinghVP:Areviewofdroughtconcepts.JHydrol

2010,391:204-216.

35. SunQ,MiaoC,DuanQ,AshouriH,SorooshianS,HsuKL:A reviewofglobalprecipitationdatasets:datasources, estimation,andintercomparisons.RevGeophys2018, 56:79-107.

36. BabaeianE,SadeghiM,JonesSB,MontzkaC,VereeckenH, TullerM:Ground,proximal,andsatelliteremotesensingofsoil moisture.RevGeophys2019,57:530-616.

(8)

37. DorigoW,WagnerW,AlbergelC,AlbrechtF,BalsamoG, BroccaL,ChungD,ErtlM,ForkelM,GruberAetal.:ESACCIsoil moistureforimprovedEarthsystemunderstanding: state-of-theartandfuturedirections.RemoteSensEnviron2017, 203:185-215.

38. LiouYA,KarSK:Evapotranspirationestimationwithremote sensingandvarioussurfaceenergybalancealgorithms-a review.Energies2014,7:2821-2849.

39. AghaKouchakA,FarahmandA,MeltonFS,TeixeiraJ, AndersonMC,WardlowBD,HainCR:Remotesensingof drought:progress,challengesandopportunities.RevGeophys 2015,53:452-480.

40. RosemaA,vanHuysteeJ,FoppesS,vanderWoerdJ,KlaassenE, BarendseJ,AsseldonkMV,DubreuilM,Re´gentS,WeberSetal.: FESAMicro-insurance:CropInsuranceReachingEveryFarmerin Africa. Delft,TheNetherlands:EARSEarthEnvironment Monitoring;2014.

41. IFAD:RemoteSensingforIndexInsurance;FindingsandLessons LearnedforSmallholderAgriculture. Rome,Italy:International FundofAgriculturalDevelopment;2017.

42. EnenkelM,FarahC,HainC,WhiteA,AndersonM,YouL, WagnerW,OsgoodD:Whatrainfalldoesnottellus;enhancing financialinstrumentswithsatellite-derivedsoilmoistureand evaporativestress.RemoteSens2018,10:1819.

43. VanderSatHowVanderSatishelpingsmallholderfarmerswith satellites.https://www.vandersat.com/blog/

how-vandersat-is-helping-smallholder-farmers-with-satellites: Accessed:28May2020.

44. BoltonDK,GrayJM,MelaasEK,MoonM,EklundhL,FriedlMA: Continental-scalelandsurfacephenologyfromharmonized Landsat8andSentinel-2imagery.RemoteSensEnviron2020, 240111685.

45. ChengY,VrielingA,FavaF,MeroniM,MarshallM,GachokiS: PhenologyofshortvegetationcyclesinaKenyanrangeland fromPlanetScopeandSentinel-2.RemoteSensEnviron2020, 248112004.

46. GorelickN,HancherM,DixonM,IlyushchenkoS,ThauD, MooreR:GoogleEarthEngine:planetary-scalegeospatial analysisforeveryone.RemoteSensEnviron2017,202:18-27. 47. DeOtoL,VrielingA,FavaF,deBieK:Exploringimprovementsto

thedesignofanoperationalseasonalforagescarcityindex fromNDVItimeseriesforlivestockinsuranceinEastAfrica.Int JApplEarthObservGeoinf2019,82101885.

48. ZhangW,BrandtM,WangQ,PrishchepovAV,TuckerCJ,LiY, LyuH,FensholtR:Fromwoodycovertowoodycanopies:how Sentinel-1andSentinel-2dataadvancethemappingofwoody plantsinsavannas.RemoteSensEnviron2019,234111465. 49.

 JensenMudeA,N,CarterStoefflerM:DoesQ,FavatheF,designVrielingmatter?A,AtzbergerComparingC,MeroniM, satellite-basedindicesforinsuringpastoralistsagainst drought.EcolEcon2019,162:59-73.

Aqualityassessmentofmultipleremotesensing-basedproductdesign optionsforindex-basedlivestockinsuranceisconductedusingautility framework. This studybridgestheremote sensing anddevelopment economicsliterature.

50. Roumiguie´ A,SigelG,Poilve´ H,BouchardB,VrielingA,JacquinA: Insuringforagethroughsatellites:testingalternativeindices againstgrasslandproductionestimatesforFrance.IntJ RemoteSens2017,38:1912-1939.

51. CarterM,ChiuT:AMinimumStandardtoEnsureIndexInsurance ContractsDoNoHarm. Davis,California:FeedtheFuture InnovationLabforAssetsandMarketAccess;2018. 52. OsgoodD,PowellB,DiroR,FarahC,EnenkelM,BrownM,

HusakG,BlakeleyS,HoffmanL,McCartyJ:Farmerperception, recollection,andremotesensinginweatherindexinsurance: anEthiopiacasestudy.RemoteSens2018,10:1887.

53. Roumiguie´ A,JacquinA,SigelG,Poilve´ H,LepoivreB,HagolleO: Developmentofanindex-basedinsuranceproduct:validation ofaforageproductionindexderivedfrommediumspatial

resolutionfCovertimeseries.GIScienceRemoteSens2015, 52:94-113.

54. MudeAG,BarrettCB,McPeakJG,KaithoR,KristjansonP: Empiricalforecastingofslow-onsetdisastersforimproved emergencyresponse:anapplicationtoKenya’saridnorth. FoodPolicy2009,34:329-339.

55. InoueT,NagaiS,KobayashiH,KoizumiH:Utilizationof ground-baseddigitalphotographyfortheevaluationofseasonal changesintheabovegroundgreenbiomassandfoliage phenologyinagrasslandecosystem.EcolInf2015,25:1-9. 56. BrowningDM,SnyderKA,HerrickJE:Plantphenology:taking

thepulseofrangelands.Rangelands2019,41:129-134. 57. JensenN,TothR,XueY,BernsteinR,ChebelyonEK,MudeAG,

BarrettC,GomesC:Don’tfollowthecrowd:incentivesfor directedspatialsampling.2017AnnualMeeting;Chicago, Illinois:AgriculturalandAppliedEconomicsAssociation2017. 58. CeballosF,KramerB,RoblesM:Thefeasibilityofpicture-based

insurance(PBI):Smartphonepicturesforaffordablecrop insurance.DevEng2019,4.

59. LiuD,HeD,NortonT:Automaticestimationofdairycattlebody conditionscorefromdepthimageusingensemblemodel. BiosystEng2020,194:16-27.

60. Rodrı´guezAlvarezJ,ArroquiM,MangudoP,TolozaJ,JatipD, Rodrı´guez JM,TeyseyreA,SanzC,ZuninoA,MachadoCetal.: Bodyconditionestimationoncowsfromdepthimagesusing ConvolutionalNeuralNetworks.ComputElectronAgric2018, 155:12-22.

61. Guimara˜esNobreG,DavenportF,BischiniotisK,VeldkampT, JongmanB,FunkCC,HusakG,WardPJ,AertsJCJH:Financing agriculturaldroughtriskthroughex-antecashtransfers.Sci TotalEnviron2019,653:523-535.

62. VrielingA,MeroniM,MudeAG,ChantaratS,UmmenhoferCC,de BieCAJM:Earlyassessmentofseasonalforageavailabilityfor mitigatingtheimpactofdroughtonEastAfricanpastoralists. RemoteSensEnviron2016,174:44-55.

63. MeroniM,FasbenderD,KayitakireF,PiniG,RemboldF,UrbanoF, VerstraeteM:Earlydetectionofproductiondeficithot-spotsin semi-aridenvironmentusingFAPARtimeseriesanda probabilisticapproach.RemoteSensEnviron2014,142:57-68. 64. AdedeC,ObokoR,WagachaPW,AtzbergerC:Amixedmodel approachtovegetationconditionpredictionusingartificial neuralnetworks(ANN):caseofKenya’soperationaldrought monitoring.RemoteSens2019,11:1099.

65. AdedeC,ObokoR,WagachaPW,AtzbergerC:Model ensemblesofartificialneuralnetworksandsupportvector regressionforimprovedaccuracyinthepredictionof vegetationconditionsanddroughtsinfournorthernKenya counties.ISPRSIntJGeo-Inf2019,8.

66. MatereJ,SimpkinP,AngererJ,OlesambuE,RamasamyS, FasinaF:PredictiveLivestockEarlyWarningSystem(PLEWS): monitoringforageconditionandimplicationsforanimal productioninKenya.WeatherClimateExtremes2020,27 100209.

67. BarrettAB,DuivenvoordenS,SalakpiE,MuthokaJM,MwangiJ, OliverS,RowhaniP:Forecastingvegetationconditionfor droughtearlywarningsystemsinpastoralcommunitiesin Kenya.RemoteSensEnviron2020.accepted.

68. MeroniM,RemboldF,FasbenderD,VrielingA:Evaluationofthe StandardizedPrecipitationIndexasanearlypredictorof seasonalvegetationproductionanomaliesintheSahel. RemoteSensLett2017,8:301-310.

69. HaoZ,SinghVP,XiaY:Seasonaldroughtprediction:advances, challenges,andfutureprospects.RevGeophys2018, 56:108-141.

70. LopezA,CoughlandePerezE,BazoJ,SuarezP,vandenHurkB, vanAalstM:Bridgingforecastverificationandhumanitarian decisions:avaluationapproachforsettingupaction-oriented earlywarnings.WeatherClimateExtremes2020,27.

(9)

71. AnderssonL,WilkJ,GrahamLP,WiknerJ,MokwatloS,PetjaB: Localearlywarningsystemsfordrought–couldtheyadd valuetonationallydisseminatedseasonalclimateforecasts? WeatherClimateExtremes2020,28.

72. LevineS,GrayB:HowtoassesstheimpactofaDroughtRisk Financingfacility:aguide:StartNetwork.2017.

73.

 BanerjeeresearchR,practiceHallA,forMudeimpactA,WanderaintheCGIAR:B,KellytheJ:Emergingcaseof Index-BasedLivestockInsurance(IBLI).OutlookAgric2019, 48:255-267.

TheIndex-BasedLivestockInsuranceprogramisdiscussedandgood practicesinlinkingresearchandimplementationfortheachievementof developmentimpactsarehighlighted.

74.

 vulnerabilityJohnF,TothR,throughFrankK,insurance?GroeneveldPotentialJ,Mu¨llerunintendedB:Ecological consequencesoflivestockdroughtinsurance.EcolEcon2019, 157:357-368.

Thisstudyanalyzespotentiallong-termecologicalimpactsoflivestock drought insurance usingmodel simulations,and suggests how land degradationdynamicscouldpotentiallybeinducedbyscaling-up insur-anceprograms.

75. Mu¨llerB,JohnsonL,KreuerD:Maladaptiveoutcomesofclimate insuranceinagriculture.GlobalEnvironChange2017,46:23-33. 76. MatsudaA,TakahashiK,IkegamiM:Directandindirectimpact

ofindex-basedlivestockinsuranceinSouthernEthiopia. GenevaPapersRiskInsur:IssuesPract2019,44:481-502. 77. HerrickJE,ShaverP,PykeDA,PellantM,ToledoD,LepakN:A

strategyfordefiningthereferenceforlandhealthand degradationassessments.EcolIndic2019,97:225-230. 78. delRı´o-MenaT,WillemenL,TesfamariamGT,BeukesO,

NelsonA:Remotesensingformappingecosystemservicesto supportevaluationofecologicalrestorationinterventionsin anaridlandscape.EcolIndic2020,113.

79. MeroniM,SchucknechtA,FasbenderD,RemboldF,FavaF, MauclaireM,GoffnerD,DiLucchioLM,LeonardiU:Remote sensingmonitoringoflandrestorationinterventionsin semi-aridenvironmentswithabefore–aftercontrol-impact statisticaldesign.IntJApplEarthObservGeoinf2017,59:42-52.

80. WatmoughGR,MarcinkoCLJ,SullivanC,TschirhartK,MutuoPK, PalmCA,SvenningJC:Socioecologicallyinformeduseof remotesensingdatatopredictruralhouseholdpoverty.Proc NatlAcadSciUSA2019,116:1213-1218.

81.

 HeSheffieldX,EstesJ:IntegratedL,KonarM,approachesTianD,AnghileritounderstandingD,BaylisK,Evansand TP, reducingdroughtimpactonfoodsecurityacrossscales.Curr OpinEnvironSustain2019,40:43-54.

Thisreviewdiscusseshowdroughtimpactsfoodsecurity,withafocuson resourceavailability,access,andstability,andlinksdataandmodelswith thedecisionmakingprocess.

82. CooperMW,BrownME,Hochrainer-StiglerS,PflugG, McCallumI,FritzS,SilvaJ,ZvoleffA:Mappingtheeffectsof droughtonchildstunting.ProcNatlAcadSciUSA2019, 116:17219-17224.

83. DongJ,MetternichtG,HostertP,FensholtR,ChowdhuryRR: Remotesensingandgeospatialtechnologiesinsupportofa normativelandsystemscience:statusandprospects.Curr OpinEnvironSustain2019,38:44-52.

84.

 KnippenbergresiliencewithE,highJensenfrequencyN,Constasdata:M:temporalQuantifyingdynamicshouseholdand methodologicaloptions.WorldDev2019,121:1-15.

Thisstudypresentsmultipleapproachestomeasurehouseholdresilience toshocks,outliningamethodologicalapproachforcollectingmonthly ‘high-frequency’householddata.

85. GirouxSA,KouperI,EstesLD,SchumacherJ,WaldmanK, GreenshieldsJT,DickinsonSL,CaylorKK,EvansTP:A high-frequencymobilephonedatacollectionapproachfor researchinsocial-environmentalsystems:applicationsin climatevariabilityandfoodsecurityinsub-SaharanAfrica. EnvironModelSoftw2019,119:57-69.

86. KimitiDW,GanguliAC,HerrickJE,KarlJW,BaileyDW:Adecision supportsystemforincorporatinglandpotentialinformationin theevaluationofrestorationoutcomes.EcolRestor2020, 38:94-104.

87. ReichsteinM,Camps-VallsG,StevensB,JungM,DenzlerJ, CarvalhaisN:Prabhat:Deeplearningandprocess

understandingfordata-drivenEarthsystemscience.Nature 2019,566:195-204.

Referenties

GERELATEERDE DOCUMENTEN

In periode 1 werd een meettijd van 15 minuten aangehouden met een achtergrondmeting van 60 minuten (gebruikt van juli 2002 t/m augustus 2002), in periode 2 is de meettijd per

This topic was studied in two ways: a statistical analysis was performed on FDI inflows in different groups of sub-Saharan African countries and in a qualitative research the

The results in table 9b show that the positive effect of multichannel shopping on customer expenditures in purchase frequency of consumer electronics was significantly more

Relationship Mail is a unique business considering its concept and was given a grant from the Government of R1.6 million to fund the start-up of the business and to build

Therefore, this research evaluated 10 QPM and two non-QPM hybrids obtained from CIMMYT-Zimbabwe with the following objectives: to determine the influence of

The Gender Age Socio-Behavioural Intervention (GASBI) Model, employing the GIRRL (Girls in Risk Reduction Leadership) Project multi-site case study will be introduced as

De investering kan eventueel wel haalbaar zijn, wanneer het bedrijf in de huidige situatie ieder jaar voldoende marge heeft die gebruikt kan worden voor het betalen van die

Islamic studies in Africa has therefore not been so deeply influenced by the orientalist her- itage of Western scholarship that prevailed among those who studied Islam in