• No results found

SALINISATION OF THE HARINGVLIET AND ITS EFFECTS ON THE SURROUNDING AGROSOCIAL SYSTEM

N/A
N/A
Protected

Academic year: 2021

Share "SALINISATION OF THE HARINGVLIET AND ITS EFFECTS ON THE SURROUNDING AGROSOCIAL SYSTEM"

Copied!
46
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

SALINISATION OF THE HARINGVLIET AND 

ITS EFFECTS ON THE SURROUNDING 

AGRO­SOCIAL SYSTEM

    Final version May 22, 2016      Aerial view of the Haringvliet sluices                  Esther Bos 10543171  Esther Brakkee 10633480  Inger Bij de Vaate 10624562  Course:  Interdisciplinary Project 2016  Supervisor: N. van Woerden  Expert supervisor: A. Gilbert  Word count:  7215 (incl. in­text references)  

(2)

Abstract

 

Salinisation of soils is an increasing problem worldwide. Saline agriculture has potential as a        sustainable solution in salt­affected areas. In the Haringvliet, saline intrusion will increase due to        the opening of the sea sluices in 2018. In this research, the local area is viewed as an agro­social        system governed by a productivity­focused paradigm. The effect of increased salinisation on this        system and its paradigm is investigated. The pressure of salinisation was considered in        combination with other pressures on the system to see if they might together drive a transition        towards saline agriculture. Saline intrusion from the Haringvliet was found to occur to a significant        extent especially close to the water body. Without countermeasures this will substantially affect        local farmers. Other pressures on various levels, such as drought, are simultaneously affecting the        system. Saline agriculture can reduce several of these pressures, increasing its feasibility in the        region. Especially a multifunctional, climate­proof form has potential. However, barriers were        found to the upscaling of saline agriculture, especially the lock­in created by the current water        infrastructure and the low willingness of farmers to change. These barriers have to be taken into        account when saline agriculture is considered as a solution for salinity problems.   

Table of content 

Introduction   Theoretical framework   Methodology   Background case­study area   Characteristics of the agro­social system   Characteristics of agriculture   Characteristics of the water system   Results   Section 1. Future extent of salinisation   1.1 Salinity distribution Haringvliet   1.2 Saltwater intrusion   1.3 Consequences of salinisation for agriculture   Section 2. Transition to a new agro­social system   2.1 Challenges current paradigm with increased salinity   2.2 Strategies to cope with salinisation   2.3 Arisen opportunities for Saline Agriculture from the identified pressures on the current  regime   2.4 Barriers for saline agriculture implementation on a large scale   Discussion  

(3)

Conclusions  

Appendices  

 

Introduction

 

Climate change, irrigation and land subsidence are leading to a spread of salinisation in many areas        of the world. This causes salinity problems in the rooting zone of arable lands, decreasing the yield        of conventional crops (Rozema & Flowers, 2008). In the past decennia genetic modification has not        been able to produce a salt tolerant crop (Ibidem.). However, naturally salt­tolerant plants,        halophytes, have potential for commercial agriculture in saline environments (Rozema & Flowers,        2008). Saline agriculture ­ growing naturally salt­tolerant crops using a saline irrigation regime ­ is        often proposed as a good adaptation to salinity.  

The surroundings of the Haringvliet in the southwest of the Netherlands are a typical low­lying,        salt­affected area. The Haringvliet (see figure 1) is an estuary that has been enclosed from the sea        by sluices since the 1970s, which created a freshwater environment (Visser & Breukelaar, 2015).        Agriculture expanded after this, profiting from the low salinity, but biodiversity in the Haringvliet        declined. In the decades that followed, international agreements to obtain a good ecological status        in all European water bodies (EU Water Framework Directive (2000/60)), and agreements to        facilitate fish migration into the Rhine, increased the pressure to restore a link with the sea (Tromp        & Bakker, 2009). When a shift occurred at the national level towards more integrated,        ecology­focused water management, the decision, called ‘het Kierbesluit’, was made to partially        reopen the sluices in 2018 (Visser & Breukelaar, 2015). This will cause the salinity of the lake to        increase, which could aggravate the salinity problems for the surrounding lands.  

  Figure 1: The Haringvliet sluices are indicated by the red circle. 

Protests have been significant among the inhabitants of the region, fearing to lose their farms,        identity and income (Marks et al., 2014). The most important fear was that a saline Haringvliet        would  prevent use of its water for agriculture (Verhorst, pers. Comm., 1 April 2016).        Compensation measures will be implemented before 2018 to address this problem. New, more        easterly water inlet points are being created to allow the distribution of freshwater to farms to       

(4)

continue (Wolfert, pers. comm., 6 April 2016). However, the water supply from the Haringvliet is        not the only route by which the local community can be affected. As the Haringvliet becomes        saline, saline groundwater from the lake may seep upwards and aggravate soil salinity. It is still        unclear what effect the sluice opening will have on saline intrusion. This research maps the        intrusion to assess its possible effect on the agro­social system.  

If an increase in salinisation occurs and the current counteracting system proves inadequate,        farmers will be strongly affected. Therefore, this region needs research into the possible strategies        to cope with salinity. Saline agriculture is a potential solution; however, scientific research into        saline agriculture has mainly focused on the technical and biological aspects. The potential for        saline agriculture in a certain area depends also on social, economic and environmental aspects. In        this research, the approach is taken to explore the potential for saline agriculture by researching        the local system as a whole.  

The research will focus on the       agro­social system    surrounding the Haringvliet lake. This system is​       approached as a     ​social­ecological system (SES),     ​which is a collection of social, biological and              physical actors that interact in a particular area (Glaeser, 2015). In our research the focus is on the        agro­social system within significant reach of the saline groundwater flows, approximately 5 km        from the Haringvliet on both the northerly peninsula Voorne­Putten and the southerly island        Goeree­Overflakkee. The following question is addressed: What will be the challenges and        opportunities to implement saline agriculture in the surroundings of the Haringvliet, when the        sluices will be partially opened in 2018? This question is divided into the sub questions that are        given in figure 2. 

(5)

  Figure 2: Sub questions 

To understand the consequences and solutions of the sluice opening on the system as a whole,        insights from earth science, ecology and social geography are combined. First, the theoretical        framework is given. This framework provides a basis for answering the sub questions, which is        done in the results section. Second, the methods used within the disciplines, and the way the        disciplines have been integrated, are explained. Subsequently, the agro­social system as it is now is        described because the impact of salinisation strongly depends on the specific farming methods and        water management that are present. This is followed by a discussion of the extent of salinisation        from the Haringvliet and how this will put pressure on the agro­social system. To deal with these        pressures, two strategies ­ flushing and saline farming ­ are given. The second is worked out in        detail to assess its feasibility in the Haringvliet area. Finally, the results are integrated to a       

(6)

conclusion and discussion, including recommendations for policy makers to address the salinity        issue around the Haringvliet. 

 

Theoretical framework  

Social­ecological systems 

This research uses theories on social­ecological systems to understand the area around the estuary        ‘the Haringvliet’ as a social­ecological system (SES). A SES is a collection of social, biological and        physical actors that interact in a particular area (Glaeser, 2015). Here, the SES comprises the        agro­social system, including the farmers, farms and their required infrastructure, the society in        which they are embedded and their natural environment. First a SES is further explained, followed        by estuaria mechanisms which are relevant in the SES under study.  

Resilience and transitions 

An important characteristic of a SES is its resilience to change. Here, resilience is defined as the        capacity of a system to remain in a stable state, or regime, after disturbances, so that the        economic and ecological services of the system are maintained. This assumes the presence of        alternative stable states which can be entered by the system when critical thresholds are exceeded        (Scheffer et al., 2012).  

Transitions replace an old regime by a new one which differs from the old one by different        assumptions and routines (Bos, 2016). In this research, we link regimes to paradigms (Lohman,        2010): the dominant paradigm of a system is the way of thinking and perceiving that governs the        dominant regime. Using this paradigm perspective, a transition is seen as a shift from one        paradigm to another. 

Lohman (2010), has defined several possible agricultural paradigms in the Netherlands. The        Productionist Paradigm (PP) stimulates large scale, monoculture production on highly specialised        farms, using technology and chemical additives to maximize production with minimum labour        (Lohman, 2010). The Ecology Integrated Paradigm (EIP) is characterised by low­input practices and        uses naturally present characteristics of organisms to adapt to pressures. The Life Sciences        Integrated Paradigm (LSIP) is characterised by using genetic modification of organisms to adapt to        pressures and is more similar to PP than EIP (Lang & Heasman, 2004; Lohman, 2010; Beus &        Dunlap, 1990).  

Multi­level perspective and lock­in 

The transition theory describes transitions between different regimes from a multi­level        perspective (Lohman, 2010), as figure 3 shows. Successful transitions develop from radically        different, yet fitted niches in the current regime (Schot et al., 1994; Lohman, 2010; Smith, 2006).  

(7)

  Figure 3: Multiple scale levels in a nested hierarchy (Geels, 2002). 

Multi­level interconnectedness creates a stable regime with a lock­in: the current regime is        preferred over all possible others regimes, which inhibits a transition towards a new dominant        regime (Lohman, 2010). However, the innovative niche development combined with multilevel        pressures on the regime creates a dynamic resilience landscape (Bos, 2016), as figure 4 shows.  

  Figure 4: Schematic representation of dynamic resilience landscape (Lohman, 2010). 

One example of a lock­in mechanism arises when actors’ perceptions of the costs and benefits of        different strategies are biased towards those strategies that fit into their current paradigm. The        effect of such personal perceptions on actor's willingness to choose for a new strategy – that is, to        make a transition ­ is described by the protection motivation theory. This theory states that an        actor’s willingness to change his practices in the face of a threat is a sum of six factors: how he        perceives the benefits of his current practices; the chance that the threat will happen; the severity        of the consequences; the ability of the new method to deal with the threat; his ability to        implement the new method; and the costs involved in making the shift (Floyd et al, 2000; van        Duinen et al., 2015). 

(8)

Saline intrusion in estuaries 

An estuary is defined as a marginal marine environment that has a salinity that is decidedly        different from that of the open ocean. Such environments form where salt water undergoes mixing        with fresh river­ or meltwater resulting in brackish bodies of water. However, the actual salinity        distribution depends strongly on the morphology of the estuary and the relative influence of tidal        dynamics. For this study the approximate salinity distribution will be determined based on the        estuarine circulation by means of the flow ratio. The flow ratio has been introduced by Hansen &        Rattray (1966) and compares the volume of water entering the estuary during one tidal cycle to        the average volume of water in the estuary. The larger the flow ratio, the less significant are the        intrusion of seawater in the estuary and the mixing of salt and freshwater. 

If a water body salinises, the surrounding land will be impacted by means of saltwater intrusion. A        common definition of saltwater intrusion is the movement of saline water into an underground        storage space previously containing fresh water (Bruington, 1972), where saline water is perceived        as any water containing salt concentrations that are higher than the native freshwater in the area        (Bruington). Salt water intrusion occurs naturally in coastal areas due to hydraulic connection        between groundwater and seawater. The extent of saltwater intrusion mainly depends on the        relative depth of the groundwater table (Essink, 2001; Van Dam, 1976      ). This relation is given by the        Ghyben­Herzberg principle.  

  Figure 5: Schematic representation of the Ghyben­Herzberg principle (Lee, 2015). 

Equation 1: Ghyben­Herzberg equation.  ρf is the freshwater density and ρs the saltwater density. 

 

According to this principle (see Figure 5 and Equation 1), the extent of saltwater intrusion (z)        depends on the difference in density between freshwater and seawater and the difference        between the groundwater and seawater level (h) (Van Dam, 1976). Saltwater intrusion happens via        seepage: the upwelling of water from the adjacent water bodies into the soil (Essink, 2001). The        rate of flow through the soil depends on the conductivity of the soil. This is related to the texture:        soils with a very fine texture ­ such as clay ­ have a low conductivity and therefore a relatively slow        flow (Essink, 2001).  

(9)

Integrative approaches 

Different parts of the agro­social system were investigated from the viewpoint of earth science,        ecology and social geography. The transition theory is a system approach and acts as an        overarching theory to integrate the disciplines. Actors and pressures of the agro­social system are        identified and individual effects are analysed from the multiple disciplines, taking the whole        system into account.   

Integration techniques were applied to improve the interdisciplinary integration. We use the        expansion integration technique with the Transition Theory, see figure 6. Originally, this theory is        used in social sciences only. However, we expanded it by adding factors from natural sciences:        earth sciences and ecology. Furthermore, expansion is used to assess the feasibility of saline        agriculture. We consider this feasibility not only from a technical side, but include also social and        natural factors.  

  Figure 6: Expansion of the Transition Theory 

 

Methodology 

The research methodology combines literature review, expert interviews and modelling study        using ArcGIS and Matlab. Finally disciplinary findings were combined using integration approaches        (see Theoretical framework section).  

The literature study focused on describing the characteristics of the agro­social system. To        supplement the literature, interviews were conducted with several experts: an expert of saline        agriculture, director of the farmers organisation LTO and a project manager at Water Board        Hollandse Delta. In the analysis of the system it was decided not to focus on economic actors        beyond agriculture, as industries and market researchers are not much involved in saline        agriculture yet (de Kempenaer et al., 2007). The interviews were conducted in a face to face        setting. The interviews with Van Bodegom and LTO can be found in the appendix. The interview        with Hollandse Delta was recorded, the recordings  are available on request.  

(10)

The extent and rate of saltwater intrusion is determined by the processing of local data in ArcGIS        and subsequent modelling in Matlab. The Ghyben­Herzberg principle is used to determine the        maximum saltwater intrusion at 130x130m grid cell size. Thereafter, two­dimensional saltwater        flow is calculated based on basic flow equations (see appendix A­D for more details). The focus of        the model remains solely on the contribution of the Haringvliet to the salinisation of the        surroundings. Future uncertainties such as sea level rise due to climate change are therefore not        included in the model but will be discussed separately.  

 

Background case­study area

 

Characteristics of the agro­social system  

As the first part of the research, the current agro­social system around the Haringvliet estuary is        mapped using elements of the transition theory. This allows us to understand and anticipate        where in this system changes will happen after the opening of the Haringvliet sluices. The map in        figure 7 includes the most important physical, biological and social components of the system and        their interactions (Bodin & Tengö, 2012; Darnhofer et al., 2012).  

 

Figure 7: Current agro­social system around the Haringvliet. Consumers and supply chains were not looked into due a lack of  information. 

How the agro­social system will be affected by salinisation depends on the farming methods, crop        use and the water infrastructure that facilitates these methods. The characteristics of the        agricultural system and of the water system are described here. It becomes clear that the        Productionist paradigm (PP) forms the dominant paradigm in the current agro­social system        (Lohman, 2010). 

(11)

Characteristics of agriculture 

The farms in the study area are designed in accordance with PP (Lohman, 2010). The farming        happens on a rather large scale with an average farm size of 47 ha, while the average farm size for        the Netherlands as a whole was 26 ha in 2010 (Eurostat, 2012). Farms in the study area are        increasing in size: the average farm size increased from 34 to 47 ha between 2000 and 2012, while        the total agricultural area decreased by 5 per cent (CBS, 2016b).  

Mechanisation has been successful in increasing farmers’ incomes in the past decades (Verhorst,        pers. comm., 1 April 2016). Although the turnover of individual farmers in the region is relatively        low when compared to the rest of the Netherlands, the yearly returns brought in by farmers in the        municipalities surrounding the Haringvliet has consistently increased in the past years (CBS,        2016a). However, the investments in modernisation to remain competitive have forced many        farmers into debts (Lohman, 2010; PDC, n.d.) and create a dependence on technology to maintain        yields, such as fresh water irrigation, which has been employed since the 1970s (Verhorst, pers.        comm., 1 April 2016) and usage of high value crops, or cash crops. Mechanically yielded crops grow        in monocultures and fertilizers, herbicides and pesticides are required for economic viability        (Coolman, 2002).  

Characteristics of the water system 

The water system in the region counteracts the natural upwelling of saline groundwater (Jonkhoff        et al., 2008). Currently, saline intrusion is a problem in the following areas: the Zuiderdiep, around        Dirksland, and around Zuidland (Wolfert, pers. comm., 6 April 2016; see figure 8). 

 

Figure 8: Salinity of the groundwater at ­7.5 m NAP in 2000 (Jonkhoff et al., 2008). The red and yellow areas currently face  risk of saline intrusion. The areas Zuiderdiep (ZD), Dirksland (DL) and Zuidland (ZL) are indicated. 

Most crops grown in the area are high­value crops that are highly sensitive to salinity. The farming        system is therefore strongly dependent on counteracting salinity (Verhorst, pers. comm., 1 April        2016). Currently, this is done with a flushing system. Freshwater from the Haringvliet is pumped        into the channels and ditches to flush out saline water, and prevent it from seeping into farmland.        In addition, farmers use surface water for irrigation, which also requires channels and ditches to be        fresh (Wolfert, pers. comm., 6 April 2016). Most of the land surrounding the Haringvliet is flushed       

(12)

with freshwater, with the exception of a few nature areas where salt water is brought in (WSHD,        2015). Flushing is especially frequent at Voorne­Putten, north of the Haringvliet, while at        Goeree­Overflakkee flushing only happens in summer. This water demand for agriculture takes up        to 50% of the total water demand in the 35% of the Netherlands that lies below sea level (Snellen        et al., 2015). 

The water level in the system is managed by the local water board and the levels are determined in        consultation with the farmers (WSHD, 2015; Wolfert, pers. comm., 6 April 2016), who are the main        stakeholders. Local and national governance bodies also shape the water management through        investments and spatial planning decisions (WSHD, 2015). 

The farming system and the water system around the Haringvliet are thus based on low­salinity        water and soils. To what extent this freshwater system will be affected when the Haringvliet        becomes saline is discussed in the following section.  

 

Results 

Section 1. Future extent of salinisation

 

This section will go into more depth about the expected extent of salinisation of the Haringvliet        due to the opening of the sluices and the consequences for the surrounding (agricultural) lands. 

1.1 Salinity distribution Haringvliet 

   

 

 

One of the major uncertainties concerning the Kierbesluit is the behaviour         ​of the waterbody itself.      According to Philip Wolfert (employee of Waterschap Hollandse Delta, personal communication        April 6, 2016) the actual extent of salinisation within the estuary is unpredictable. Nevertheless, a        maximum extent has been determined, to which the regulation of the sluices will be adapted (see        figure 9). 

(13)

  Figure 9: Maximum extent of salinisation is shaded red (KierHaringvliet, n.d.). 

To test whether this maximum of salinisation is realistic, a preliminary prediction can be made        based on the flow ratio and the morphology of the estuary. The flow ratio can be calculated by: 

Equation 2: Equation for flow ratio of an estuary. 

 

in which Q represents the average discharge (m              3/s), t the duration of a tidal cycle (s) and b, h and l                            the dimensions of the estuary (m). It is stated when the discharge will become less than 1500m                                3​/s  at Lobith (a measuring point upstream at the German border) or ~100m                      3​/s in the Haringvliet, the          sluices will be shut (Borm & Huijgens, 2011; Rijksoverheid, 2011; Rijkswaterstaat, 2012). The        average discharge of ~500m      ​3​/s (Rijkswaterstaat, 2012) in combination with the average                dimensions of 30km by 1km by 8m (Canavan, 2006) result in a flow ratio for the Haringvliet of        approximately 0.093. According to Hansen & Rattray this would indicate the presence of a        well­mixed estuary. 

However, using the flow ratio as predictor of the salinity distribution neglects the morphology of        the estuary. In the case of the Haringvliet the average cross section is very different in size from        the flow area at the mouth of the estuary. Namely, the opening in the sluices will vary from 25m                                    2​ 

in the case of low discharge to 1200m              2   in the case of high discharge (Kuijken, 2010). Estuaries with                 

a very narrow mouth go accompanied with decreased circulation and a well­defined vertical        salinity gradient (Sumich & Morrissey, 2004). This is also evident when using the sluice opening as        flow area. However, Kuijken (2010) did not express low and high discharge in numbers and        therefore an estimation of 100m        3/s is used as low discharge and 3000m              3/s as high. For low          discharge this results in a flow ratio of 5.96 and 3.73 for high discharge. 

In other words, it is highly likely that throughout the entire year the salinity distribution of the        Haringvliet will be dominated by a salt wedge. This implies that the salinisation of the Haringvliet        will not reach far in the estuary and therefore the maximal extent of salinisation (figure 9) is        perceived plausible. Moreover, this entails that the surface waters will experience little mixing with       

(14)

saline water as this will be confined to bottom waters. However, the presence of extremely silt        bottom waters that go accompanied by a salt wedge estuary (see figure 10) are likely to cause        significant salt water intrusion via the subsoil.  

  Figure 10: Salinity distribution of a salt wedge estuary (adapted from Wollast & Duinker, 1982). 

1.2 Saltwater intrusion

 

To determine the extent and rate of saltwater intrusion, first the maximum saltwater level was        determined according to the Ghyben­Herzberg principle. The land surrounding the Haringvliet is        mostly low lying (see figure 11) and the groundwater level is often below NAP (TNO­NITG, 2016)

  Figure 11: Surface elevation of the surroundings of the Haringvliet (adapted from Algemeen Nederlands Hoogtebestand, 

n.d.). 

Consequently, almost entire Goeree­Overflakkee and Voorne­Putten are potentially exposed to        salt water intrusion. This can be seen in figure 12: all the blue coloured areas have groundwater        levels that are lower than the water level of the Haringvliet and will experience saltwater intrusion. 

(15)

  Figure 12: Groundwater level of the surroundings of the Haringvliet with respect to NAP. 

The results from the saltwater intrusion simulation are displayed in figure 13. This figure shows the        extent of intrusion for four time slices, 1, 10, 50 and 100 years. The yearly extent of intrusion can        be viewed via     this link   1 to the complete simulation. The results of the simulation show that        saltwater intrusion is a relatively slow process. In the first year the saltwater will have traveled        approximately 100m land inwards, while in 100 years this will only have been increased to about        1km. The area that will be affected by saline intrusion according to the model is 36.25km                              2 after 

one year, 49.92km    2​ after 10 years and 77.47km        2 after 100 years. This equals respectively 5.8%,             

8.0% and 12.4% of the entire area of the surrounding land (Goeree­Overflakkee and Voorne­Putten        combined: 622,34km  2​). However, it will only be a matter of time for saltwater to intrude in areas                                further away from the Haringvliet.  

(16)

 

Figure 13: Saltwater intrusion for 13A: 1, 13B:  10, 13C: 50 and 13D: 100 years after salinisation of Haringvliet  (modelled in  MATLAB). 

Furthermore, the intrusion appears to have more effect on Voorne­Putten than on        Goeree­Overflakkee, as a larger area is affected in the same amount of time, which is the result of        different conductivities of the soil. Moreover, it stands out that the rate of intrusion reduces over        time. This is especially clear in figure 14 that shows the combined extent of saltwater intrusion        after 1, 10 and 100 year(s). On some places, the distance covered in the first year even equals that        covered in the subsequent 99 years. 

(17)

 

Figure 14: Extent of saltwater intrusion for 1, 10 and 100 years of salinisation of the Haringvliet (modelled in MATLAB). 

1.3 Consequences of salinisation for agriculture

 

Salinity decreases plant osmosis potential (Naheed et al., 2008), but this effect is usually negligible        in the face of plant growth performance (van Bodegom, 2016). However,                     Na​+​ and Cl  ­ inhibit K   + uptake at the cell membrane and are toxic to plants (Naheed et al., 2008). Also,       nutrient​   imbalances arise, which cause nitrogen and phosphorus deficits (       Sleimi & Abdelly, 2002). Nitrogen          uptake is limited in saline soils (Rahman et al., 1995), because symbionts, which form the main        nitrogen source for plant, are salt intolerant (Bala et al., 1990; Bruning et al., 2013). 

In figure 15 the extent of the modelled saline intrusion after 10 years (2028) is overlain on a land        use map. This gives an indication of the area where crops are affected and farmers’ incomes are at        risk. The salinisation as resulting from our model will have affected about 26 km                          2   of farmland after    10 years. However, not all farmers in the salinised region will be equally affected. Especially the        area around the Zuiderdiep on Goeree­Overflakkee (see figure 6) may be at risk. As explained        before, the salinity risk is currently already quite high here, while the area is also within reach of        saline seepage from the Haringvliet, causing the two problems to add up (Wolfert, pers. comm., 6        April 2016). The damage to farmers is also determined by which crops are grown. At        Goeree­Overflakkee half of the affected farmland are pastures; at Voorne­Putten this is 35% (see        figure 16); these farmers may be less sensitive to salinity than arable farmers, as grassland is not        affected by salinity very fast (FAO, n.d.). Among arable farmers, especially those who grow        salinity­sensitive and/or high­value crops such as flower bulbs will lose income.  

(18)

  Figure 15: Outline of salinisation after 10 years shown in red. Base map from Nationaal Georegister (2015).    Figure 16: Areas of farmland affected by salinisation from the Haringvliet after 10 years. Areas have been estimated from  land use maps.   

(19)

Section 2. Transition to a new agro­social system 

2.1 Challenges current paradigm with increased salinity 

 

Besides the increased saline seepage due to the sluice opening, other pressures on the PP are        identified on multiple system levels (see figure 17). Table 2 lists the pressures on the system and        classifies them according to the level on which they affect the system, consistent with the central        concepts of transition theory. After table 2, we elaborate on pressures that are pertinent to our        research and have not already been discussed.      Figure 17: The dominant regime in the Haringvliet is under pressure from all three levels.        Table 2: Identified pressures on the current Agro­Social system. The bold pressures are further elaborated below.  Landscape pressures  Salinisation Haringvliet  Policy changes      ​(RVO, 2016; LTO, 2013)  Climate change         (Kovats et al., 2014)  Public opinion usage pesticides and herbicides  Environmental concern  Regime pressures 

(20)

Fresh water demand    ​       (Snellen et al., 2015)  Inadequate flushing design       (Snellen et al., 2015)  Debts farmers          (Lohman, 2010; Melyukhina, 2011)  Resilience farms (Agro­social system)  Low salinity tolerance conventional crops      (Bodegom, 2016)  Summer droughts ​       ​    (van Duinen et al., 2015)  Costs subsidizing farmers       (Lohman, 2010)  Herbicides and pesticides resistance       (Pimentel et al., 1992)   Environmental degradation       (Pimentel et al., 1992)  Nitrogen and phosphorus shortages       (Bruning et al., 2015)  Niche pressures  Ecology Integrated Paradigm (EIP)       (Lohman, 2010)  Life Sciences Integrated Paradigm (LSIP)      (Lohman, 2010)  Saline agriculture      (Lohman, 2010)    Landscape pressures  Policy changes 

Both at the EU­level and at the national level, some policies relating to agriculture and water are        increasingly oriented towards sustainability and ecological values (EC, 2015). Farming subsidies        from the EU are increasingly tied to environmental goals, such as enhancing farmland biodiversity        (RVO, 2016). Also the national standards for, for example, pesticides and manure use, are being        tightened (Verhorst, pers. comm., 1 April 2016).       ​Farmers and local governments are under        increased pressure to comply with these policies (LTO, 2013). 

Climate change 

According to the latest report by the International Panel on Climate Change, the Netherlands will        experience severe impacts by climate change on water resources in the near future. By 2100, a sea        level rise of circa 0.4 – 1.05 meters is expected and the frequency of extreme flood events will        increase in coastal zones (Kovats et al., 2014). On the other hand, long periods of drought and low        river discharge will become more frequent (Ibidem). The reduced river discharge in combination        with higher sea levels will increase the salinity stress on crops (van Minnen et al., 2013). This       

(21)

climate­caused salinisation is a separate process from the Haringvliet­derived salinisation we        modelled, but forms an additional pressure on the system. 

Regime pressures 

Freshwater demand 

Overall water demand is expected to increase (Rozema & Flowers, 2010), especially in summer        when drought will become more frequent (Utwente, 2015) and flushing is required to limit salinity        damage. On Voorne­putten and Goeree­Overflakkee, the flushing system is inefficient in terms of        water use and uses up to 50% of freshwater in the area (Snellen et al., 2015). Already, in summer        the water supply is inadequate to maintain both quality and quantity of the required flushing        water to meet high surface water quality for agricultural practices and this problem will increase in        the future (Ibidem.; Stuyt, 2007; Van Landbouw, n.d.; Utwente, 2015; Jonkhoff et al., 2008).  Inadequate flushing system 

The current system of flushing, which includes inlet points, channels and ditches, is not sufficient        to maintain the required surface water quality demands (Snellen et al., 2015). Current        infrastructure is not sufficient to provide all users at all times with water of certain high quality        (Snellen et al., 2015). Moreover, when the Haringvliet sluices are opened the number of fresh        water inlets will reduce from six to two, meaning that problems with individual inlets have more        impact. 

Debts farmers 

The profitability of many farms in the Netherlands has been threatened in recent years by        fluctuating food prices. As a result of this and other factors, Dutch farmers have been under        pressure to make large investments in upscaling and modernisation (PDC, n.d.). Debts in all        farming sectors have been increasing over the past decades, especially in intensive sectors, and are        high compared to other EU countries (Melyukhina, 2011). Debts and problems with profitability        may undermine the current farming system. 

Niche pressures 

At the level of the niche, two paradigms are identified which are altering the resilience landscape        and thus put pressure on the PP regime: Life Science Integrated Paradigm (LSIP) and the        Ecologically Integrated Paradigm (EIP) (Lohman, 2010). 

LSIP requires little change in system and behaviour of the PP (Lohman, 2010), which makes a        transition towards LSIP as dominant paradigm relatively easy. EIP is significantly different from PP,        since it does not use pesticides and herbicides. Therefore, it is expected that productivity will        decline (Coolman, 2002). However, considering the paradoxical relationship between a dominant        paradigm and chance of success of a niche to become dominant, EIP has a good opportunity to        become dominant.  

Saline agriculture can be fitted both in the LSIP and EIP, although EIP is the only paradigm in which        it is put into practice today (Lohman, 2010; Bodegom, 2016). Saline agriculture in the EIP will not        be able to meet conventional yields (Bodegom, 2016) while having the same costs (Ibidem.), this        will force saline agriculture into a niche market (Ibidem.). However, due to complicated genomes       

(22)

responsible for salt and drought tolerance, GM has not been able to increase salt tolerance        (Ibidem.). Additionally, Bodegom (2016) identifies a trend that the niche market in which saline        agriculture operates is increasingly adopting organic practices recently, which will make saline        agriculture unsuitable in LSIP.  

2.2 Strategies to cope with salinisation

 

Our modelling showed that salinisation will increase due to the opening of the sluices and this will        negatively affect crop productivity in the affected area. Therefore coping strategies are required to        realise sustainable agriculture. Two methods are identified: continuous flushing of the system to        limit increase in soil salinity; and saline agriculture.  

Flushing 

If saline intrusion increases, the strategy of the water board will probably be to intensify flushing,        for example, by bringing in fresh water all year instead of only in summer (Wolfert, pers. comm., 6        April 2016). The costs of flushing the area are, seemingly paradoxically, relatively low: on average        flushing one acre on the islands of the province of Zeeland costs       €59,71 annually. The costs are low        because all the infrastructure is already in place (Snellen et al., 2015). The costs of flushing water        vary between   €0.15/m​3 and €1.50/m​3 (Snellen et al., 2015). Despite these low costs, at some point                     

intensifying pumping will become too expensive. At the moment, for example, the water board        does not try to keep the brackish Zuiderdiep fresh, as the costs would be too high (Wolfert, pers.        comm., 6 April 2016).  

Saline agriculture 

Currently saline agriculture is being exploited as a niche on multiple locations in the Netherlands,        ranging from a saline experimental garden on Texel to experiments on the Afsluitdijk (a dyke at the        Lake IJssel) and in the provinces of Friesland and Zeeland (Ziltperspectief, n.d.; Zeeuwsetong,        2016). The saline experimental garden of Texel started in 2006 and is amongst the first saline        agricultural experiment to commercially produce halophytic crops (Ziltperspectief, n.d.). The        experiments include cultivation of both halophytes and conventional crops under various salinity        levels (De Vos, 2016). The aim of the experiments is to gather physiological information on crops        and their salt tolerance, increase practical knowledge on cultivation in saline conditions, raise        public awareness and commercialise saline crops (Ibidem.; Bodegom, 2016; De Vos, 2016).  

Saline agricultural systems have to compete economically with PP farms in order to be sustainable        (Bodegom, 2016). Brandenburg (2009; retrieved from De Vos et al., 2010) identified three main        agricultural sustainable systems in which saline agriculture can be exploited. The categories are        identified according to different principles: the first system, a mixed saline farm, assumes very        limited freshwater availability. The second system, a climate­proof arable farm, is designed from a        general water availability perspective and lastly the climate­proof multifunctional farm has been        designed from a societal demand perspective (De Vos et al., 2010). 

Bodegom (2016) does not see saline agriculture being implemented on a large scale in the        Netherlands, since salinisation is not perceived significant enough and because of consumer        behaviour. Therefore the second and third identified system are possible candidates to upscale        saline agriculture in The Netherlands. The climate­proof arable farm ‘uses available water       

(23)

throughout the seasons’ (De Vos et al., 2010, p52). In dry summers, the water will be saline and it        will be inevitable to use it (Ibidem.). Conventional crops will be cultivated as much as possible,        complemented with halophytic crops (Ibidem.). The climate­proof       multifunctional farm, in      addition, will bring together multiple services into one system; for example, a combination of crop        production with recreation, housing and/or (mental) health care will be made. This will add        additional economic and social value to the farm (De Vos et al., 2010).  

Identified arable crops for saline agriculture in the Netherlands are: beet, barley and spelt (table 3).        In accordance with the prerequisite that cash crops have to have either high yield per acre or have        to have a niche market in which people are willing to pay high prices per kg product, spelt is a good        candidate for upscaling saline agriculture (Bodegom, 2016). See table 3 for an inventarisation of        saline agriculture cash crop candidates in the Haringvliet area. 

Table 3: Evaluation of crops for saline agriculture. 

 

2.3 Arisen opportunities for Saline Agriculture from the identified pressures on the current  regime

 

As explained, in societal transitions regimes are usually under pressure both from small niches and        from drivers on the large scale. Niches often manage to grow if they link up to larger­scale        pressures (Lohman, 2010). In the case of the Haringvliet there is a possibility for this, as saline       

(24)

agriculture resolves some of the landscape and regime pressures on the current system that were        identified in section 2.1 (see table 2).  

Landscape pressures 

Salinisation 

Applying saline agriculture would first of all solve the sensitivity of the system to soil salinity. The        system is adapted to salinity, so increased saline intrusion would no longer threaten farmers’        yields.  

 

Policy changes 

As argued earlier, saline agriculture around the Haringvliet is most likely to happen within an        ecologically integrated paradigm. This means that saline agriculture could make use of the        tendency within national and EU scale politics towards more sustainable and ecologically        orientated agricultural and water policies. One recently added pillar of the EU farming subsidies,        greening, promotes organic farming and biodiversity­friendly areas within agricultural lands (RVO,        2016). These EU policies might support sustainable saline agriculture if it would be given the same        status as organic agriculture. 

On the national level, there are also support routes for innovations in agriculture. However, there        is little specific policy on saline agriculture so far, apart from a subsidy for farmers changing their        equipment for a shift to saline agriculture (RVO, 2016). Saline agriculture could also link up with        nature conservation. Saline agriculture could be clustered around saline nature areas, as they        require the same water management (WSHD, 2015).  

Regime pressures 

Freshwater demand 

Fresh water demand will probably decrease under saline agriculture due to the possibility to use        brackish or saline water for irrigation. In addition, less flushing is required because soil salinity        does not have to be zero. In addition, summer droughts no longer form a threat but will form a       

driver​ to increase crop diversity.  

Resilience farms 

The diversity of crops grown is likely to increase under saline agriculture, especially when it is        applied under the EIP, which stimulates crop diversity (Lohman, 2010). The climate­proof        multifunctional type of saline agriculture combines conventional and halophytic crops and also        stresses a combination of income sources on farms. With this diversity of crops and activities,        yields and incomes may be more resilient to shocks like diseases and market changes (Scheffer et        al., 2012).   

2.4 Barriers for saline agriculture implementation on a large scale

 

Profitability 

Although conventional crops have shown to be more salt tolerant than generally perceived        (Bodegom, 2016), it has shown to be hard to convince the government and breeders that the        figures on this are real, which hold back the upscaling of saline agriculture (Ibidem.). In addition,       

(25)

public opinion determines the success of the saline agriculture experiments and must therefore        never be underestimated (Ziltperspectief, n.d.). 

Texel has proven to be able to successfully produce commercial crops in saline agriculture.        However, the yields are about ½ to ⅔of the yield of conventional agriculture while the costs        compared to non­saline cultivation have been unchanged (Bodegom, 2016). This implies that saline        agriculture can only be commercially competitive with conventional agriculture when a niche        market can be found to sell the products at higher prices or when salinity is so severe that        conventional production experiences higher costs at lower yields. 

If halophytes are grown instead of conventional crops, economical barriers also arise. The methods        are often labour intensive and so far bring in low profits (Frans, 2011; Grontmij, 2010). The        markets for halophyte crops such as samphire and sea aster are very small, which will make        upscaling difficult (de Kempenaer et al., 2007). Most farmers in the area are not considering saline        agriculture as an economically viable option: they will choose freshwater farming as long as it is        possible (Verhorst, pers. comm., 1 April 2016).  

Lock­in 

Hydraulic structures often create a lock­in and prevent a system to change; this happens because it        is easier to choose a strategy that maintains these structures than to take a totally different track        (Pel et al., 2014). In the Haringvliet case, the flushing system is acting as such a lock­in, hampering        a transition towards a saline­based system. 

Over time, a complicated structure of ditches, channels and pumps has been created around the        Haringvliet to facilitate flushing. The existing infrastructure makes flushing a relatively easy and        attractive approach to salinisation. In addition, large investments have been made recently by the        water boards and local governments to update the flushing infrastructure to the post­2018        conditions (Wolfert, pers. comm., 2016). Saline farming, however, would need a different water        management approach in which saline seeping is not combated; this would mean large renewed        adaptations in the water infrastructure and a loss of the previous investments.  

In addition to this lock­in, the current water system acts as a barrier for small­scale experiments        with water management. Interlinkage of all compartments of the flushing infrastructure        complicates local adaptation of the system. In addition, the water board manages ditch water        levels for aggregated areas containing several farms (WSHD, 2015). It is therefore not possible to        allow saline conditions on one farm only without affecting surrounding farms (Wolfert., pers.        comm., 6 April 2016). This means that it will be hard for individual farmers to shift to saline farming        on their own.  

Lack of knowledge 

Limited research funds hold back the expensive experimental research required to increase        knowledge on saline agriculture (Bodegom, 2016). Knowledge on saline agriculture will increase        very slowly, limiting the willingness of breeders and stakeholders to invest in such an ‘uncertain’        farming system (Ibidem.). In previous research in the Haringvliet area, the farmers themselves        were also found to be unwilling to adopt practices that involve many uncertainties (van Duinen et        al., 2015). 

(26)

Farmer attitudes 

As explained before, the adaptation behaviour of individuals depends on their personal        perceptions of the risks and benefits of the new method. Several of these perceptions act as a        barrier to saline adaptation in the case study area. These are the farmers’ perception of the ability        of saline agriculture to deal with the salinisation threat; and their perception of the chance and        severity of salinisation.   

Firstly, farmers in the area do not believe in the effectivity of the saline agriculture method, as they        generally feel very strongly against letting farmland salinise. This can partly be explained by the        1953 floods, after which salt lowered crop yields strongly for several years. They also have little        knowledge about saline farming (Verhorst, pers. comm., 1 April 2016).  

Secondly, farmers’ perception of the chance and severity of the salinisation threat is low. Farmers        and the Water Board expect that the Kierbesluit compensation measures will take away any        additional salinisation threat from the opening of the Haringvliet sluices. Farmers expect the water        board will prevent salinisation by flushing, therefore they do not perceive a necessity to shift to        saline farming (Verhorst, pers. comm., 1 April 2016; Wolfert, pers. comm., 6 April 2016). The        farmers understand there could be an increase in salinisation in the farther future, but they plan        on a rather short term compared to the water managers (Verhorst, pers. comm., 1 April 2016;        Wolfert, pers. comm., 6 April 2016). This difference in focus on time scales hampers an agricultural        transition (Pel et al., 2014; Kemp et al., 2007). 

 

Discussion 

 

Future salinisation extent 

As mentioned previously, the modelling of saline intrusion focused solely on the contribution by        the Haringvliet estuary and a constant water level was used. However, future prospects indicate        that the sea level of the North sea will rise significantly in the coming century which will likely        amplify saline intrusion from both the North sea and possibly the Haringvliet (van Minnen et al.,        2013). Furthermore, climate change will cause an increase in freshwater demand with 25% in 2050        compared to the current situation (Snellen et al., 2015). Such a build­up of freshwater abstraction        will further increase the relative importance of salt water within the estuary and potentially        accelerate saline intrusion. 

Moreover, seepage (upward flow) is not included in the simulation. However, the variance in soil        texture of the subsoil and the presence of hardly permeable layers at some locations influence the        behaviour of saltwater intrusion: incorporating this into the model will give more detailed results.        Nevertheless, the results from the simulation show correspondence with an earlier performed        study on the effect of salinisation of the groundwaters of Goeree­Overflakkee (van der Hoog,        2007) concerning the rates of salinisation and the decrease in rate over time.  

 

(27)

The salinity thresholds of crops (table 3) have been retrieved from the FAO on (semi) arid areas. It        is possible that the thresholds in non­arid climates are at higher salinity concentrations, since the        described threshold might be influenced by drought stress (Bodegom, 2016).       ​Furthermore, the    impact of nutrient status on salt tolerance has not been taken into account. Salinity tolerance can        be improved by tackling the nutrient imbalance by adding limiting minerals (mostly N and P, see        also appendix     ​F​) (Naheed et al., 2008) and by breeding for increase in soil/root contact area by        selecting for large root hairs (Schleiff, 2008). 

 

Feasibility of saline farming 

Flushing will decrease under saline agriculture, increasing soil salinity. However, this has long­term        consequences (van Bodegom, pers. comm., 1 April 2016). We expect significant resistance against        this among locals and farmers.         ​Conducting in situ long­term experiments will have to point out the        extent and consequences of adapting these farming strategies.  

We have found that the general view on the short­term implementation of saline agriculture is        rather negative. However, farmers who are strongly affected by salinity do show interest in saline        farming on the short term. There are already more experiments with saline farming on some        islands in Zeeland that have no external freshwater supply, as there is more pressure on the water        system here (Verhorst, pers. comm., 1 April 2016; Provincie Zeeland, 2006). Therefore, if the        salinity pressure in the Haringvliet area increases in the future, farmers may be willing to        implement saline farming here as well. 

More research could help to overcome the current barriers to saline agriculture. The dominant        view among stakeholders is that saline agriculture is not economically viable and its workings very        uncertain. Knowledge about needed investments and market possibilities for saline agriculture is        lacking. Further research into the uncertainties surrounding saline agriculture, such as the salt        tolerance of crops and its economic feasibility, can reduce this barrier of lacking knowledge. In        addition, research results should be better communicated to stakeholders, as they are little aware        of the knowledge that is available. 

 

Interdisciplinary integration 

We described and analysed the whole agro­social system from the transition theory perspective.        All three disciplines have been successfully integrated in the analysis and all are equally important        to understand the system and the processes that are occurring in the system. It has appeared        relatively easy to combine disciplinary findings by means of interdisciplinary integration. Mainly        the transition theory proved to be of use. However, the integration could be improved by having        more regular meetings along the way of writing the report. 

 

Conclusions 

The agro­social system around the Haringvliet is currently governed by the productionist paradigm.        The farming system is sensitive to salinity, and depends on the present flushing system to keep        functioning.  

(28)

The area of the Haringvliet that will cause saltwater intrusion will probably be the area between        the mouth and the middle of the estuary. The initial contribution of the Haringvliet to salinisation        is small, because the process takes a long time due to low conductivity of the surrounding soils.        However, almost the entire surroundings are sensitive for saltwater intrusion due to a low surface        elevation and negative groundwater level. Salinisation of the agricultural soils will have varying        effects on crops and farmers.  

Besides salinisation, the productionist paradigm in the case­study area is under several other        pressures, such as an increasing freshwater shortage and climate change. The latter has not been        included in the modelling due to its great uncertainty but could very likely lead to increased        salinisation. Saline agriculture could be an answer to most of the identified pressures. However, it        is not likely it will be broadly accepted and applied as a solution due to large cultural and economic        barriers. Few signs show that an alternative farming approach will be implemented as long as        conventional farming is possible.  

The insights are directly applicable in the Haringvliet area: saline intrusion due to the sluice        opening must be seen by stakeholders as a real issue, with potential effects on the farming and        water systems. Our findings on the feasibility of saline agriculture have wider relevance for other        salt­affected places where saline agriculture is considered. Saline agriculture is theoretically a good        solution in such areas. However, our research has made clear that social and economic barriers,        such as lock­in and perceptions of farmers, have to be taken into account when saline agriculture is        applied in a practical situation.  

 

References 

Actueel Hoogtebestand Nederland (n.d.).        AHN Viewer.   Retrieved on march 10, 2016 from​       http://ahn.maps.arcgis.com/apps/webappviewer/index.html?id=c3c98b8a4ff84ff4938fafe7c c106e88 

Bala, N., Sharma, P. K., & Lakshminarayana, K. (1990). Nodulation and nitrogen fixation by        salinity­tolerant rhizobia in symbiosis with tree legumes.      ​Agriculture, ecosystems &      environment​, ​33​(1), 33­46. 

Berner, E. K., & Berner, R. A. (2012).       Global environment: water, air, and geochemical cycles            ​.  Princeton University Press. 

Beus, C., Dunlap, R., (1999) “Conventional versus Alternative Agriculture: The Paradigmatic Roots        of  the  Debate”, Rural Sociology 55(4), pp. 590­616. 

Van Bodegom, P. (2016). personal communication, April 1​st​

Bodin, Ö., & Tengö, M. (2012). Disentangling intangible social–ecological systems. Global        Environmental Change, 22(2), 430­439. 

Borm, W. & Huijgens, C. (2011).         Is het experiment de Kier achterhaald?.         Retrieved on April 11, 2016​       from​ ​http://www.adviesgroepbormenhuijgens.nl/zddekier.php 

(29)

Bruning, B., van Logtestijn, R., Broekman, R., de Vos, A., González, A. P., & Rozema, J. (2015).        Growth and nitrogen fixation of legumes at increased salinity under field conditions:        implications for the use of green manures in saline environments. AoB plants​, 7​, plv010  Bruning, B., & Rozema, J. (2013). Symbiotic nitrogen fixation in legumes: Perspectives for saline       

agriculture. ​Environmental and experimental botany​,​92​, 134­143 

Canavan, R. W. (2006).       Biogeochemical cycling of nutrients and trace metals in the sediment of                      Haringvliet Lake: Response to salinization​ (Vol. 264). Utrecht University. 

CBS (2016a). Standaardopbrengst land­ en tuinbouwbedrijven per gemeente in 2011 en 2015.       

Retrieved  from 

https://www.cbs.nl/nl­nl/maatwerk/2016/08/standaardopbrengst­land­en­tuinbouwbedrijv en­per­gemeente­in­2011­en­2015 

CBS (2016b). Retrieved from CBS StatLine: ​http://statline.cbs.nl/Statweb/dome/?TH=51870&LA=nl  Coolman, I. F. (2002). Developments in Dutch farm mechanization: Past and future.       Agricultural 

Engineering International: CIGR Journal​. 

Conway,G. 1993. Sustainable agriculture: trade­offs with productivity, stability and equitability.       

Economics and ecology 57­68  

Darnhofer, I., Gibbon, D., & Dedieu, B. (2012). Farming systems research: an approach to inquiry        (pp. 3­31). Springer Netherlands. 

De ​Vos, A., Rozema, J., Rijsselberghe van, M., Duin van, W., & Brandenburg, W. (2010). Zilte        Landbouw Texel, een voorbeeld transitieproject 2006­2010 Eindrapport.       Project Leven met      Water, Leven met Zout Water, 2057, ​1­91. 

Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal        behaviour in estuarine and riverine floodplain soils and sediments: a review.       ​Science of the      Total Environment​, 407​(13), 3972­3985. 

van Duinen, R., Filatova, T., Geurts, P., & van der Veen, A. (2015). Coping with drought risk:        empirical analysis of farmers’ drought adaptation in the south­west Netherlands. Regional        Environmental Change, 15(6), 1081­1093. 

Eisa, S., Hussin, S., Geissler, N., & Koyro, H. W. (2012). Effect of NaCl salinity on water relations,        photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a        potential cash crop halophyte. ​Australian Journal of Crop Science​, ​6​(2), 357.  

Essink, G. H. O. (2001). Salt water intrusion in a three­dimensional groundwater system in the        Netherlands: a numerical study. ​Transport in porous media​, ​43​(1), 137­158. 

Eurostat. (2012). Agriculural census in the Netherlands. Obtained on April 2, 2016 via        http://ec.europa.eu/eurostat/statistics­explained/index.php/Agricultural_census_in_the_Ne therlands

Evans, Forney & Guido­DiBrito. (1998). Student Development in College: Theory, Research, and        Practice. Jossey­Bass: San Francisco, CA, 111­114.  

FAO. (n.d.). Agricultural drainage water management in arid and semi­arid areas.       FAO irrigation    and drainage paper​. 61. ISSN 6054­5264. 

(30)

Floyd, D. L., Prentice‐Dunn, S., & Rogers, R. W. (2000). A meta‐analysis of research on protection  motivation theory. ​Journal of applied social psychology, 30​(2), 407­429. 

Frans, P. (2011, December 13).      Lange weg te gaan voor zilte teelten. Opgehaald van                  http://www.boerderij.nl/Home/Achtergrond/2011/12/Lange­weg­te­gaan­voor­zilte­teelten AGD577844W/ 

Glaeser, B. (2015). From global sustainability research matrix to typology: a tool to analyze coastal        and marine social­ecological systems. Regional Environmental Change​, 16​(2), 367­383.  Grattan, S. R., & Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops.       

Scientia Horticulturae​, ​78​(1), 127­157. 

Gunderson, L. H. (2000). Ecological resilience­­in theory and application.       Annual review of ecology        and  systematics​, 425­439. 

Hansen, D. V., & Rattray, M. (1966). New dimensions in estuary classification.       ​Limnology and    Oceanography​, 11​(3), 319­326. 

Hollandse Delta. (2016). Interview 

Hoog, van der, J. (2007).         Effect Kierbesluit op grondwater van Goeree­Overflakkee          . Retrieved on​      April 21, 2016 from http://www.citg.tudelft.nl 

Jonkhoff, W., Koops, O., Krogt, van der R.A.A., Oude Essink, G.H.P., & Rietveld, E. (2008).        Economische effecten van klimaatverandering. Overstromingen en verzilting in scenario’s,        modellen en cases. ​TNO Rapport 2008­D­R0711/A, 1­128.   

Kemp, R., Rotmans, J., (2001) “The management of the co­evolution of technical, environmental        and  social systems” in Towards Environmental Innovation Systems.  

Kemp, R., Loorbach, D., & Rotmans, J. (2007). Transition management as a model for managing  processes of co­evolution towards sustainable development. The International Journal of  Sustainable Development & World Ecology, 14​(1), 78­91. 

De Kempenaer, J. G., Brandenburg, W. A., & van Hoof, L. J. W. (2007). Het zout en de pap: een        verkenning bij marktexperts naar langeretermijnmogelijkheden voor zilte landbouw (No.        07.2. 154, p. 93). InnovatieNetwerk. 

Kovats, R.S., R. Valentini, L.M. Bouwer, E. Georgopoulou, D. Jacob, E. Martin, M. Rounsevell, and        J.­F. Soussana, (2014). Europe. In: Climate Change 2014: Impacts, Adaptation, and                      Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth                          Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B.                        Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O.        Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and        L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,        NY, USA, pp. 1267­1326. 

Kuijken, W. J. (2010). ​Analyse uitvoering Besluit beheer Haringvlietsluizen​. Deltacommissaris.  Lang, T., Heasman, M., (2004) Food Wars. Global Battle for Mouths, Minds and Markets, Londen:       

Earthscan Publication.  

Referenties

GERELATEERDE DOCUMENTEN

Before describing how we used computer-mediated communication to study perspective taking, and presenting our findings on the importance of (mutual) gaze, we provide a brief overview

We propose a Risk Driven Requirements Specification (RiDeRS) approach to elicit requirements of a system by identifying the risks of using such a system as a first step in

international standard of automatic exchange of financial account information to tackle tax evasion and avoidance, Global Forum on Transparency and Exchange of Information for

In a recent study in education, Pil & Leana (2009) found that teachers’ individual human capital (their experience and ability to teach) was positively related to

implementatie van de verordening voor België een gering voordeel oplevert ten opzichte van de Nederlandse implemen- tatie. Geen effectverschil is er tussen de Nederlandse regelgeving

In Section 6, the Uruguay Round and the Doha Round will be compared based on an assessment on the extent to which the developing countries actively participated in

As a member of the Law, Science, Technology and Society (LSTS) Research Group, she investigates legal issues related to fundamental rights, privacy, personal

I disagree with this claim and contend that firstly, there is evidence of widespread looting during certain disaster events as well as civil disturbances, and secondly, the