• No results found

Price elasticity of natural gas : empirical analysis on supply and demand in the U.K.

N/A
N/A
Protected

Academic year: 2021

Share "Price elasticity of natural gas : empirical analysis on supply and demand in the U.K."

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University  of  Amsterdam   Faculty  of  Economics  and  Business   BSc  Thesis  Economics  

 

 

Price  Elasticity  of  Natural  Gas  

Empirical  Analysis  on  Supply  and  Demand  in  the  U.K.  

June  2014  

   

Abstract  

In  the  next  decade,  the  natural  gas  market  in  the  United  Kingdom  will  be  facing  far  reaching   structural  changes  (e.g.  strong  expected  decline  in  domestic  production,  higher  dependency   on   imports   and   increasing   carbon   taxes).   The   potential   implications   of   such   changes   are   important  to  all  market  participants  and  price  elasticity  plays  an  important  role  in  modeling   the   effects   of   such   implications.   This   paper   examines   the   short-­‐run   price   elasticity   in   the   natural   gas   market   in   the   U.K.   –   using   Instrumental   Variable   regression   on   a   daily   aggregated   dataset   from   2011   until   2013.   Previous   analyses   on   short   run   price   elasticity   generally  show  a  short  run  inelastic  price  for  supply  and  demand,  partially  attributable  to   rising   short   term   infrastructure   for   producers   and   substantial   substitution   costs   for   consumers   in   the   short   run.   The   estimates   in   this   thesis   are   in   line   with   estimates   from   previous  studies  that  were  mostly  conducted  on  gas  markets  outside  the  U.K.    

            Author                     Ramon  Hoebink  (10000430)                 Supervisor   Lucyna  Górnicka

(2)

Contents

 

1

 

Introduction  ...  3

 

2

 

Literature  review  ...  4

 

3

 

The  British  natural  gas  market  ...  6

 

 

National  Grid  ...  6

 

3.1

 

Efficiency  and  liquidity  ...  7

 

3.2

 

Supply  and  demand  ...  7

 

3.3 4

 

Methodology  ...  9

 

 

Price  elasticity  ...  9

 

4.1

 

Data  ...  10

 

4.2

 

Description  of  variables  ...  10

 

4.3

 

Limitations  ...  11

 

4.4

 

Regression  model  ...  12

 

4.5

 

Endogeneity  ...  13

 

4.6 4.6.1

 

Instrumental  variables  ...  13

 

 

Seasonality  and  other  biases  ...  14

 

4.7 4.7.1

 

Weather  variable  ...  15

 

4.7.2

 

Dummy  variables  ...  15

 

5

 

Results  and  analysis  ...  16

 

 

Test  of  instrument  strength  ...  16

 

5.1

 

Test  of  endogeneity  ...  17

 

5.2

 

Test  of  normality  of  residuals  ...  18

 

5.3

 

Test  of  heteroscedasticity  and  (log)  linearity  ...  19

 

5.4

 

Test  of  autocorrelation  ...  19

 

5.5

 

Second  stage  regression  ...  21

 

5.6 6

 

Conclusion  and  discussion  ...  22

 

 

Validity  of  the  model  ...  22

 

6.1

 

Elasticity  ...  22

 

6.2

 

Future  research  ...  23

 

6.3 7

 

References  ...  24

 

 

(3)

1 Introduction  

The   United   Kingdom   has   been   a   large   producer   of   natural   gas   since   the   mid-­‐late   1960’s   when  the  first  discoveries  were  made.  From  the  late  1970s  to  the  early  2000s,  the  U.K.  was  a   major   exporter   of   oil   and   gas.   Supplies   from   the   North   and   Irish   seas   peaked   in   1999,   however,   production   has   since   fallen   by   more   than   half   (Figure   1-­‐1).   In   2010,   total   gas   production  was  59.8  billion  standard  cubic  meters  (bscm)  whereas  total  gas  demand  was   99  bscm,  making  the  UK  a  net  importer  of  natural  gas  (IEA,  2012).    

The  government  forecasts  this  decline  in  production  to  continue  to  38.2  bscm  by  2016;  and   projects  import  dependence  to  increase  from  around  41  percent  in  2010  to  more  than  65   percent  by  2025.  Given  the  U.K.  as  one  of  the  largest  consumers  of  natural  gas  in  Europe  and   the   expected   future   growth   in   consumption   mainly   attributed   to   the   use   of   natural   gas   in   electricity   generation.   Natural   gas   as   a   source   of   primary   energy   in   the   United   Kingdom   accounts  for  42%  of  total  primary  energy  supply  in  2010,  a  share  that  is  greater  than  that  in   North   America   (28%)   and   the   whole   of   Europe   and   Eurasia   (34%),(Heather,   2010).   Electricity  is  increasingly  generated  with  natural  gas  power  plants.  In  1995,  13  percent  of   total   generated   electricity   came   from   gas-­‐fired   power   plants   and   this   share   rose   to   39   percent  in  2010  (Figure  1-­‐2).    

Figure  1-­‐1.  Production,  consumption  &  reserves   Figure  1-­‐2.    Electricity  generation  shares  in  the  U.K.  

  Data  source:  U.S.  Energy  Information  Administration  (EIA)   Data  source:  Digest  of  United  Kingdom  Energy  Statistics    

Participants   in   a   natural   gas   market   that   is   facing   such   structural   changes,   would   need   a   thorough   understanding   of   the   dynamics   of   demand   and   supply   in   order   to   adapt   their   strategies.   Within   an   economic   framework,   the   key   concept   of   natural   gas   demand   and   supply   movers   lies   in   the   estimation   of   price   elasticity,   which   is   valuable   information   for   consumers,   producers   and   governments.     Accordingly,   analysis   of   elasticity   of   natural   gas   demand   and   supply   can   improve   our   understanding   of   natural   gas   markets.   From   a   regulator’s  perspective,  elasticities  of  supply  and  demand  can  deliver  useful  information  in   order   to   develop   the   right   regulatory   framework   for   economic   policies.   Large   consumers   such   as   power   generating   companies   might   want   to   adapt   their   relative   dependence   on   natural  gas  as  a  fuel  for  electricity  generation  when  price  elasticity  of  supply  or  demand  is   changing.   Lastly,   the   price   elasticity   could   affect   the   length   of   gas   contracts   offered   by   suppliers.   According   to   Neuhoff   and   von   Hirschhausen   (2005),   suppliers’   preferences   for  

0 200 400 600 800 1,000 1,200 0 20 40 60 80 100 120 91 93 95 97 99 01 03 05 07 09 11 13 Re ser ve s   (b scm) Pr od uc tion ,  c on su m ption  (b scm)

Proven  reserves Production Consumption 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1990 1995 2000 2005 2010 Non-­‐thermal Renewables  & Storage Nuclear CCGT Conventional Thermal  &  Other

(4)

long-­‐term   contracts   depend   on   the   difference   between   short   run   and   long   run   price   elasticities   of   demand.   If   the   long-­‐run   elasticity   is   significantly   higher   than   the   short   run   elasticity,  the  suppliers  are  said  to  prefer  long-­‐term  contracts.    

The   objectives   of   this   thesis   are   (1)   to   review   and   describe   the   dynamics   of   demand   and   supply  in  the  British  natural  gas  market,  (2)  to  estimate  recent  short-­‐run  price  elasticity  of   demand  and  supply  of  natural  gas  in  the  U.K.  using  Instrumental  Variable  regression  on  a   simultaneous  equation,  (3)  to  analyze  and  discuss  potential  implications  of  the  results.     In  this  thesis,  an  overview  of  existing  relevant  literature  is  given  in  chapter  2,  followed  by  a   brief  description  of  the  British  natural  gas  market  in  chapter  3.  The  methodology  and  the   results  are  presented  in  chapter  4  and  5,  respectively.    The  overall  validity  of  the  model,  the   potential   implications   of   the   results   and   suggestions   for   future   research   are   discussed   in   chapter  6.    

 

2 Literature  review  

Although   the   demand   side   of   the   natural   gas   market   has   been   thoroughly   researched,   the   supply  side  has  often  been  ignored  and  left  with  mostly  outdated  estimations.  Few  studies   on   elasticity   treat   price   as   simultaneously   determined   by   supply   and   demand   conditions.   Furthermore,  most  studies  had  a  focus  on  either  the  U.S.  market  or  the  worldwide  market,   and  no  relevant  studies  were  found  with  a  focus  on  the  U.K.  market.    Dahl  (2007),  has  found   over  1900  references  on  demand  elasticity  of  which  177  were  conducted  on  the  natural  gas   market.  Most  of  these  studies  have  used  annual,  quarterly  or  monthly  datasets  that  do  not   take  into  account  the  daily  price  volatility;  hence,  the  analysis  in  this  thesis  differs  in  time,   location   and   methodology   from   the   existing   analyses.   This   literature   review   attempts   to   briefly  describe  the  findings  in  some  of  the  existing  studies  on  short  run  price  elasticity.   Krichene   (2002)   is   one   of   the   most   recent   contributors   to   the   list   of   existing   gas   price   elasticity   estimations.   The   model   that   he   employs   is   somewhat   similar   to   the   constructed   model  in  this  thesis  in  the  sense  that:  (i)  he  makes  use  of  a  simultaneous  equation  model  on   demand   and   supply   that   is   regressed   using   TSLS   and   (ii)   he   makes   a   distinction   between   short-­‐run   and   long-­‐run   price   elasticity.   However,   his   data   is   gathered   from   worldwide   supply   and   demand   of   natural   gas   from   1918   to   1999.   In   addition,   he   applied   an   Error   Correction   Model   for   potentially   more   accurate   results.   He   found   that   short-­‐run   demand   price  elasticity  was  negative  and  very  inelastic:  -­‐0.08  (non-­‐significant)  in  1918–1999,  -­‐0.39   (significant)   in   1918–1973   and   -­‐0.01   (non-­‐significant)   in   1973–1999.   Short-­‐run   price   elasticities   of   supply   were   also   low   and   negative,   but   significant:   -­‐0.14,   -­‐0.73   and   -­‐0.10,   respectively.  He  concluded  that  natural  gas  supply  was  determined  by  existing  production   capacity,  hence  natural  gas  supply  did  not  immediately  react  to  changes  in  prices.  The  fact   that  the  elasticity  was  negative  could  have  been  a  consequence  from  (1)  the  nature  of  the   demand   curve   (knowing   the   inelastic   nature   of   demand,   producers   restrain   output   on   purpose  in  order  to  stimulate  price  increases)  or  (2)  that  it  indicates  a  short-­‐run  downward  

(5)

supply   curve   arising   from   economies   of   scale   in   the   industry.   In   the   ECM,   short-­‐run   price   elasticities   of   demand   were   also   low   but   significant:   -­‐0.06   in   1918–1999,   -­‐0.15   in   1918– 1973  and  0.04  in  1973–1999.  The  supply  function  showed  low  and  negative  short-­‐run  price   elasticities:   -­‐0.59,   -­‐0.56   and   0.06,   respectively.   Concluding,   his   findings   show   low   price   elasticity  in  the  short  run  for  both  supply  and  demand.    

In   contrast   to   the   equilibrium   model   applied   in   this   paper,   Barret   (1992)   used   a   disequilibrium   model   in   which   the   quantity   exchanged   was   set   equal   to   the   minimum   of   quantity  supplied  or  demanded  with  quantity  supplied  as  a  function  of  the  natural  gas  price   and   reserves.   The   disequilibrium   model   yielded   a   short   run   natural   gas   supply   elasticity   that   varied   from   0.02   to   0.15.   His   equilibrium   model   showed   lower   values   with   a   supply   elasticity  of  0.014.  His  data  was  gathered  from  the  U.S.  gas  market  between  1960  and  1990.     Taylor  (1977)  reviewed  a  number  of  studies  that  also  used  aggregated  data  and  an  average   price. He  concluded  that  there  is  strong  evidence  that  demand  responds  to  prices,  but  that   the   actual   magnitude   of   the   elasticities   is   uncertain.   Again,   this   is   also   confirmed   by   the   many  different  outcomes  on  price  elasticities  in  the  existing  literature.  Taylor  determined   that  the  price  elasticity  of  demand  equals  -­‐0.15  for  the  short-­‐run  and  more  elastic  than  -­‐1   for  the  long  run.    

Erikson   and   Spann   (1971)   used   a   different   approach   in   which   they   estimated   the   price   responsiveness  on  new  discoveries  of  natural  gas.  By  using  variables  such  as  wildcat  well   drilling,  the  success  ratio  and  the  average  discovery  size,  they  estimated  the  price  elasticity   of   natural   gas   discoveries   at   +0.69.   Although   this   price   elasticity   is   not   (directly)   comparable  to  the  price  elasticity  of  supply  of  this  paper,  their  analysis  does  provide  us  with   insights  on  gas  price  determinants  that  might  be  hidden  in  our  error  term.    

In  a  significant  study  on  price  elasticities  of  demand,  Dahl  (1993)  concludes  that,  despite  the   use  of  various  sophisticated  models,  and  improved  econometric  technics  on  aggregated  and   disaggregated  data,  it  appears  that  demand  elasticity  estimates  will  vary  in  every  different   (study  or  analysis).  Aggregated  demand  for  natural  gas  on  a  static  model  suggests  a  price   elasticity   of   -­‐0.27.   Studies   on   aggregate   and   household   data   suggest   that   demand   is   price   inelastic;   whereas   a   comparative   study   making   a   distinction   between   households   in   the   interstate   and   intrastate   natural   gas   markets   finds   an   inelastic   response.   Price   elasticities   across   the   industrial,   electrical   generation   and   commercial   sectors   show   a   rather   wide   variation   in   values.   All   average   statistics   on   aggregate   data   suggest   an   inelastic   price   response;   however,   industry   estimates   tend   to   suggest   an   elastic   response.   Analyses   that   tend  to  ignore  gas  availability  into  consideration  do  result  in  rather  high  variations  across   regions.   In   summary,   most   of   the   studies   reviewed   above   estimate   inelastic   short-­‐run   supply   and   demand   of   natural   gas.   The   application   of   different   models   across   different   markets  and  time  periods,  amongst  others,  are  reasons  that  help  explain  the  differences  in   estimations.  

(6)

3 The  British  natural  gas  market  

The  liberalization  of  the  natural  gas  market  in  the  United  Kingdom  has  been  a  long  process   that  started  in  the  early  1980s,  and  reached  a  state  of  maturity  only  a  few  years  ago.  This   was  much  later  than  United  States’  “Henry  Hub”  gas  market,  but  much  earlier  than  the  gas   markets   in   continental   Europe,   which   are   still   in   the   process   of   deregulation.   The   U.K.   process   of   change   was   initiated   by   Prime   Minister   Thatcher's   policy   of   privatizing   state-­‐ owned  enterprises,  rather  than  by  a  desire  for  liberalization  per  se.    

Before  the  privatization  of  British  Gas  Corporation  (BGC)  in  1982,  BGC  had  a  monopoly  on   buying  all  gas  produced  in  Britain,  and  was  the  sole  gas  supplier  in  Britain.  The  Oil  and  Gas   Enterprise  Act  of  1982  was  supposed  to  open  access  to  the  British’  Gas  pipeline  system  to   third  parties.    However,  trade  with  third  parties  only  began  after  the  Gas  Act  of  1986,  which   included  the  licensing  regime  for  gas  transporters,  shippers  and  suppliers.  Customers  with   an  off-­‐take  of  more  than  25,000  therms  per  year  were  now  able  to  buy  from  other  suppliers.   In  1992,  the  gas  supply  tariff  monopoly  was  removed  and  the  tariff  threshold  was  lowered   to   2,500   therms;   and   by   1994,   45   percent   of   the   customers   above   the   2,500   therms   threshold  were  buying  from  competing  gas  companies  (Eni,  2014).  The  publication  of  the   Network   Code   in   1996   -­‐   a   framework   agreement   that   defined   the   rules   governing   third   party  access  to  the  gas  transmission  system,  the  deregulation  and  transformation  was  in  its   final  stage.    

The  number  of  participants  in  the  British  wholesale  gas  market  increased  from  less  than  15   in  1995  to  more  than  80  by  2010.  Counter-­‐parties  on  the  natural  gas  market  now  consist  of   banks,  investment/pension  funds,  gas  producers,  utility  companies  and  proprietary  traders.   The   gas   market   U.K.   thus   has   developed   to   the   most   liquid   gas   trading   point   in   Europe   where  the  ratio  between  traded  and  physical  deliveries  is  more  than  10  (Heather,  2010).    

National  Grid  

3.1

The   natural   gas   produced   from   the   wells   in   the   North   Sea   is   transported   and   distributed   through   a   high-­‐pressure   transmission   network   called   the   National   Transmission   System   (NTS),  operated  by  National  Grid.  The  NTS  supplies  over  60  directly  connected  customers   (large  industrial  clients  and  power  plants)  and  12  Local  Distribution  Zones  (supplying  small   and   medium   consumers).   The   small   users   include   domestic   and   business   customers,   but   also  the  16  independent  gas  transporters.    

The   gas   that   flows   through   the   network   of   pipelines   needs   to   be   balanced   at   all   times   in   order  to  keep  a  constant  pressure  of  natural  gas  in  the  NTS  primarily  for  safety  reasons  but   also   to   ensure   a   balanced   demand   and   supply.   Suppliers   and   shippers   are   responsible   for   contract  gas  volumes  and  network  capacity  to  meet  consumer  demand;  whiles  National  Grid   is   responsible   for   ensuring   both   the   availability   of   network   capacity   to   meet   anticipated   transportation  requirements  and  balance  in  the  market.    

The   balancing   takes   place   at   the   National   Balancing   Point   (NBP)   -­‐   a   virtual   point   where   shippers   nominate   their   buys   and   sells.   The   Shippers   are   in   effect   the   “wholesalers”   of  

(7)

natural   gas,   buying   from   producers   and   selling   to   the   suppliers.   The   primary   objective   of   NBP   was   to   balance   the   system,   however,   it   quickly   evolved   as   a   trading   point   as   well.   Traders  had  confidence  in  buying  and  selling  gas  on  a  standardized  basis  at  the  most  liquid   point   in   the   UK’s   high   pressure   transmission   system.   The   NBP   has   become   an   important   component  of  British  over-­‐the-­‐counter  (OTC)  market  

Efficiency  and  liquidity  

3.2

Efficiency  and  liquidity  in  a  market  are  important  aspects  of  price  determination.  In  order  to   correctly   estimate   price   elasticity,   it   is   important   to   understand   whether   the   markets   are   efficient.  Demand  and  supply  should  intersect  without  restrictions  because  such  restrictions   might   affect   the   estimates   of   price   elasticity.   The   Efficient   Market   Hypothesis   states   that   prices  fully  reflect  all  information  available  to  the  market  (Fama,  1970).  Market  efficiency  is   attained   in   a   competitive   market   through   the   price   mechanism,   which   Hayek   (1945)   considers   as   the   most   efficient   instrument   to   aggregate   the   asymmetrically   dispersed   information   of   market   participants.   Only   when   new   information   becomes   available   will   prices  change.  A  liquid  and  efficient  market  should  facilitate  the  processing  of  information   into  valid  price  signals.    

The   NBP   is   the   most   liquid   trading   hub   (Heather,   2010)   with   the   highest   informational   efficiency  in  Europe  (Nick,  2013).  There  is  a  very  transparent  volume  and  price  information,   which  enables  the  participation  of  many  in  the  market.  Gas  is  brought  onto  the  national  grid   physically   at   System   Entry   Points,   but   is   traded   most   commonly   at   the   NBP.   According   to   the  IEA  (2007),  over  50  percent  of  the  gas  consumed  in  the  UK  had  been  traded.  The  other   50  percent  of  gas  not  traded  is  sold  and  purchased  on  longer-­‐term  contracts.    

An   often   used   metric   to   estimate   liquidity   in   a   certain   market   is   the   so-­‐called   churn   rate,   which   is   a   measure   of   the   number   of   times   a   ‘parcel’   of   the   commodity   is   traded   and   re-­‐ traded.  Markets  are  said  to  have  reached  maturity  when  the  trading  churn  is  in  excess  of  10.   According   to   Heather   (2010),   The   NBP   churn   rate   reached   17   for   the   U.K   in   2010,   lower   than   that   of   the   Henry   Hub   in   the   U.S.,   but   higher   than   that   of   its   respective   European   counterparts  (4  for  Zeebrugge  in  Belgium,  3  for  TTF  in  the  Netherlands  and  2.5  for  NCG  in   Germany).    

 

Supply  and  demand  

3.3

Figure  3-­‐1  shows  the  components  that  make  up  total  supply,  which  is  defined  as  all  natural   gas   that   flows   into   the   NTS   system.   Gas   flows   originate   from   the   following   sources:   gas   production  fields,  withdrawals  from  storage  and  imports.      

As  shown  in  Figure  3-­‐1,  total  gas  supply  is  higher  in  winter  months  than  in  summer  months.   Although  gas  production  seems  to  be  a  less  volatile  component  than  import  or  storage   withdrawal,  it  still  shows  a  seasonal  pattern  with  lower  deliveries  during  summer  months.    

(8)

Figure  3-­‐2  shows  the  components  that  make  up  total  demand,  which  is  defined  as  all  natural   gas   that   flows   out   of   the   NTS   system.   Components   of   total   gas   demand   includes   include:   Local   Distribution   Zones   (LDZ),   NTS   power   stations,   exports,   storage   injection   and   large   industrial  clients  who  directly  buy  from  the  NTS.    

Figure  3-­‐1.  Monthly  natural  gas  supply  per  source  (2013)  

  Data  source:  National  Grid  (2013)  

 

Figure  3-­‐2.  Monthly  natural  gas  demand  per  off-­‐taker  (2013)  

  Data  source:  National  Grid  (2013)  

 

 

In  2010,  the  U.K.’s  working  storage  capacity  was  4.4  bscm  in  (IEA,  2012).  Due  to  declining   production   and   increasing   import   dependence,   storage   has   become   more   important   as   a   mean   to   provide   flexibility.   Furthermore,   the   deregulation   of   gas   markets   has   meant   that   storage  facilities  are  now  available  for  commercial  use  in  addition  to  operational  use,  and  so   gas  storage  now  allows  traders  to  exploit  seasonal  variations  in  the  market  price  for  natural   gas  (Breslin,  2008).  Storage  injection  and  withdrawals  are  important  components  of  supply   and   demand.   From   April   until   November,   storage   levels   tend   to   increase   due   to   more   injections   than   withdrawals;   hence,   production   and   imports   are   higher   than   consumption  

0 2 4 6 8 10 12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Su pp ly  (b scm ) Storage  withdrawal Import  (LNG) Import  (Pipeline) Production 0 2 4 6 8 10 12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D em an d   (b scm) Industrial Storage  injection Export  (Pipeline) Power  stations LDZ

(9)

(including  exports).  This  pattern  changes  in  December  when  storage  levels  tend  to  decrease   sharply   because   consumption   including   exports   is   now   much   higher   than   production   and   imports  (Figure  3-­‐3).  Furthermore,  we  can  see  that  prices  tend  to  peak  when  gas  storages   are  emptied  out.    

Figure  3-­‐3.  Daily  NTS  storage  level  and  natural  gas  price        

 

Data  source:  National  Grid  (2013)    

4 Methodology  

Price  elasticity  

4.1

Price   elasticity   is   a   measure   that   shows   the   responsiveness   of   the   quantity   of   a   good   or   service  to  a  change  in  its  price.  It  gives  the  percentage  change  in  quantity  in  response  to  a   one   percent   change   in   price   (all   other   variables   held   constant).   The   ceteris   paribus   condition  makes  price  elasticity  a  partial  elasticity.    Graphically  speaking,  it  is  represented   by  the  slope  of  the  demand  or  supply  curve.    

The   law  of  demand  states   that   an   increase   in   price   of   a   good   will   be   accompanied   with   a   decrease  in  demand  of  that  good,  resulting  in  a  negative  price  elasticity  of  demand.  The  law  

of  supply  states  that  suppliers  will  supply  a  larger  quantity  of  a  good  at  higher  prices  of  that  

good.  As  a  result  of  this  supply  curves  are  upwards  sloping  i.e.  its  price  elasticity  is  positive.   These  economic  theorems  only  apply  for  the  so-­‐called  ‘normal’  goods  and  services.    

𝐸   =

!"!! !

!

 =  

!(!"# !) !(!"# !)

 

(10)

Given   the   elasticity   of   demand   as   an   important   variation   on   the   concept   of   demand,   the   formula  above  will  apply.  Outcomes  >  |1|  are  said  to  be  elastic,  meaning  that  a  1%  change  in   the   price   leads   to   a   more   than   1%   change   in   the   quantity.   Outcomes   <   |1|   are   said   to   be   inelastic,   meaning   that   a   1%   change   in   the   price   leads   to   a   less   than   1%   change   in   the   quantity.  

Elasticity  can  be  measured  either  (1)  over  an  interval  along  the  demand  and  supply  curve  or   (2)   at   a   specific   point   on   the   demand   and   supply   curve.   Since   the   change   in   price   is   measured  over  a  period  of  three  years  and  thus  can  be  relatively  large,  an  interval  measure   was  chosen  for  the  purpose  of  this  analysis.  In  general,  elasticity  varies  along  the  demand   and   supply   curve   and   across   different   time   periods;   however,   the   model   in   this   paper   estimates   only   one   aggregate   price   elasticity   for   2011   until   2013   based   on   a   price   range   from  1.26  to  3.61  pence.            

 

Data  

4.2

In  order  to  construct  a  valid  regression  and  to  analyze  the  price  elasticity;  data  on  supply,   demand,  price,  and  other  variables  were  gathered.  The  study  relies  predominantly  on  data   produced   by   the   National   Grid   and   the   APX   power   index.   These   are   reliable   data   sources   that   provide   prices   quantities   and   other   variables,   on   a   daily   basis   that   ranges   back   to   October   2010.   For   this   analysis,   only   full   year   daily   data   were   included   from   2011   until   2013.  The  limited  time  range  of  the  data  –  three  years  -­‐  are  likely  to  capture  only  short  run   price  effects  but  this  enables  us  to  ignore  the  structural  changes  in  the  gas  market  that  long-­‐ run  models  usually  suffer  from.    

 

Description  of  variables  

4.3

𝑄!!= 𝑄

!!= 𝑄!       Quantity  of  natural  gas  (mscm  per  day)  

𝑝𝑟𝑖𝑐𝑒!     Volume   weighted   average   price   of   all   natural   gas   trades   on   the  OCM  (pence  per  kWh)  

𝑝𝑜𝑤𝑒𝑟!   Volume  weighted  average  price  of  electricity  (pence  per  kWh)  

𝑤𝑒𝑎𝑡ℎ𝑒𝑟!       Composite  weather  variable  (CWV)  

𝑠𝑢𝑏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙!   Total   domestic   natural   gas   production   that   flows   onto   the  

National  Transmission  System  (mscm  per  day)  

𝑖𝑛𝑡𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡𝑠!       Exports  of  natural  gas  through  pipelines  (mscm  per  day)   𝑖𝑛𝑡𝑒𝑟𝑖𝑚𝑝𝑜𝑟𝑡!       Imports  of  natural  gas  through  pipelines  (mscm  per  day)  

𝑠𝑡𝑜𝑟𝑜𝑢𝑡!       Withdrawals  from  natural  gas  storages  (mscm  per  day)  

(11)

𝑚𝑜𝑛𝑡ℎ!,!       Dummy  variable  for  each  month:     1.  if  month  f  

                  0.  otherwise  

𝑤𝑒𝑒𝑘𝑒𝑛𝑑!       Dummy  variable  for  weekend:     1.  if  weekday  

0.  if  weekend            

Limitations  

4.4

The   elasticity   estimated   covers   a   time   period   of   three   years   (from   2011   until   2013)   with   data  gathered  on  a  daily  basis.  One  could  wish  that  the  data  set  was  longer,  however,  it  is   restricted  by   the   availability   of   the   dataset   provided   by   National   Grid.   Despite  the  limited   time  range,  the  dataset  is  large  enough  to  estimate  a  significant  price  elasticity  of  demand   and  supply.    

The  nature  of  the  variables  included  in  the  model  and  the  daily  data  set  are  likely  to  only   capture  short  run  price  effects.  Given  that  the  analysis  only  covers  three  years,  it  is  likely  to   be  less  sensitive  to  structural  changes  in  the  gas  market.  Long  run  time  series  often  suffer   from  too  many  structural  changes  to  capture  long  run  adjustments  (Dahl,  1993).    

The  use  of  aggregated  data  does  not  distinguish  between  regional  or  sectorial  differences  in   supply   and   demand,   which   could   potentially   result   in   biased   estimates   in   the   aggregated   model.   The   level   of   aggregation   in   the   data   has   been   found   to   make   a   difference   in   the   estimated   results   of   demand   models,   with   models   estimated   at   finer   levels   of   aggregation   performing  better  than  their  more  aggregated  counterparts  (Bohi  and  Zimmerman,  1984).   Gas  contracts  play  an  important  role  in  the  dynamics  of  demand  and  supply  in  the  natural   gas   market.   This   analysis   makes   no   distinction   between   price   discrimination   among   different  groups  of  consumers  (residential,  industrial,  etc.)  or  different  gas  contracts  (short,   medium   or   long-­‐term),   or   different   gas   pricing   mechanisms.   For   example,   the   U.K.   has   developed   from   a   market   with   long-­‐term   contracts   into   a   more   liquid   spot   market.   Long-­‐ term  contracts  engage  market  participants  on  quantity  and  price  for  several  years,  that  do   not   allow   any   demand-­‐side   response   to   price   signals;   however   spot   markets   offer   more  

storin 1096 16.23498 14.92321 0 82.83 storout 1096 14.13661 20.38604 0 108.62 interimport 1096 22.27796 18.19531 0 114.1 interexport 1096 31.12066 15.85995 11.9 76.85 subterminal 1096 166.8908 38.31594 70.04 252.53 weather 1096 10.07867 4.591595 -.94 15.97 power 1096 52.5588 7.40372 33.48 92.56 price 1096 2.085689 .2632622 1.2552 3.6059 quantity 1096 243.7327 63.40287 112.15 416.56 Variable Obs Mean Std. Dev. Min Max

(12)

flexibility   but   also   more   volatility,   suggesting   that   the   short   run   price   in   the   spot   market   would  need  to  be  more  elastic  than  in  a  long-­‐term  contract  market.  This  analysis  does  not   control  for  the  share  of  long-­‐term  gas  contracts  in  trades  and  deliveries.      

Finally,  the  volume  weighted  average  price  of  all  natural  gas  trades  excludes  taxes  levied  on   consumers  and  therefore  does  not  reflect  the  end  price  paid  by  consumers.  Nevertheless  the   British  “NBP”  price  is  the  most  important  component  of  end-­‐user  prices,  which  are  set  by   the  suppliers  (IEA,  2012).  This  analysis  restricts  the  scope  to  the  aggregate  high-­‐pressure   natural  gas  market  in  the  U.K.    

 

Regression  model  

4.5

The   aim   of   this   paper   is   to   estimate   price   elasticities   by   making   use   of   a   simultaneous   demand   and   supply   equation   that   assumes   that   the   natural   gas   quantity   results   as   a   function  of  pricing  and  other  exogenous  variables.    

In   order   to   estimate   the   proposed   elasticities   of   supply   we   assume   that   the   quantity   of   natural   gas   supplied   to   the   market   𝑄!! ,   results   as   a   function   of   own   price   𝑝𝑟𝑖𝑐𝑒!  gas   production   ( 𝑠𝑢𝑏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙!) ,   pipeline   imports   (𝑖𝑛𝑡𝑒𝑟𝑖𝑚𝑝𝑜𝑟𝑡!)   and   storage   injections  

(𝑠𝑡𝑜𝑟𝑖𝑛!),  corrected  for  monthly  variances   𝑚𝑜𝑛𝑡ℎ!,! .    

For  the  proposed  elasticities  of  demand  a  comparable  equation  is  constructed  in  which  the   quantity   demanded 𝑄!!  results   as   a   function   of   price   𝑝𝑟𝑖𝑐𝑒

! ,   weather   circumstances  

(𝑤𝑒𝑎𝑡ℎ𝑒𝑟!),   pipeline   export   (𝑖𝑛𝑡𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡!),   storage   injections   (𝑠𝑡𝑜𝑟𝑖𝑛!),   corrected   for  

structural  differences  between  weekday  and  weekends  with  a  dummy  variable  (𝑤𝑒𝑒𝑘𝑒𝑛𝑑!)   The  data  for  the  quantity  of  gas  supplied  and  demanded  were  gathered  from  the  National   Grid  and  measured  on  a  daily  basis.  As  previously  discussed,  supply  and  demand  does  not   equal   domestic   production   and   consumption   because   natural   gas   can   be   transported   for   import/export  or  stored  for  future  consumption.  These  factors  complicate  the  construction   of  the  model,  and  the  use  of  right  variables  and  valid  instruments.  The  key  assumption  for   the   model   remains:   demand   should   equal   supply.   The   data   on   supply   and   demand   shows   that   balancing   is   generally   accurate   with   little   day-­‐to-­‐day   differences,   which   are   likely   inefficiencies  in  the  balancing  mechanism  or  measurement  errors.  For  the  analysis  on  the   simultaneous  equations  model,  supply  and  demand  must  be  exactly  the  same,  in  order  have   a  valid  simultaneous  regression  model.  For  the  purpose  of  this  analysis,  the  differences  are   ignored   and   the   delivered   quantity   (demand)   is   used   as   the   dependent   variable   for   both   equations.      

In  this  analysis,  a  semi  log  form,  in  which  only  price  and  quantity  are  logged,  was  used  to   estimate   price   elasticity.   Although   linear   forms   are   generally   preferred   (Bohi   and   Zimmerman,  1984)   for   the   reason   that   price  elasticity   does   not   need   to  be   constant   at   all   price   levels,   the   preferred   model   for   this   analysis   is   a   semi-­‐log   model   since   it   directly  

(13)

measures   the   parameter   estimates.   Furthermore,   I   expect   that   the   relationship   between   price  and  quantity  of  natural  gas  could  better  be  analyzed  in  percentage  terms.    

The  equations  below  have  their  own  interpretations  and  are  separately  regressed  but  are   eventually   linked,   because   the   observed   quantity   is   determined   by   the   intersection   of   demand  and  supply.  

Demand:   ln 𝑄!! = 𝛽!+  𝛽!ln 𝑝𝑟𝑖𝑐𝑒! +   𝛽!𝑤𝑒𝑎𝑡ℎ𝑒𝑟!+  𝛽!𝑖𝑛𝑡𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡!+  𝛽!𝑠𝑡𝑜𝑟𝑖𝑛!+   𝛽!  𝑤𝑒𝑒𝑘𝑒𝑛𝑑! +   𝑢!     Supply:     ln 𝑄!! = 𝛾!+  𝛾!ln 𝑝𝑟𝑖𝑐𝑒! +  𝛾!𝑠𝑢𝑏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  𝑝!+   𝛾!𝑖𝑛𝑡𝑒𝑟𝑖𝑚𝑝𝑜𝑟𝑡!+   𝛾!𝑠𝑡𝑜𝑟𝑜𝑢𝑡! +   𝛾!𝑚𝑜𝑛𝑡ℎ!,!+   𝑢!    

Endogeneity  

4.6

The  simultaneous  nature  of  the  demand  and  supply  model  makes  the  variable  price  in  both   equations   endogenous.   Quantity   (supply   and   demand)   is   jointly   determined   by   price   through  the  equilibrium  mechanism  and  therefore  will  cause  the  variable  to  correlate  with   the  error  term,  hence  making  the  regression  analysis  inaccurate.    

In  order  to  solve  this  endogeneity  problem,  instrumental  variables  were  found  by  making   use   of   intuition,   economic   reasoning   and   statistical   technics.   The   instrumental   variable   should  only  capture  the  effects  on  quantities  with  shifts  in  price.  Two  conditions  needs  to  be   met:  first,  the  instrument  must  be  exogenous,  hence  the  covariance  of  the  instrument  and   the   error   term   must   equal   zero.   This   cannot   be   tested   but   should   follow   fundamental   economic  logic.  Second,  the  instrument  must  correlate  with  the  endogenous  variable  price,   hence  the  covariance  of  price  and  the  instrument  is  different  from  zero.  This  will  be  tested   in  the  first  stage  regression  of  TSLS.  However,  a  significant  correlation  is  not  sufficient  and   substantive  reasoning  based  on  economic  logic  is  still  needed.    

4.6.1 Instrumental  variables  

In   the   supply   equation,   two   instruments   are   used   for   the   endogenous   variable   for   price:   weather  conditions  (𝑤𝑒𝑎𝑡ℎ𝑒𝑟!)  and  the  price  of  electricity  (𝑝𝑜𝑤𝑒𝑟!).    

The  weather  is  a  strong  influence  on  the  demand  for  natural  gas  and  thus  correlates  with   prices  (see  section  on  seasonality).  In  order  to  apply  𝑤𝑒𝑎𝑡ℎ𝑒𝑟!  as  an  instrumental  variable,  

it  is  required  that  it  does  not  correlate  with  supply,  or  with  any  other  exogenous  variables   in   the   supply   equation.   The   gas   production   itself   does   not   depend   on   daily   weather   conditions   (note,   however,   that   extreme   weather   circumstances   could   potentially   affect   supply  by  causing  disruptions;  for  the  purpose  of  this  analysis  this  has  not  been  taken  into   account).   Besides   gas   production   from   the   wells,   total   supply   also   depends   on   gas   withdrawn  from  storage  and  gas  imports.  These  quantities  could  potentially  correlate  with  

(14)

weather   conditions,   however,   this   is   again   an   indirect   correlation   through   demand   and   price  that  consequently  affects  supply  from  import  and  storage  withdrawal.  

In   2008,   approximately   39   percent   of   the   electricity   produced   in   the   U.K.   was   generated   with   natural   gas;   hence   a   higher   gas   price   is   likely   to   result   in   higher   electricity   prices   as   well   (Heather,   2010).   Furthermore   it   is   unlikely   that   electricity   price   correlates   with   gas   supply  other  than  through  the  gas  price  simply  because  electricity  costs  are  not  the  major   operational   costs   for   gas   producers.   That   notwithstanding,   electricity   price   might   affect   import/export  and  storage  levels  indirectly,  but  this  is  happening  through  the  demand  side   of  natural  gas.  

 𝑺𝒖𝒑𝒑𝒍𝒚:       ln 𝑝𝑟𝑖𝑐𝑒! = 𝜋!+  𝜋!𝑤𝑒𝑎𝑡ℎ𝑒𝑟!+ 𝜋!𝑝𝑜𝑤𝑒𝑟!+ 𝑣!  

In  the  demand  equation,  price  is  replaced  by  the  variable  for  the  daily  U.K.  gas  production   that  flows  into  the  NTS  (𝑠𝑢𝑏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙!).  The  production  variable  does  influence  supply  and  

thereby   the   price;   but   it   does   not   affect   demand   through   variables   other   than   price.   Inversely,  demand  also  does  not  affect  gas  production   through  variables  other  than  price.   Since   daily   production   makes   up   a   large   share   of   daily   quantity   supplied,   a   decrease   in   production  would  likely  affect  prices.    

𝑫𝒆𝒎𝒂𝒏𝒅:       ln 𝑝𝑟𝑖𝑐𝑒! = 𝜋!+  𝜋!  subterminal + 𝑣!  

Seasonality  and  other  biases  

4.7

Seasonality   affects   supply   and   demand   quantities   of   natural   gas.     In   this   model,   three   variables   are   included   that   control   for   seasonal   related   effects.   For   example,   natural   gas   demand   in   the   U.K.   peaks   in   the   winter,   subsequently   decreases   over   the   spring   and   summer  months,  and  begins  to  rise  in  autumn.  According  to  National  Grid,  average  daily  gas   demand  ranges  from  250  to  300  mscm,  whiles  on  an  average  winter  day  gas  demand  is  350   to  400  mscm.  In  Figure  4-­‐1  total  gas  demand  and  average  monthly  temperature  are  graphed   and  the  two  lines  seem  to  be  negatively  correlated.    

Figure  4-­‐1.  Monthly  total  demand  and  average  temperature  (2013)  

  Data  source:  National  Grid  (2013)  

0 2 4 6 8 10 12 14 16 18 0 2,000 4,000 6,000 8,000 10,000 12,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

°C

m

scm

(15)

In  this  regression  model,  three  variables  are  used  to  control  for  seasonal  effects:  a  weather   variable   and   a   dummy   variable   for   weekends   in   the   demand   equation;   and   a   dummy   variable  for  months  in  the  supply  equation.  

4.7.1 Weather  variable  

Due   to   the   high   rate   of   gas   usage   for   heating,   total   gas   demand   will   vary   according   to   temperature   fluctuations.   As   2010   was   a   relatively   cold   year   (1.1   degrees   Celsius   cooler   than   2009),   residential   gas   demand   was   17   percent   higher   than   the   previous   year   (IEA,   2012).  Thus  in  order  to  assure  that  the  increase  in  fuel  consumption  is  not  due  to  a  fall  in   temperature,   a   control   variable   is   used.   According   to   National   Grid,   temperature   explains   most  of  the  variation  in  LDZ  demand,  which  is  an  important  component  of  total  demand.  To   get   a   more   precise   fit,   a   variable   was   constructed   by   the   National   Grid   that   takes   into   account   not   only   temperature,   but   also   wind   speed,   effective   temperature   and   pseudo   seasonal   normal   effective   temperature.   This   Composite   Weather   Variable   (CWV)   is   measured  from  data  that  is  extracted  from  all  LDZ  weather  stations  across  the  UK.  In  Figure   4-­‐2,  the  regression  of  demand  on  CWV  indicates  negative  linear  correlation.    

Figure  4-­‐2.  Daily  demand  regressed  on  CWV  using  OLS  (2011  –  2013)  

  Data  source:  National  Grid  (2013)  

4.7.2 Dummy  variables  

The   dummy   variable  𝑚𝑜𝑛𝑡ℎ!,!  was   included   in   the   supply   equation   to   control   for   supply  

differences  in  each  month.  The  month  variable  was  not  included  in  the  demand  equation  for   the  reason  that  the  weather  variable  was  already  controlling  for  seasonal  bias.    

From  2011  until  2013,  the  average  daily  gas  demand  on  weekdays  equaled  247.3  mscm  and   in   weekends   234.9   mscm.   In   order   to   control   for   these   structural   differences   across   the   week,  the  dummy  variable  𝑤𝑒𝑒𝑘𝑒𝑛𝑑!  was  included  in  the  demand  equation.        

Other  bias  may  result  from  variables  that  are  missing  in  the  model  that  affects  natural  gas   demand.  If  these  variables  are  correlated  with  price,  the  affects  will  be  attributed  to  price  by   the   estimating   model   with   the   direction   of   the   bias   uncertain;   depending   on   the   relationships  between  the  included  and  excluded  variables.    

y  =  -­‐12.427x  +  368.98 R²  =  0.8099 0 100 200 300 400 500 600 0 2 4 6 8 10 12 14 16 D em an d  ( m scm )

(16)

5 Results  and  analysis  

In  this  chapter  the  results  of  several  tests  are  presented  that  include  analyses  on  the  validity   of   the   model   (instruments’   strength,   endogeneity,   normality,   heteroscedasticity,   linearity   and   autocorrelation)   as   well   as   an   analysis   on   the   second   stage   regression   that   enable   estimating  the  price  elasticity.    

Test  of  instrument  strength  

5.1

The  results  of  the  first  stage  regressions  for  both  supply  and  demand  are  presented  below.   To  check  for  instrument  relevance  (strength  of  instruments),  the  F-­‐statistic  was  calculated   for  the  null  hypothesis  that  the  coefficients  of  the  variables  used  as  instruments  are  all  zeros   in   the   first-­‐stage   regression.   If   the   F   statistic   is   not   significant,   then   the   additional   instruments   have   no   significant   explanatory   power   for  ln 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦! after   controlling   for  

the   effect   of  ln 𝑝𝑟𝑖𝑐𝑒! .     The   higher   the   F-­‐statistic,   the   stronger   the   instruments   and   an   F-­‐ statistic   less   than   10   indicates   possibly   weak   instruments.   The   F-­‐statistics   of   supply   and   demand  both  meet  this  condition  at  approximately  94.8  and  97.0,  respectively,  and  do  not   indicate  potential  weak  instruments.    

Furthermore,   all   instrumental   variables   are   significantly   different   from   zero   at   a   5%   significance   level   (even   at   a   significance   level   of   0.1%);   hence   there   is   a   significant   correlation  with  the  endogenous  variable  𝑝𝑟𝑖𝑐𝑒!  .    

The   R2   is   obtained   from   fitting   the   first-­‐stage   regression   by   OLS.   Higher   values   indicate  

stronger   instruments,   and   instrumental-­‐variables   estimators   exhibit   less   bias   when   the   instruments  are  strongly  correlated  with  the  endogenous  variable.    The  R2  values  from  the  

first  stage  regression  in  Figure  5-­‐1  give  some  idea  of  the  adequacy  of  the  instrument.  A  very   low   value   indicates   a   large   loss   in   precision   in   estimating   the   elasticity,   while   a   very   high   value  indicates  such  strong  collinearity  that  might  cast  doubt  on  whether  the  instrument  is   really  exogenous.    

Figure  5-­‐1.  First  stage  regression  of  supply  (left);  and  demand  (right)  

    _cons .6470688 .0423421 15.28 0.000 .5639867 .730151 power .0055716 .0003784 14.72 0.000 .0048291 .0063141 weather -.0176882 .0019823 -8.92 0.000 -.0215779 -.0137985 nov .0391445 .0122148 3.20 0.001 .0151771 .0631118 oct .0840787 .0149839 5.61 0.000 .0546779 .1134795 sep .0913226 .0189569 4.82 0.000 .054126 .1285192 aug .0941836 .0205548 4.58 0.000 .0538517 .1345154 jul .113726 .0199285 5.71 0.000 .074623 .1528291 jun .0845523 .0187207 4.52 0.000 .0478193 .1212853 may .0780283 .0165895 4.70 0.000 .045477 .1105796 apr .0491188 .0137624 3.57 0.000 .0221147 .0761229 mar .035189 .0120579 2.92 0.004 .0115295 .0588485 feb -.0363873 .0124157 -2.93 0.003 -.0607489 -.0120257 jan -.0801045 .0118573 -6.76 0.000 -.1033705 -.0568385 interimport .0020356 .0001971 10.33 0.000 .0016488 .0024224 storout .0004431 .0002015 2.20 0.028 .0000477 .0008384 subterminal -.0007912 .0001431 -5.53 0.000 -.0010719 -.0005105 lnprice Coef. Std. Err. t P>|t| [95% Conf. Interval] Root MSE = 0.0785 Adj R-squared = 0.5762 R-squared = 0.5824 Prob > F = 0.0000 F( 16, 1079) = 94.04 Number of obs = 1096 First-stage regressions _cons 1.180094 .0368519 32.02 0.000 1.107786 1.252403 subterminal -.0014256 .0001583 -9.01 0.000 -.0017362 -.0011151 weekend .0277036 .0070797 3.91 0.000 .0138122 .041595 interexport -.0018632 .0002344 -7.95 0.000 -.0023232 -.0014033 storin .0006548 .0002667 2.46 0.014 .0001315 .0011781 weather -.0185463 .0016257 -11.41 0.000 -.0217362 -.0153565 lnprice Coef. Std. Err. t P>|t| [95% Conf. Interval] Root MSE = 0.1005 Adj R-squared = 0.3047 R-squared = 0.3079 Prob > F = 0.0000 F( 5, 1090) = 96.99 Number of obs = 1096 First-stage regressions

(17)

However,   it   can   be   misleading   to   only   take   into   account   R2.   If  ln 𝑝𝑟𝑖𝑐𝑒!  were   strongly  

correlated   with   the   exogenous   variables,   but   only   weakly   correlated   with   the   additional   instruments,  then  these  statistics  could  be  large  even  though  a  weak  instrument  problem  is   present.   The   partial   R2   statistic   measures   the   correlation   between  ln 𝑝𝑟𝑖𝑐𝑒!  and   the  

additional  instruments  after  eliminating  the  effect  of  the  exogenous  variables.  Unlike  the  R2  

statistics,   the   partial   R2   statistic   will   not   be   overestimated   because   of   strong   correlation  

between   the   endogenous   variable  ln 𝑝𝑟𝑖𝑐𝑒!  and   the   other   exogenous   variables.   The   R2  

statistic  for  supply  and  demand  equal  0.58  and  0.31,  respectively;  while  the  partial  R2  for  

supply  and  demand  equal  0.21  and  0.07,  respectively  (Figure  5-­‐2).  These  partial  statistics   are  significantly  lower,  but  still  validate  the  use  of  the  variables  as  instruments.      

Figure  5-­‐2  also  contains  the  nominal  5%  Wald  test  which  defines  a  set  of  instruments  to  be   weak  if  a  Wald  test  at  the  5%  level  can  have  an  actual  rejection  rate  of  no  more  than  10%,   15%,  20%,  or  25%.  Assuming  we  can  accept  a  rejection  rate  of  at  most  10%,  we  can  reject   the   null   hypothesis   that   the   instruments   are   weak,   because   the   minimum   eigenvalue   statistics  from  both  demand  and  supply  are  larger  than  the  critical  values  obtained  from  the   Wald  test.    

 

Figure  5-­‐2.  Additional  statistics  from  first  stage  regression  of  supply  (left);  and  demand  (right)  

   

From   the   performed   tests   above   we   can   conclude   that   the   variable  ln 𝑝𝑟𝑖𝑐𝑒! is   indeed   endogenous   and   that   the   variables 𝑠𝑢𝑏𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙!, 𝑝𝑜𝑤𝑒𝑟!  and  𝑤𝑒𝑎𝑡ℎ𝑒𝑟!  are   strong  

instruments   that   are   unlikely   to   correlate   with   the   error   terms   in   the   second   stage   regression.      

Test  of  endogeneity  

5.2

Since   the   instrumental   variables   are   uncorrelated   with  𝑢!,  ln 𝑝𝑟𝑖𝑐𝑒!  is   correlated   with  𝑢!,  

only   if  𝑣!  is   correlated   with  𝑢!.   To   test   whether   this   is   the   case,   an   endogeneity   test   from  

Durbin   and   Wu-­‐Hausman   was   performed.   Under   the   null   hypothesis   of   both   tests,   the   variables  under  consideration  are  exogenous.  The  results  are  presented  in  Figure  5-­‐3.    Both   tests  are  highly  significant,  thus  allow  for  rejecting  the  null  hypothesis  of  exogeneity  and  for   treating  the  variable  ln 𝑝𝑟𝑖𝑐𝑒!  as  endogenous.    

LIML Size of nominal 5% Wald test 8.68 5.33 4.42 3.92 2SLS Size of nominal 5% Wald test 19.93 11.59 8.75 7.25 10% 15% 20% 25% 2SLS relative bias (not available) 5% 10% 20% 30% Ho: Instruments are weak # of excluded instruments: 2 Critical Values # of endogenous regressors: 1 Minimum eigenvalue statistic = 147.589

lnprice 0.5824 0.5762 0.2148 147.589 0.0000 Variable R-sq. R-sq. R-sq. F(2,1079) Prob > F Adjusted Partial First-stage regression summary statistics

LIML Size of nominal 5% Wald test 16.38 8.96 6.66 5.53 2SLS Size of nominal 5% Wald test 16.38 8.96 6.66 5.53 10% 15% 20% 25% 2SLS relative bias (not available) 5% 10% 20% 30% Ho: Instruments are weak # of excluded instruments: 1 Critical Values # of endogenous regressors: 1 Minimum eigenvalue statistic = 81.1544

lnprice 0.3079 0.3047 0.0693 81.1544 0.0000 Variable R-sq. R-sq. R-sq. F(1,1090) Prob > F Adjusted Partial First-stage regression summary statistics

Referenties

GERELATEERDE DOCUMENTEN

system suffered of a high plasma background radiation signal caused by strong AI and All lines that reached the output slit of the monochromator by multiple

Zonder een duidelijk beeld op het verloop van deze sporen ter hoogte van de weg tussen veld 12O en het terrein van Artexis, kan niet met zekerheid gesteld worden hoe de

flow then we may apply the normalization algorithm of [I] to normalize h. Note that the fact that we are dealing with a Poisson structure instead of a symplectic struc- ture has

Error t-Statistic Prob.. Error t-Statistic

Successful competition in the wholesale market for Phase III customers will rely on the sale of additional flexibility services by the Groningen field, but there is no explicit

Moreover, this study is the first to investigate the relationship of price changes and demand for all fresh dairy categories (i.e. 9 product categories) including a

It is therefore reasonable to expect MFIs serving a higher percentage of female clients undertake lower amounts of loan demand, and female borrowers have relatively lower

The transcendence ideal portrayed on pro-anorexia websites provides individuals with anorexia nervosa with a religious belief and associated values that can be