• No results found

UNCERTAINTIES IN CHARACTERIZING DROUGHT WITH CLIMATE MODELS

N/A
N/A
Protected

Academic year: 2021

Share "UNCERTAINTIES IN CHARACTERIZING DROUGHT WITH CLIMATE MODELS"

Copied!
67
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

     

U

NCERTAINTIES  IN  

C

HARACTERIZING  

D

ROUGHT  WITH  

C

LIMATE  

M

ODELS

 

     

Lauren  Schmeisser  

Student  Number:  10407278  

MSc  Earth  Sciences  –  Geo-­‐Ecological  Dynamics  Track   Master’s  Thesis  –  45  EC  

February  2014  –  August  2014   Examiner:  Dr.  John  van  Boxel   Co-­‐assessor:  Dr.  Erik  Cammeraat      

ABSTRACT    

Extreme  climatic  events  like  drought  can  have  detrimental  effects  on  the  environment,  ecosystems,  and   socioeconomic  activity.  As  such,  there  is  great  incentive  to  be  able  to  model  and  characterize  drought  in   order  to  better  predict  and  mitigate  negative  impacts  of  drought.  Unfortunately,  many  uncertainties  hinder   the  ability  to  accurately  model  and  forecast  drought  events.  Uncertainties  in  characterizing  drought-­‐   specifically  those  related  to  definitions  of  drought,  physical  mechanisms  behind  drought,  timescale  of   drought,  and  modeling  drought-­‐  are  explored  here.  A  comparative  analysis  of  drought  indices  found  that   the  Standardized  Precipitation  Index  is  the  most  appropriate  for  drought  analysis  in  the  regions  of  interest,   the  Great  Plains  and  Southwest  U.S.  The  sensitivity  of  drought  characteristics  to  model  resolution  found   that  model  grid  size  generally  does  not  have  a  significant  influence  on  drought  model  output.  Drought  time   scale  was  revealed  to  be  an  important  factor  in  drought  analysis-­‐  short-­‐term  drought  tends  to  occur  more   often  in  the  midst  of  long-­‐term  droughts,  even  though  different  physical  mechanisms  may  be  at  the  root  of   each.  Finally,  a  perturbed  physics  ensemble  reveals  that  model  parameterizations  do  indeed  influence  

drought  characterization.      

Photo  Credit:  Bert  Kaufmann

Photo  Credit:  Robert  Couse-­‐Baker

(2)

Table  of  Contents  

List  of  Figures  ...  2  

List  of  Tables  ...  3  

Glossary  ...  4  

Acronyms  ...  5  

Acknowledgements  ...  5  

1  Introduction  ...  6  

2  Background  and  Research  Framework  ...  6  

2.1  Drought  and  Its  Impacts  ...  6  

2.2  Drought  in  the  Great  Plains  and  Southwest  U.S.  ...  8  

2.3  Uncertainties  in  Characterizing  Drought  ...  10  

2.3.1  Drought  Mechanisms  ...  11  

2.3.2  Drought  Timescale:  Flash  Drought  versus  Long-­‐term  Drought  ...  12  

2.3.3  Modeling  Drought  ...  12  

3  Objective  and  Research  Questions  ...  14  

4  Methods  and  Materials  ...  14  

4.1  Methodology  ...  14  

4.1.1  Phase  I.  Comparative  Analysis  of  Drought  Indices  ...  15  

4.1.2  Phase  II.  Model  Resolution  Sensitivity  Analysis  ...  15  

4.1.3  Phase  III.  Analysis  of  Flash  Droughts  versus  Long-­‐term  Droughts  ...  16  

4.1.4  Phase  IV.  Perturbed  Physics  Ensemble  Analysis  ...  17  

4.2  Materials  ...  18  

4.2.1  Climate  Model  Control  Runs  ...  18  

4.2.2  Observational  Datasets  ...  18  

5  Results  and  Discussion  ...  20  

5.1  Comparative  Analysis  of  Drought  Indices  ...  20  

5.1.1  Palmer  Drought  Severity  Index  ...  21  

5.1.2  Standardized  Precipitation  Index  ...  22  

5.1.3  Percent  of  Normal  ...  23  

5.1.4  Precipitation  Deciles  ...  24  

5.1.5  Drought  Index  Selection  ...  25  

5.2  Sensitivity  Analysis  of  Model  Resolution  ...  26  

5.3  Flash  Droughts  versus  Long-­‐term  Droughts  ...  35  

5.3.1  Flash  Droughts  within  Long-­‐term  Droughts  ...  35  

5.3.2  Precipitation  Anomalies  During  Flash  Droughts  versus  Long-­‐term  Droughts  ...  36  

5.3.3  Physical  Mechanisms  behind  Flash  and  Long-­‐term  Droughts  ...  42  

5.4  Analysis  of  Drought  Characteristics  in  Perturbed  Physics  Runs  ...  51  

6  Conclusions  ...  54  

Appendices  ...  60  

Appendix  I.  Time  Series  of  SPI  Values  for  Model  Resolutions  and  Observations  ...  60  

Appendix  II.  Calculation  of  Flash  Drought  Densities  ...  66  

Appendix  III.  Multi-­‐linear  Regression  Analysis  ...  66    

(3)

List  of  Figures  

 

FIGURE  1.  APPROXIMATE  LOCATIONS  OF  GREAT  PLAINS  AND  SOUTHWEST  REGIONS  WITHIN  THE  UNITED  STATES  ...  8  

FIGURE  2.  MONTHLY  PRECIPITATION  CLIMATOLOGY  FOR  THE  GREAT  PLAINS  AND  SOUTHWEST  U.S.  ...  9  

FIGURE  3.  PRECIPITATION  ANOMALIES  FOR  (A)  THE  GREAT  PLAINS  AND  (B)  SOUTHWEST  U.S.  USING  HISTORICAL  PRECIPITATION   OBSERVATIONS  FROM  YEARS  1900-­‐2010  ...  10  

FIGURE  4.  FOUR  PHASES  OF  THE  THESIS  PROJECT  ...  15  

FIGURE  5.  GREAT  PLAINS  TOTAL  ANNUAL  PRECIPITATION  (MM)  FROM  (A)  GPCC  OBSERVATIONS  AND  (B)  TRMM  OBSERVATIONS  ...  19  

FIGURE  6.  SOUTHWEST  U.S.  TOTAL  ANNUAL  PRECIPITATION  (MM)  FROM  (A)  GPCC  OBSERVATIONS  AND  (B)  TRMM  OBSERVATIONS  ...  20  

FIGURE  7.  SEASONAL  PRECIPITATION  CLIMATOLOGY  IN  MM/DAY  FOR  OBSERVATIONAL  DATA,  0.5°,  1°,  AND  2°  CCSM4  CONTROL  RUNS  IN   THE  GREAT  PLAINS  ...  28  

FIGURE  8.  SEASONAL  PRECIPITATION  CLIMATOLOGY  IN  MM/DAY  FOR  OBSERVATIONAL  DATA,  0.5°,  1°,  AND  2°  CCSM4  CONTROL  RUNS  IN   THE  SOUTHWEST  U.S.  ...  29  

FIGURE  9.  SEASONAL  PRECIPITATION  ANOMALIES  (IN  MM/DAY)  DURING  FLASH  DROUGHTS  IN  THE  GREAT  PLAINS  ...  38  

FIGURE  10.  SEASONAL  PRECIPITATION  ANOMALIES  (IN  MM/DAY)  DURING  LONG-­‐TERM  DROUGHTS  IN  THE  GREAT  PLAINS  ...  39  

FIGURE  11.  SEASONAL  PRECIPITATION  ANOMALIES  (IN  MM/DAY)  DURING  FLASH  DROUGHTS  IN  THE  SOUTHWEST  U.S.  ...  40  

FIGURE  12.  SEASONAL  PRECIPITATION  ANOMALIES  (IN  MM/DAY)  DURING  LONG-­‐TERM  DROUGHTS  IN  THE  SOUTHWEST  U.S.  ...  41  

FIGURE  13.  SEASONAL  SOIL  MOISTURE  ANOMALIES  (IN  KG/M2)  DURING  FLASH  DROUGHTS  IN  THE  GREAT  PLAINS  ...  43  

FIGURE  14.  SEASONAL  SOIL  MOISTURE  ANOMALIES  (IN  KG/M2)  DURING  LONG-­‐TERM  DROUGHTS  IN  THE  GREAT  PLAINS  ...  44  

FIGURE  15.  SEASONAL  SOIL  MOISTURE  ANOMALIES  (IN  KG/M2)  DURING  FLASH  DROUGHTS  IN  THE  SOUTHWEST  U.S.  ...  45  

FIGURE  16.  SEASONAL  SOIL  MOISTURE  ANOMALIES  (IN  KG/M2)  DURING  LONG-­‐TERM  DROUGHTS  IN  THE  SOUTHWEST  U.S.  ...  47  

FIGURE  17.  SUMMER  (JJA)  SEA  SURFACE  TEMPERATURE  ANOMALIES  DURING  FLASH  DROUGHT  AND  LONG-­‐TERM  DROUGHT  IN  THE  GREAT   PLAINS  ...  48  

FIGURE  18.  SUMMER  (JJA)  SEA  SURFACE  TEMPERATURE  ANOMALIES  DURING  FLASH  DROUGHTS  AND  LONG-­‐TERM  DROUGHTS  IN  THE   SOUTHWEST  U.S.  ...  50  

FIGURE  19.  HISTOGRAMS  OF  NUMBER  OF  DROUGHT  MONTHS  PER  3  YEARS  IN  THE  GREAT  PLAINS  AND  SOUTHWEST  U.S.  FOR  PERTURBED   PHYSICS  RUNS  AND  2  DEGREE  CCSM4  CONTROL  RUN  ...  52  

FIGURE  20.  TIME  SERIES  OF  SPI  VALUES  FOR  OBSERVATIONAL  DATA  IN  THE  GREAT  PLAINS,  POSITIVE  SPI  VALUES  IN  BLUE  AND  NEGATIVE   SPI  VALUES  IN  RED,  WITH  A  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER  ADDED  IN  BLACK  ...  60  

FIGURE  21.  TIME  SERIES  OF  SPI  VALUES  FOR  0.5  DEGREE  DATA  IN  THE  GREAT  PLAINS,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER   ADDED  ...  60  

FIGURE  22.  TIME  SERIES  OF  SPI  VALUES  FOR  1  DEGREE  MODEL  IN  THE  GREAT  PLAINS,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER  LINE   ADDED  IN  BLACK  ...  61  

FIGURE  23.  TIME  SERIES  OF  SPI  VALUES  FOR  2  DEGREE  MODEL  IN  THE  GREAT  PLAINS,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER  LINE   ADDED  IN  BLACK  ...  62  

FIGURE  24.  TIME  SERIES  OF  SPI  VALUES  IN  THE  SOUTHWEST  U.S.,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER  LINE  ADDED  IN  BLACK  .  63   FIGURE  25.  TIME  SERIES  OF  SPI  VALUES  FOR  0.5  DEGREE  MODEL  IN  THE  SOUTHWEST  U.S.,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER   LINE  IN  BLACK  ...  63  

FIGURE  26.  TIME  SERIES  OF  SPI  VALUES  FOR  1  DEGREE  MODEL  IN  THE  SOUTHWEST  U.S.,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER   LINE  ADDED  IN  BLACK  ...  64  

FIGURE  27.  TIME  SERIES  OF  SPI  VALUES  FOR  2  DEGREE  MODEL  IN  SOUTHWEST  U.S.,  WITH  5-­‐YEAR  RUNNING  AVERAGE  SMOOTHER  LINE   ADDED  IN  BLACK  ...  65    

(4)

List  of  Tables  

 

TABLE  1.  COMPARISON  OF  DROUGHT  INDICES  ...  25   TABLE  2.  SPI  THRESHOLD  VALUES  FROM  LITERATURE  ...  26   TABLE  3.  DROUGHT  CHARACTERIZATION  FOR  1-­‐,  3-­‐,  24-­‐,  AND  48-­‐MONTH  SPI  DROUGHTS  IN  THE  SOUTHWEST  U.S.  AND  GREAT  PLAINS  30   TABLE  4.  KOLMOGOROV-­‐SMIRNOV  STATISTICAL  TEST  P-­‐VALUE  RESULTS  FOR  THE  GREAT  PLAINS  ...  33   TABLE  5.  KOLMOGOROV-­‐SMIRNOV  STATISTICAL  TEST  RESULTS  FOR  SOUTHWEST  U.S.  ...  34   TABLE  6.  PERCENTAGES  OF  FLASH  DROUGHTS  DURING  LONG-­‐TERM  DROUGHTS  AND  FLASH  DROUGHT  DENSITIES  FOR  OBSERVATIONS,  0.5°,  

1°,  AND  2°  CONTROL  RUNS  IN  BOTH  THE  GREAT  PLAINS  AND  SOUTHWEST  U.S.  ...  36   TABLE  7.  PARTIAL  REGRESSION  COEFFICIENTS  AND  STANDARDIZED  REGRESSION  COEFFICIENTS  FROM  MULTI-­‐LINEAR  REGRESSION  

ANALYSIS  OF  DROUGHT  AND  PHYSICS  PARAMETERIZATIONS  IN  BOTH  THE  GREAT  PLAINS  AND  SOUTHWEST  U.S.  ...  53    

(5)

Glossary  

 

TERM   DEFINITION  

CLIMATE  MODEL   Large  set  of  mathematical  equations  that  

represent  the  processes  in  Earth’s   atmosphere,  ocean,  land,  and  sea  ice   components,  used  to  recreate  and  predict   long-­‐term  global  weather  conditions     COMMUNITY  ATMOSPHERE  MODEL  V.5.0  (CAM5)   The  fifth  version  of  a  global  atmosphere  

model  and  the  atmospheric  component  of  the   coupled  community  earth  system  model   COMMUNITY  CLIMATE  SYSTEM  MODEL  V.4.0  (CCSM4)   The  older  version  of  the  NCAR  fully-­‐coupled  

global  climate  model  (see  CESM1)  

COMMUNITY  EARTH  SYSTEM  MODEL  V.1.0  (CESM1)   The  latest  NCAR  fully-­‐coupled  global  climate   model  that  is  used  to  provide  updated   recreations  of  the  past  and  present  climate   and  predictions  of  future  climate  

DROUGHT   A  sustained,  but  temporary,  period  of  time  

characterized  by  abnormally  low  

precipitation.  Specific  definitions  of  drought   can  vary  greatly  depending  on  context  

FULLY-­‐COUPLED   Integration  of  both  atmosphere  and  ocean  

models  into  a  climate  model  

GREAT  PLAINS   A  region  in  the  central  United  States  bounded  

by  30°-­‐50°N  and  95°-­‐105°W  and  

characterized  by  flat  landscape  and  heavy   agricultural  practices  

PARAMETERIZATION   Mathematical  specification  of  a  process  that  

occurs  on  a  scale  too  small  to  be  physically   represented  in  a  climate  model  with  limited   grid  size,  and  therefore  must  be  simplified   using  parameters  

PERTURBED  PHYSICS  ENSEMBLE  (PPE)   Climate  model  runs  that  alter  parameter   values  in  order  to  evaluate  the  impact  of   parameter  uncertainty  on  accuracy  of  climate   model  predictions  

RESOLUTION   Climate  model  resolution  refers  to  the  grid  

sizes  used  when  running  the  model  

THE  SOUTHWEST     A  desert-­‐like  region  with  complex  

topography  in  the  southwestern  United   States  bounded  by  32°-­‐42°N  and  106°-­‐118°W   STANDARDIZED  PRECIPITATION  INDEX  (SPI)   A  metric  used  to  determine  presence  and  

severity  of  drought  based  on  precipitation   data  

(6)

Acronyms  

 

CCSM     Community  Climate  System  Model   CESM     Community  Earth  System  Model  

GPCC     Global  Precipitation  Climatology  Centre   NCAR     National  Center  for  Atmospheric  Research   NCL                                      NCAR  Command  Language  

NOAA     National  Oceanic  and  Atmospheric  Administration   PDSI     Palmer  Drought  Severity  Index  

PPE     Perturbed  Physics  Ensemble   SLP                             Sea  Level  Pressure  

SPI     Standardized  Precipitation  Index   SST                   Sea  surface  temperature  

Acknowledgements    

 

A  heartfelt  thanks  to  my  University  of  Amsterdam  advisors,  John  van  Boxel  and  Erik  Cammeraat,   for  their  willingness  to  work  with  me  remotely  from  across  the  Atlantic  Ocean.  And  a  big  thank   you  to  Jerry  Meehl  for  guidance,  support  and  resources  provided  to  me  as  a  visiting  student  at   NCAR.  I  greatly  enjoyed  my  scientific  journey  with  this  thesis,  and  I  am  grateful  for  the  direction   and  encouragement  from  each  of  you.    

   

(7)

1  Introduction  

 

Climate  is  an  inextricable  part  of  life  on  Earth-­‐  it  affects  the  environment,  ecosystem  health,  and   human  activity.  Given  its  direct  impact  on  our  lives,  there  is  vested  interest  in  studying  the  

mechanisms  of  climate  and  how  climate  might  change  in  the  future  with  anthropogenic  influence.      

Extreme  climatic  events,  like  drought,  are  of  particular  concern  due  to  the  potential  future   increase  in  frequency  and  intensity,  or  change  in  timing,  of  such  events  (IPCC,  2014).  Intensified   extreme  events  can  produce  unprecedented  effects.  Specifically,  drought  can  interfere  with  food   and  drinking  water  supply,  vegetation  survival,  and  income  generation.  In  order  for  the  world’s   populations  to  be  able  to  prepare  for  or  adapt  to  drought  conditions,  it  is  essential  to  understand   the  physical  mechanisms  behind  drought  so  it  is  possible  to  better  predict  their  occurrence,   especially  in  light  of  climate  modeling  uncertainties.    

 

This  thesis  will  seek  to  add  to  the  body  of  knowledge  on  drought  and  will  do  so  by  evaluating  the   uncertainties  in  characterizing  drought  in  the  Great  Plains  and  Southwest  United  States  

(henceforth  referred  to  as  ‘the  Southwest  U.S.’)  using  climate  models.  The  outcomes  of  this  thesis   will  provide  insight  into  how  model  resolution,  parameterization,  drought  type,  and  selection  of   drought  index  affect  characterization  of  drought  in  the  specified  regions,  with  the  potential  to  also   elucidate  what  physical  mechanisms  may  be  at  play  in  creating  drought-­‐like  conditions.  

 

This  thesis  provides  an  overview  of  background  topics  essential  to  the  study,  the  objective  of  the   work  and  research  questions  to  be  addressed,  and  the  methods  used,  as  well  as  results  and  a   discussion  of  findings.  

2  Background  and  Research  Framework  

 

The  following  section  provides  background  information  on  major  topics  to  be  covered  in  the   thesis  study  (definition  and  impacts  of  drought,  drought  mechanisms,  modeling  drought,  and   drought  in  the  Great  Plains  and  the  Southwest),  the  societal  importance  of  the  research,  and  how   this  research  fits  into  the  work  currently  being  done  in  the  fields  of  climate  modeling  and  drought.   This  will  serve  as  a  framework  within  which  the  thesis  study  was  executed.  

 

2.1  Drought  and  Its  Impacts      

Drought  refers  to  a  sustained  period  of  abnormally  dry  environmental  conditions  that  is  

temporary  rather  than  permanent  (Dai,  2011a;  NOAA,  2013).  The  temporary  aspect  of  drought   separates  it  from  the  more  permanent  state  of  aridity  (Heim,  2002).  Drought  can  bring  a  plethora   of  negative  social,  economic  and  environmental  impacts,  including  damage  to  food  supply,  

drinking  water  supply,  recreational  activities,  ecosystems,  and  hydropower  generation,  and  are   incredibly  expensive  natural  disasters  (Heim,  2002;  Cayan  et  al.,  2010).  For  example,  the  limited   water  supply  during  droughts  means  that  agricultural  production  decreases,  causing  financial   hardship  to  farms  and  increasing  food  prices  (Wilhite  et  al.,  2007).  Furthermore,  depending  on   resiliency  of  flora  and  fauna  populations  within  a  region,  the  lack  of  water  during  drought  

(8)

negatively  impacts  biodiversity  by  decreasing  ecosystem  productivity  and  increasing  mortality   rate  (Archaux  &  Wolters,  2006).    

 

Droughts  are  intimately  linked  with  the  Earth’s  climatic  processes,  and  thus  are  subject  to  change   in  intensity  and  frequency  with  changing  climate  (IPCC,  2012;  Seager  et  al.,  2007;  Dai,  2012).  In   fact,  the  models  show  that  drying  in  the  subtropics  is  forthcoming  or  already  observed,  and  is   unlike  anything  seen  in  the  instrumental  record  (Seager  et  al.,  2007).  As  such,  it  is  important  now   more  than  ever  to  better  understand  the  mechanisms  of  drought  and  the  potential  to  predict   drought  conditions  in  an  attempt  to  mitigate  the  potentially  amplified  negative  environmental  and   socioeconomic  impacts  of  future  drought.      

 

Though  drought  is  a  recurring  phenomenon  that  has  been  the  topic  of  studies  for  decades,  it   remains  difficult  to  define  both  qualitatively  and  quantitatively  (Heim,  2002;  Kallis,  2008).  There   are  four  generally  accepted  qualitative  categories  of  drought:  meteorological,  agricultural,  

hydrological,  and  socioeconomic.  Meteorological  drought  refers  simply  to  a  reduction  in  

atmospheric  precipitation  from  the  average  or  expected  precipitation  values  in  a  region,  while  an   agricultural  drought  occurs  when  the  soil  moisture  levels  do  not  satisfy  the  needs  of  regional   crops.  Hydrological  drought  refers  to  conditions  in  which  surface  and  subsurface  water  supplies   are  affected  by  long-­‐term  reductions  in  precipitations,  and  socioeconomic  drought  defines  the   type  of  drought  that  begins  to  affect  the  supply  and  demand  balance  between  environmental   water  supply  and  water  demands  by  human  activities  (Heim,  2002;  NOAA,  2013).    In  order  to  limit   the  scope  of  this  analysis,  the  paper  will  focus  specifically  on  meteorological  drought.      

   

Quantitatively,  drought  is  measured  and  defined  by  drought  indices-­‐  numerical  standards  that   take  into  account  physical  parameters  to  produce  a  number  on  a  scale  that  indicates  drought   severity.  These  drought  indices  are  needed  to  monitor  progression  of  drought  over  time  and  to   compare  different  drought  events  from  separate  regions  (Kallis,  2008).  Examples  of  popular   drought  indices  include  the  Palmer  Drought  Severity  Index,  the  Standardized  Precipitation  Index,   precipitation  deciles,  and  the  percent  of  normal.  Although  no  drought  index  can  be  considered  the   best,  some  indices  are  more  useful  than  others  depending  on  the  type  of  drought  and  context  in   which  information  on  drought  is  needed  (Guttman,  1998;  Alley,  1984).    Consequently,  a  

comparative  analysis  of  meteorological  drought  indices  is  performed  in  section  5.1.1,  in  order  to   choose  the  best  drought  metric  for  the  analyses  in  this  thesis.    

  Despite  the  existing  qualitative  and  quantitative  descriptions  of  drought,  there  is  still  not  one   agreed  upon  threshold  for  drought.  In  other  words,  even  given  a  decided  upon  drought  index,  it  is   subjective  what  number  on  that  index  scale  would  indicate  drought.  For  example,  does  decile  1  in   the  precipitation  deciles  index  (meaning  precipitation  amount  is  not  exceeded  by  10%  of  

occurrences)  signify  drought?  Or  does  decile  0.5  indicate  drought?  It  is  here  where  uncertainty  in   drought  definition  still  lies.  A  sampling  of  definitions  in  recent  drought  publications  characterize   drought  as:  years  where  soil  moisture  falls  below  the  10th  percentile  over  a  long-­‐term  

measurement  period  (Cayan  et  al.,  2010),  a  period  when  supply  demand  drought  index  less  than  -­‐ 2.0  (Findell  &  Delworth,  2010),  and  time  when  precipitation  in  the  lowest  quartile  of  a  100-­‐yr   period  (McCabe  et  al.,  2004).  In  part,  this  thesis  will  provide  a  comparative  analysis  of  drought   indices  and  drought  definitions  in  hopes  of  finding  the  index  and  threshold  that  is  the  best  fit  for   characterizing  drought  in  the  areas  of  interest-­‐  the  Great  Plains  and  Southwest.  

(9)

Despite  the  lack  of  agreement  on  drought  description,  implementing  definitions  of  drought,  either   qualitatively  or  quantitatively,  is  necessary  for  continued  research  of  drought,  its  causes,  and  its   impacts.  In  being  able  to  identify  drought  occurrences  by  their  intensity  and  duration,  and  track   the  drought  over  time,  it  is  possible  to  begin  to  make  scientific  progress  towards  understanding   drought  mechanisms.  A  deeper  understanding  of  drought  mechanisms  will  be  instrumental  in   improving  drought  forecasts,  which  in  turn  will  help  society  better  prepare  for  and  adapt  to   current  and  future  drought  conditions.    

 

2.2  Drought  in  the  Great  Plains  and  Southwest  U.S.    

Some  regions  in  particular  are  more  sensitive  to  drought  than  others.  Within  the  United  States,   two  regions  of  interest  are  the  Great  Plains  and  the  Southwest,  which  both  have  unique  reasons   why  they  are  vulnerable  to  the  effects  of  drought.  Figure  1  displays  the  approximate  locations  of   the  Great  Plains  and  Southwest  U.S.  regions  on  a  map  of  the  United  States.  

 

Figure  1.  Approximate  locations  of  Great  Plains  and  Southwest  regions  within  the  United  States  

 

The  Great  Plains  region  of  the  United  States  is  defined  as  the  area  between  30°-­‐50°N  and  95°-­‐ 105°W,  and  is  characterized  by  grasslands  that  support  large  agricultural  production  zones   (McCrary,  2010;  Capotondi  &  Alexander,  2010).  The  Great  Plains  are  particularly  vulnerable  to   drought  conditions,  given  the  high  water  demand  from  local  agriculture  and  expanding  

populations,  as  well  as  the  unsustainable  use  of  groundwater  from  the  regional  Ogallala  Aquifer   (McCrary  &  Randall,  2010).  The  drought  sensitivity  of  the  area  is  apparent  in  the  historical   drought  records,  which  show  long  periods  of  reduced  precipitation  in  the  region  (Clark  et  al.,   2002;  Woodhouse  &  Overpeck,  1998).  One  of  the  worst  and  most  notable  periods  of  drought  is   that  of  the  1930s,  commonly  referred  to  as  the  Dust  Bowl.  During  this  time,  most  crops  perished   and  dust  storms  disrupted  the  lives  of  thousands  in  the  region  (Schubert  et  al.,  2004b;  Clark  et  al.,  

Southwest

U.S.

Great

Plains

(10)

2002;  Capotondi  &  Alexander,  2010).  Given  that  this  area  of  the  central  United  States  is  a  valuable   agricultural  center,  drought  prediction  and  preparation  is  extremely  useful  in  avoiding  

socioeconomic  devastation.      

Monthly  precipitation  climatology  for  the  Great  Plains,  shown  in  the  left  plot  of  Figure  2,  illustrate   a  seasonal  precipitation  cycle  in  the  region  in  which  winter  has  precipitation  minimums  and   summer  has  precipitation  maximums.  Given  the  region’s  dependency  on  agriculture,  droughts  in   the  spring  and  summer  (crop  growing  months)  are  especially  devastating,  even  though  these  are   times  of  the  highest  regional  precipitation.  Figure  3(a)  shows  historical  precipitation  anomalies   trends  for  the  Great  Plains.  Anomalies  were  calculated  by  subtracting  long-­‐term  precipitation   rates  from  average  precipitation  rates  for  any  given  month.  The  precipitation  anomaly  time  series   for  the  Great  Plains  indicates  the  Dust  Bowl  decadal  drought  in  the  1930s,  as  well  as  other  decadal   scale  droughts  throughout  the  region’s  history,  as  described  in  the  literature  mentioned  above.   This  further  supports  the  region’s  tendencies  for  extended  periods  of  drought  conditions.    

 

Figure  2.  Monthly  Precipitation  Climatology  for  the  Great  Plains  and  Southwest  U.S.  

 

The  Southwest  is  defined  as  the  area  between  32°-­‐42°N  and  106°-­‐118°W,  and  is  characterized  by   low  annual  precipitation,  warm  annual  temperatures,  clear  skies,  strong  interannual  hydrological   variability,  and  populations  that  rely  heavily  on  water  supply  from  the  Colorado  River  (Sheppard   et  al.,  2002;  Meehl  &  Hu,  2006;  Cayan  et  al.,  2010).  Most  of  the  region  shows  characteristics  of  a   desert.  Since  2000,  the  region  has  experienced  widespread  drought,  and  many  lakes  and  

reservoirs  are  at  diminished  capacity  (MacDonald  et  al.,  2008).  As  for  the  future  of  Southwestern   U.S.  droughts,  climate  models  predict  that  the  region  will  get  drier  and  warmer,  and  experience   more  severe  droughts  (Cayan  et  al.,  2010).  Due  to  the  growing  population  and  inherent  water   shortages  from  increasing  demands  within  the  region,  the  Southwest  would  benefit  greatly  from   better  drought  predictions  that  allow  further  preparation  for  incoming  droughts.    

 

Monthly  precipitation  climatology  for  the  Southwest  U.S.,  shown  in  the  right  plot  of  Figure  2   illustrate  a  slight  seasonal  precipitation  cycle  in  the  region  in  which  summer  has  precipitation   minimums  and  winter  has  precipitation  maximums.  Figure  3(b)  shows  historical  precipitation   anomalies  trends  for  the  Southwest  U.S.  Anomalies  were  calculated  by  subtracting  long-­‐term  from   average  precipitation  for  any  given  month.  The  precipitation  anomaly  time  series  for  the  

(11)

do  not  appear  as  large  as  those  in  the  Great  Plains.  In  part,  this  is  due  to  the  fact  that  the  

Southwest  U.S.  does  not  receive  as  much  precipitation  as  the  Great  Plains,  and  thus  cannot  have   negative  anomalies  as  large  in  magnitude  as  those  in  the  Great  Plains.  Similarly,  the  Southwest  U.S.   appears  to  have  more  positive  precipitation  anomalies  than  negative  anomalies,  but  this  is  again   due  to  the  extremely  low  overall  precipitation  that  the  region  receives.        

 

 

Figure  3.  Precipitation  anomalies  for  (a)  the  Great  Plains  and  (b)  Southwest  U.S.  using  historical  precipitation   observations  from  years  1900-­‐2010  

 

In  comparing  the  two  regions  of  interest,  it  is  of  note  that  the  Southwest  U.S.  generally  receives   substantially  less  precipitation  than  the  Great  Plains  region  in  all  months.  Additionally,  the   precipitation  cycles  in  each  season  are  offset  such  that  the  Southwest  U.S.  receives  the  least   precipitation  in  the  summer,  when  the  Great  Plains  receives  its  maximum  precipitation.  On  the   other  hand,  the  Southwest  U.S.  has  a  precipitation  high  in  winter,  while  the  Great  Plains  receives   less  moisture  in  the  winter.  This  goes  to  show  that  although  these  regions  are  relatively  close  to   each  other  on  a  global  scale,  their  precipitation  patterns  are  substantially  different,  thus  providing   motivation  for  a  regionalized  drought  analysis  as  opposed  to  an  analysis  of  a  larger  area,  such  as   the  entirety  of  the  United  States.  

 

Due  to  the  vulnerability  of  the  Southwest  U.S.  and  the  Great  Plains  to  periods  of  drought,  it  is  of   particular  importance  to  continue  to  study  drought  mechanisms  and  improve  future  drought   predictions  for  these  areas  as  a  means  of  mitigating  local  degradation  to  the  environment  and   socioeconomic  activities.  It  is  for  these  reasons  that  this  thesis  project  will  focus  on  these  two   regions.  

 

2.3  Uncertainties  in  Characterizing  Drought    

It  is  clear  now  the  potential  devastating  nature  of  droughts,  and  reasons  why  research  to  learn   more  about  them  is  essential.  However,  the  research  needed  to  further  characterize  drought  is   laden  with  uncertainty.  Already  mentioned  was  the  uncertainty  in  simply  defining  drought;   however,  there  are  many  more  types  of  uncertainty  impeding  satisfactory  and  confident  scientific  

(12)

progress  in  the  field.  Uncertainty  is  also  inherent  in  the  physical  mechanisms  inducing  drought,   the  types  of  drought  selected  for  analysis,  and  how  those  droughts  are  modeled  in  a  climate  model.   Each  type  of  uncertainty  will  be  introduced  here,  and  explored  in  depth  throughout  the  phases  of   the  thesis.      

2.3.1 Drought Mechanisms

 

Though  droughts  are  naturally  occurring  phenomenon  that  can  occur  stochastically  by  

atmospheric  processes  on  an  interdecadal  timescale,  there  is  also  evidence  for  external  forcings   affecting  occurrence  of  drought.  One  of  the  ongoing  scientific  struggles  in  the  fields  of  drought  and   climate  is  to  determine  what  portion  of  extreme  drought  variability  is  attributable  to  internally   generated  conditions,  and  what  portion  is  ascribed  to  externally  generated  forcings  (Solomon  et   al.,  2011;  Lei  et  al.,  2011).    

 

Much  work  has  been  done  speculating  what  specific  physical  mechanisms  or  combination  thereof   are  responsible  for  creation  of  drought  conditions.  Some  studies  have  found  that  sea  surface   temperature  (SST)  variability-­‐  both  in  the  Atlantic  and  the  Pacific  Oceans-­‐  drives  precipitation   anomalies.  Atlantic  SST  anomalies  have  been  shown  to  influence  precipitation  variability  over   North  America  (Hoerling  &  Kumar,  2003).  Specifically,  abnormally  warm  SSTs  in  the  Atlantic  are   associated  with  reduced  precipitation  in  areas  of  North  America  like  the  Southwest  and  the  Great   Plains  (Kushnir  et  al.,  2010).  Other  studies  claim  that  Pacific  SST  anomalies  or  cycles  of  El  Niño   and  La  Niña  events  at  least  partially  drive  precipitation  variability,  where  negative  Pacific  SST   anomalies  are  associated  with  low  precipitation  anomalies  over  North  America  (Capotondi  &   Alexander,  2010).  Seager  et  al.  (2005)  describe  the  physical  mechanism  behind  the  link  between   Pacific  SST  variability  and  North  American  drought-­‐  the  SST  variability  changes  the  subtropical  jet   stream,  which  alters  propagation  of  eddies  and  influences  mean  meridional  circulation,  which   enhances  subsidence  over  North  America  and  encourages  drought.  Furthermore,  there  is  research   that  shows  Atlantic  and  Pacific  SSTs  together  both  play  a  role  in  drought  forcing,  though  maybe   not  in  equal  proportion  (Findell  &  Delworth,  2010;  Mo  et  al.,  2009;  McCabe  et  al.,  2004;  Pegion  &   Kumar,  2010;  Schubert  et  al.,  2009;  Ruiz-­‐Barradas  &  Nigam,  2010).  Findell  &  Delworth  (2010)   show  that  drought  intensity  in  North  America  (particularly  over  the  United  States)  is  highest  when   SST  anomalies  in  the  Pacific  and  Atlantic  are  of  opposite  signs,  i.e.,  the  Pacific  is  colder  and  the   Atlantic  is  warmer  than  average.    

 

Land-­‐atmosphere  interactions  involving  soil  moisture  and  rainfall  feedbacks  also  might  contribute   as  a  mechanism  for  drought  (McCrary  &  Randall,  2010;  Schubert  et  al.,  2004a;  Taylor  et  al.,  2013).   In  the  Great  Plains,  specifically,  these  feedbacks  regulate  evapotranspiration,  and  also  interact   with  stability  and  boundary  layer  characteristics,  all  of  which  influence  precipitation  (McCrary  &   Randall,  2010).  Climate  models  that  included  soil  moisture  feedback  showed  about  five  times   more  variance  in  precipitation  than  models  run  without  the  feedback  (Schubert  et  al.,  2004a),  thus   indicating  that  these  land-­‐atmosphere  interactions  make  some  contribution  to  drought  conditions.    

Apart  from  naturally  varying  physical  mechanisms,  drought  is  also  attributed  to  anthropogenic   forcings.  Since  human  activity  has  been  deemed  responsible  for  rising  surface  temperatures  due  to   increased  greenhouse  gases,  it  can  be  concluded  that  human  activity  is  also  contributing  to  drying   over  land  (Dai,  2011a).  Barnett  et  al.  (2008)  found  that  up  to  60%  of  the  observed  trends  in   hydrology  in  the  Western  United  States  from  years  1950-­‐1999  can  be  attributed  to  human   activities,  and  Hidalgo  et  al.  (2009)  found  that  changes  in  stream  flow  since  1950  in  the  western  

(13)

U.S.  are  significantly  different  from  natural  variability  and  attributable  to  anthropogenic  emissions   and  changing  land  use.  These  studies  indicate  that  indeed  human  activity  can  contribute  to  

hydrology  and  drought  in  some  way.    

What  is  clear  in  the  literature  is  the  lack  of  certainty  regarding  physical  mechanisms  of  drought.   Though  evidence  exists  for  contribution  by  SST  variability,  land-­‐atmosphere  feedbacks  and   anthropogenic  forcings,  it  is  not  clear  to  what  extent  these  mechanisms  contribute  to  drought   variability,  especially  compared  to  contribution  by  internal  and  stochastic  variability.  This  thesis   aims  to  contribute  to  furthering  understanding  of  what  physical  mechanisms  are  at  play  in  causing   drought.    

 

2.3.2 Drought Timescale: Flash Drought versus Long-term Drought

 

One  aspect  of  drought’s  complexity  is  that  the  timescale  on  which  droughts  are  measured  changes   depending  on  the  drought  impact  with  which  one  is  concerned.  For  example,  short-­‐term  ‘flash’   droughts  are  of  great  interest  to  farmers  who  may  be  concerned  with  crops  suffering  just  a  few   weeks  without  enough  precipitation,  while  long-­‐term  droughts  may  be  of  interest  to  water   managers  who  plan  on  the  annual  and  decadal  time  scale  how  to  care  for  water  resources     (Heim,  2002).    

 

The  term  ‘flash  drought’  refers  to  a  very  short-­‐term  drought  event  that  occurs  on  the  scale  of  

weeks  to  months.  Although  there  is  no  widely  available  and  broadly  accepted  definition  of  drought,   a  few  studies  try  pinning  down  a  useful  flash  drought  definition.  Senay  et  al.  (2008)  refer  to  a  flash   drought  as  a  severe  short-­‐term  event  with  negative  moisture  anomalies  and  high  temperatures.   Mozny  et  al.  (2012)  define  flash  drought  as  a  very  rapid  decline  in  soil  moisture  in  a  3-­‐week  period.   The  media  has  recently  picked  up  on  the  term  flash  drought  as  a  means  of  conveying  an  intense   dry  event  that  comes  and  goes  quickly,  as  would  a  flash  flood.  Given  the  lack  of  peer-­‐reviewed   literature  on  the  topic  of  flash  drought,  there  is  much  room  for  interpretation  of  the  term  and   development  of  a  qualitative  definition  and  quantitative  flash  drought  measure.    

 

Long-­‐term  drought,  as  used  in  this  study,  refers  to  decadal  scale  droughts.  Long-­‐term  drought  can   have  an  effect  on  stream  flow,  agriculture,  groundwater,  socioeconomic  activities  and  basin-­‐wide   hydrology  (Belayneh  et  al.,  2013).  Long-­‐term  decadal  scale  droughts  are  better  documented  and   more  thoroughly  studied  than  flash-­‐droughts,  both  in  the  Great  Plains  and  Southwest  U.S  (Clark  et   al.,  2002;  Cayan  et  al.,  2010;  Belayneh  et  al.,  2013).    

 

What  is  not  immediately  clear  from  the  literature  is  how  short-­‐term  and  long-­‐term  droughts  differ   from  each  other  in  length,  in  cause,  and  in  impact.  This  thesis  will  attempt  to  add  knowledge  to   this  scientific  gap.          

 

2.3.3 Modeling Drought

 

Climate  models  are  essential  tools  for  being  able  to  understand  Earth’s  processes  and  how  they   impact  climate.  They  also  are  the  only  way  to  look  at  how  climate  may  change  in  the  future  with   changing  radiative  forcing,  and  they  provide  insight  into  what  climatic  changes  may  be  due  to   natural  internal  variability  of  Earth’s  systems,  anthropogenic  impacts,  or  combinations  of  the  two.   In  being  able  to  predict  climatic  variables  like  temperature,  precipitation,  and  soil  moisture  values,  

(14)

global  climate  models  are  able  to  shed  light  on  what  drought  occurrence  might  look  like  in  the   future.  As  it  stands,  climate  models  still  have  considerable  uncertainty  (Murphy  et  al.,  2004).  It  is   in  the  interest  of  science  and  society  to  reduce  this  uncertainty  and  improve  the  prediction   capabilities  of  climate  models  so  that  they  can  more  accurately  forecast  climate  and  climatic   events  like  droughts.    

 

Uncertainty  in  climate  modeling  can  come  from  model  resolution  (grid  size),  parameterizations,   future  socioeconomic  scenarios,  and  natural  stochastic  processes.  This  thesis  will  narrow  the   focus  and  concentrate  solely  on  model  resolution  and  parameterizations.    

 

2.3.3.1  Climate  Model  Resolution  

 

Climate  model  resolution  in  this  context  refers  to  spatial  resolution,  or  the  size  of  the  model  grid  in   degrees  latitude  and  longitude.  If  a  model  has  increased  spatial  resolution  (e.g.,  0.5°),  it  has  more   grid  cells,  while  models  with  lower  resolutions  (e.g.,  2°)  have  fewer  grid  cells.  Climate  models  with   increased  spatial  resolution  and  more  grid  cells  increase  the  necessary  computing  time  

substantially.  In  general,  increasing  model  resolution  by  a  factor  of  two  equates  to  ten  times  as   much  computing  power  needed,  or  will  take  ten  times  as  long  to  run  on  the  same  computer   (“Climate  Modeling”,  UCAR,  2011,  http://scied.ucar.edu/longcontent/climate-­‐modeling).  

Consequently,  there  is  motivation  to  run  lower  resolution  models  if  the  fewer  number  of  grid  cells   will  not  affect  the  analysis  of  the  model  output  of  interest.  For  example,  if  drought  characterization   proves  to  be  similar  across  all  climate  model  control  run  resolutions,  it  is  desirable  to  run  those   necessary  model  runs  at  the  lowest  resolution  to  save  computing  resources.        

 

Past  studies  have  found  that  although  broad  climate  predictions  at  large,  continental  scales  often   remain  similar  across  resolutions,  as  climate  model  grid  size  decreases,  regional  climate  

predictions  generally  get  more  detailed.  This  is  especially  true  for  areas  that  have  complex  

topography  (like  mountainous  areas)  or  coastlines  (Giorgi  &  Marinucci,  1996).  The  consideration   of  model  resolution  for  climate  models  has  various  facets.  For  one,  higher  climate  model  

resolution  may  better  represent  large-­‐scale  circulation  and  atmospheric  processes,  thus  better   capturing  the  big  processes  that  affect  climate  on  a  smaller  scale.  Secondly,  increased  resolution   may  better  simulate  topographical  interactions  with  the  atmosphere  and  better  indicate  localized   processes.  And  finally,  any  choice  of  model  resolutions  may  have  an  impact  on  parameterizations   and  how  processes  are  resolved  at  the  model’s  grid  size,  which  will  be  discussed  more  in  the  next   section  2.3.3.2  (Giorgi  &  Marinucci,  1996).        

 

Understanding  differences  in  model  resolutions,  especially  when  focusing  on  specific  regions  like   the  Great  Plains  and  Southwest,  will  allow  for  more  informed  characterizations  of  drought.   Knowing  how  model  resolution  affects  drought  characterization  will  also  aid  in  comparison  of   droughts  across  models,  as  will  be  done  in  this  thesis  project.  

 

2.3.3.2  Climate  Model  Parameterizations    

With  respect  to  parameterizations,  climate  model  uncertainty  can  be  evaluated  with  multi-­‐model   ensembles,  like  in  the  Coupled  Model  Intercomparison  Project,  or  with  perturbed  physics  

ensembles  (PPEs)  (Bellprat  et  al.,  2012).  The  focus  here  will  be  on  PPEs.  PPEs  take  a  single  climate   model  and  alter  the  physics  settings  so  that  unconfined  model  parameters  vary  and  allow  

(15)

what  parameterizations  are  important  to  modeling  a  specific  climatic  event  (Fischer  et  al.,  2007)-­‐   in  this  case,  drought.      

 

Although  model  parameterizations  will  be  explored  separately  from  model  resolution  in  this   project,  it  is  important  to  note  that  they  are  not  unrelated.  As  mentioned  briefly  in  the  previous   section,  model  parameterizations  may  behave  differently  with  different  model  resolutions.  This   specific  aspect  of  model  parameterizations  will  not  be  analyzed  here,  though  the  topic  can  be   explored  further  in  Giorgi  &  Marinucci    (1996).  

 

3  Objective  and  Research  Questions  

 

Given  the  problematic  and  inherent  uncertainty  in  characterizing  drought,  there  is  a  need  for   working  towards  better  understanding  of  this  uncertainty  and  its  sources.  The  objective  of  the   thesis  study  is  to  better  understand  uncertainty  in  portraying  drought,  as  it  relates  specifically  to   drought  definition,  model  resolution,  drought  type,  physical  mechanisms  of  drought  and  climate   model  physics  parameterizations.  

 

To  achieve  the  objectives  of  the  study,  the  following  research  questions  will  be  answered:   1. Which  drought  index  is  most  appropriate  for  the  analyses?  

2. How  does  climate  model  resolution  affect  drought  characterization?   3. How  do  flash  drought  and  long-­‐term  drought  characterizations  differ?  

4. What  physical  mechanisms  may  be  contributing  to  drought  in  the  Great  Plains  and   Southwest  U.S.?  

5. What  climate  model  parameterizations  may  be  affecting  uncertainty  in  drought   characterization?    

4  Methods  and  Materials    

4.1  Methodology  

 

The  thesis  study  is  separated  into  four  main  project  phases-­‐  (1)  a  comparative  analysis  of  drought   indices,  (2)  a  sensitivity  analysis  of  drought  characterization  to  model  resolution,  (3)  a  

comparison  of  flash  and  long-­‐term  droughts,  and  (4)  an  investigation  of  a  perturbed  physics   ensemble  to  estimate  sensitivity  of  drought  characterization  to  model  parameterizations.  The  four   phases  of  the  project  are  presented  visually  in  Figure  4.  

(16)

 

Figure  4.  Four  phases  of  the  thesis  project  

 

In  the  following  sections,  methodologies  for  each  project  phase  are  described  in  detail.    

4.1.1 Phase I. Comparative Analysis of Drought Indices

 

The  comparative  analysis  of  drought  indices  uses  information  from  literature  to  compare  and   contrast  various  drought  metrics,  looking  specifically  at  pros  and  cons  of  each  index.  This  thesis   looks  specifically  at  meteorological  drought;  therefore,  only  indices  that  evaluate  meteorological   drought  are  considered.  The  drought  metric  will  be  chosen  based  on  its  applicability  to  both   regions  of  interest,  as  well  as  its  flexibility  in  evaluating  drought  at  multiple  time  scales.  Moreover,   the  drought  index  will  also  be  evaluated  based  on  criteria  presented  in  the  results  section.    

 

Based  on  findings  from  the  literature,  one  drought  index  that  applies  well  to  this  analysis  project   in  the  Great  Plains  and  Southwest  U.S.  is  chosen  to  complete  the  rest  of  the  drought  data  analysis   throughout  the  project.  Drought  periods  for  the  entirety  of  the  analyses  are  determined  and  

defined  by  the  specified  drought  metric,  as  decided  in  the  comparative  analysis  of  drought  indices.        

4.1.2 Phase II. Model Resolution Sensitivity Analysis

 

Three  control  runs  of  different  spatial  resolutions  (0.5°,  1°  and  2°  latitude  by  longitude)  from  the   Community  Climate  System  Model  version  4.0  (CCSM4)  are  utilized  for  the  model  resolution   sensitivity  analysis  in  Phase  II.  CCSM4  model  control  runs  are  used  for  the  resolution  sensitivity   analysis  rather  than  the  more  recent  Community  Earth  System  Model  version  1.0  (CESM1)  

because  long  control  runs  for  0.5°,  1°  and  2°  resolutions  of  CESM1  are  not  available  for  this  project.   An  observational  dataset  of  precipitation  (see  Materials  section  for  more  details)  is  also  utilized  as   a  basis  to  which  drought  characteristics  in  each  model  resolution  is  compared.    

 

First,  for  a  qualitative  look  at  sensitivity  of  drought  to  model  resolution,  contour  plots  of  

precipitation  rates  are  created  for  all  model  resolutions  and  observations.  The  model  resolution   contour  plots  are  compared  to  the  contour  plots  of  the  observations  to  get  a  sense  for  how  well  the  

  PHASE  I:    

Comparative  Analysis  of   Drought  Indices  

PHASE  II:  

Sensitivity  Analysis  of   Drought  Characteristics  

to  Model  Resolution    

PHASE  III:    

Analysis  of  Flash   Droughts  versus  Long-­‐

term  Droughts  

PHASE  IV:    

Analysis  of  Perturbed   Physics  Ensemble  

(17)

models  are  capturing  spatial  nuances  of  regional  precipitation,  as  well  as  distributed  precipitation   intensities.      

 

For  each  spatial  resolution  and  for  observational  data,  drought  characteristics  are  calculated  and   compared  using  the  metric  decided  upon  for  a  more  quantitative  analysis.  The  drought  

characteristics  compared  over  control  runs  and  observations  include:  raw  number  of  drought   months  observed,  average  length  of  droughts,  and  number  of  droughts  per  decade.  Drought   periods  are  determined  based  on  drought  indices  determined  in  Phase  I.    

 

The  raw  number  of  drought  months  is  calculated  by  summing  the  number  of  months  that  meet   drought  criteria  according  to  the  selected  drought  index.  This  number  is  not  directly  comparable   across  resolutions  and  observations,  because  run  lengths  differ.  To  resolve  this,  standardized   characteristics  –drought  months  per  decade  and  length  of  droughts-­‐  are  also  analyzed.  Length  of   drought  is  determined  by  calculating  length  of  drought  (how  many  consecutive  months  meet   drought  conditions),  and  averaging  the  length  of  each  individual  drought  episode  over  the  entirety   of  the  run.  The  number  of  droughts  per  decade  is  calculated  by  finding  the  number  of  droughts   over  each  decade  in  the  run,  and  averaging  those  numbers  over  the  entirety  of  the  run.  Since  the   length  of  drought  and  average  number  of  droughts  per  decade  are  independent  of  run  length,  they   are  drought  characteristics  that  are  comparable  across  all  model  runs  and  observations.  

 

Distributions  of  drought  characteristics  are  then  compared  using  a  non-­‐parametric  Kolmogorov-­‐ Smirnov  statistical  test  to  see  if  differences  between  the  drought  characteristic  distributions  are   significantly  different  between  each  model  resolution  and  the  observational  data.    

 

4.1.3 Phase III. Analysis of Flash Droughts versus Long-term Droughts

 

For  the  analysis  of  flash  droughts  versus  long-­‐term  droughts,  1-­‐month  Standardized  Precipitation   Index  (SPI)  values  are  used  to  calculate  flash  droughts  and  24-­‐month  SPI  values  are  used  to   calculate  long-­‐term  droughts.  A  drought  period  is  defined  by  SPI  values  that  are  negative  and   reach  an  intensity  of  at  most  -­‐1.3  that  ends  when  the  SPI  values  become  positive  (see  Section  5.1.5   Drought  Index  Selection).  The  research  questions  for  the  analysis  of  flash  droughts  versus  long-­‐ term  droughts  are  twofold-­‐  (1)  Do  flash  droughts  tend  to  occur  more  often  in  the  midst  of  long-­‐ term  decadal  droughts?,  and  (2)  Are  flash  droughts  and  long-­‐term  droughts  correlated  with   different  physical  mechanisms?  

 

Since  this  study  seeks  to  explore  the  relationships  between  flash  and  long-­‐term  droughts,  the  first   step  in  Phase  III  is  to  see  if  flash  droughts  have  a  tendency  to  occur  more  often  in  the  midst  of   long-­‐term  droughts.  The  raw  percentage  of  flash  droughts  that  occur  in  the  midst  of  long-­‐term   drought  is  calculated  by  taking  the  raw  number  of  flash  droughts  that  occur  in  long-­‐term  droughts,   divided  by  the  total  number  of  flash  droughts  that  occur  during  that  precipitation  record.  

Additionally,  flash  drought  ‘densities’  (a  numeric  created  by  the  author  for  this  study)  are   calculated.  Flash  drought  densities  represent  how  much  of  long-­‐term  drought  months  are  also   occupied  by  flash  droughts,  or  how  many  months  without  long-­‐term  drought  are  occupied  by  flash   drought.  This  number  gives  a  better  sense  of  flash  drought  tendencies  in  the  midst  of  long-­‐term   droughts  if  long-­‐term  droughts  don’t  happen  often  throughout  the  time  series.    

Referenties

GERELATEERDE DOCUMENTEN

The usual response to ethical issues raised by pervasive and ubiquitous tech- nologies assumes a philosophical anthropology centered on existential autonomy and agency, a

Additionally, a series of gold complexes were studied to understand their possible mechanism of action compared with cisplatin, including cancer cell based studies and healthy

Lattices in cryptography and algebraic number theory are connected using the log-unit lattice by embedding number fields in R n.. Furthermore, Dirichlet L-series are explored,

However, the Pension Funds Adjudicator in Tryon v Nedgroup Defined Contribution Pension and Provident Fund PFA/GA/8796/2011/TCM held that it is possible for spouses married

Overzicht btjlagen Hoofstuk De Woorden. -Overzicht van de samenstelling van de woordcode •. -Overzicht van de samenstelling excentriciteitscode. -Advies voor wtjziging

Samenvattend kan gesteld worden dat de resultaten stroken met de archeologische verwachtingen.  Er  was  op  de  percelen  langs  de  Grotestraat  gedurende  de 

determine for which situation what method(s) should be used; important issues in the application of evaluation and decision techniques are: the time required versus available

8: Experiments of Group B: The mean number of iterations at various number of measurements and various uncertainty parameters of additive and multiplicative noise.