• No results found

Aromatic structure degradation of single layer graphene on an amorphous silicon substrate in the presence of water, hydrogen and Extreme Ultraviolet light

N/A
N/A
Protected

Academic year: 2021

Share "Aromatic structure degradation of single layer graphene on an amorphous silicon substrate in the presence of water, hydrogen and Extreme Ultraviolet light"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full

Length

Article

Aromatic

structure

degradation

of

single

layer

graphene

on

an

amorphous

silicon

substrate

in

the

presence

of

water,

hydrogen

and

Extreme

Ultraviolet

light

B.K.

Mund

a,∗

,

J.M.

Sturm

a

,

C.J.

Lee

a,b

,

F.

Bijkerk

a

aIndustrialFocusGroupXUVOptics,MESA+InstituteofNanotechnology,UniversityofTwente,Enschede,TheNetherlands

bQuantumTransportinMatterGroup,MESA+InstituteofNanotechnology,UniversityofTwente,Enschede,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28July2017

Receivedinrevisedform8September2017

Accepted12September2017

Availableonline14September2017

Keywords:

Singlelayergraphene

Reflectionabsorptioninfraredspectroscopy

Water

Temperatureprogrammeddesorption

ExtremeUltravioletlight

Hydrogen

a

b

s

t

r

a

c

t

InthispaperwestudythereactionofwaterandgrapheneunderExtremeUltraviolet(EUV)irradiationand inthepresenceofhydrogen.Inthiswork,singlelayergraphene(SLG)onamorphousSiasanunderlying substratewasdosedwithwater(0.75mL)andexposedtoEUV(=13.5nm,92eV)withpartialpressures ofH2inthebackground.Theresultsshowthatthearomaticstructureofgraphene,whenexposedto

EUVandH2,breaksdownintoarylketonesandenolsof1,3di-ketone.Infrared(IR)spectroscopyshows

thatSLGoxidizes,withincreasingH2pressureleadingtothegrainboundaryedgesofgrapheneforming

ketonesandcarboxylicacids.InsituandpostexposureanalysesalsorevealthatEUVexposurereduces thesp2contentofthegraphenelayer,withthesp3 contentincreasing,resultinginamoredefective

graphenelayer.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Graphene,atwodimensionalhexagonallypackednetworkof

covalentlyboundcarbonatoms,hasanumberofuniquephysical,

thermalandchemicalproperties[1–8].Itisknowntobe

imper-meabletogases[9],andhasbeentheoreticallyshowntoactasa

diffusionbarrierevenagainstmolecularhydrogen[10].Graphene

canbegrownonanindustrialscaleviachemicalvapordeposition

andtransferredontobothflat[11]andarbitraryprofilesubstrates

[12],broadeningitsscopeforpotentialapplications.

In the optical regime, single layer graphene combines the

highly desirable properties of beingsimultaneously conductive

and transparent inthe visible [13], and EUV [14] wavelengths.

Thesepropertiesmake ita promising candidatefortransparent

conductingelectrodes,requiredfortouchscreens,and,potentially

EUVadaptive optics.Furthermore,thehightransparencyinthe

EUVrangeisattractivebecausemostopticsrequireaprotective

toplayertoprotectthemfromthehighlyreactiveenvironment,

inducedbyradiation[15].

∗ Correspondingauthor.

E-mailaddress:b.k.mund@utwente.nl(B.K.Mund).

Perfectsinglelayergraphene(SLG)isknownforitslow

chem-icalreactivityduetothedenselypackednatureofsp2hybridized

carbonatoms[16].Unfortunately,duringchemicalvapor

deposi-tionandgraphenetransfer,defectsaregenerated[17],whichcan

behaveasinitiationpointsforgraphenetoreactwithits

environ-ment[18].Nevertheless,graphenehasbeenproposedasauseful

materialinchemicallyharshenvironments,suchasDeep

Ultra-violet,X-raysystemsandExtremeUltraviolet(EUV)Lithography

systems.EUVlithography(EUVL)systemsrepresentaparticular

challenge:EUVLsystemsoperateatawavelengthof13.5nm,in

vacuum,andthemainopticalcomponentsareexpectedtolastfor

thelifetimeofthesystem(>10years).Theopticsandbackground

gases,however,areexposedtoionizingradiation,creatingarich

environmentfor surfacechemistrythatmaymodifythesurface

of theoptics [19–21].Toreduce theinfluenceofresidual gases

—mainlywaterandhydrocarbons—thepressureisincreasedto

afewPa,byaddinghydrogen[22].Thebalancebetween

hydro-genasareducingagentandwaterasanoxidizingagentallowsa

dynamicequilibriumbetweencompetingprocessestobemanaged

[23].However,theconditionsunderwhichsuchabalancecanbe

achievedvariesfrommaterialtomaterial.Beforegraphenecanbe

usedinsuchasystem,itiscriticaltounderstanditsphysicaland

chemicalstability,andtodeterminethereactionpathwaysthatare

mostfavorableundervariouspartialpressuresofH2andH2O.

http://dx.doi.org/10.1016/j.apsusc.2017.09.098

(2)

1034 B.K.Mundetal./AppliedSurfaceScience427(2018)1033–1040

Sincegrapheneisaoneatomthicklayerofcarbonatoms,

chem-icalreactivity is highlydependenton theunderlyingsubstrate.

Currenttechniques,suchasin-situRamanspectroscopy,canbe

usedtostudythegenerationofdefectsingraphene.Duetothe

zero-bandgapnatureofgraphene,theRamanscatteringcrosssectionis

large,makingitthepreferredmannertocharacterizegraphene.

However,for most othermaterials,the Ramanscattering cross

sectionis much smaller, making it difficulttoidentify detailed

modificationstothestructureandmolecularcompositionofthe

graphene.Furthermore,eventhoughthenormalmodesofwater

arebothRamanandIRactive,Ramanspectroscopyisless

sensi-tivetochangesinhydrogenbondedwaternetworks[24].Finally,

Ramanspectroscopyissusceptible tofluorescencefrom(inour

case)theamorphousSisubstrate,whichisstrongerthantheRaman

signalbyafactorof106–108.Therefore,infraredspectroscopyis

thepreferablemethodtostudysurfacechemistryofwaterandits

interactionwithgraphene.

Previousresearchhasshownthatdefectsaregeneratedin

sin-glelayergrapheneduringEUVexposure[25,26].Here,wepresent

aninvestigationintothereactionsofgrapheneonanamorphous

SilayerinanEUVenvironment.Fortheseexperiments,the

sur-faceischaracterizedin-situusingReflectionAbsorptionInfrared

Spectroscopy(RAIRS)duringEUVexposure,andtemperature

pro-grammed desorption (TPD) spectroscopy before and after EUV

exposure.RAIRSisusedtoobservechangesinmolecular

orien-tationofwaterandchemicalstructureofgrapheneandrevealing

thepathwaybywhichgrapheneoxidizesinthepresenceofwater

andhydrogen.Ontheotherhand,TPDprovidesaquantitative

mea-sureofthenumberofmoleculesthatdesorbfromthesurfaceata

giventemperature,providinganaccuratemeasureofthedifferent

adsorbedmoleculesandtheirbindingenergies.

X-rayphotoelectronspectroscopy(XPS) measurementswere

carriedoutex-situ,beforeandafterEUVexposure, to

quantita-tivelyestimatetheelementalcompositionandthechemicalstate

ofthesurface.Thiswasusedtoconfirmtheendresultofgraphene

oxidation.

2. Experimental

Singlelayergraphenewasgrownbychemicalvapordeposition

onapolycrystallinecopperfoil(purity99.9%,AlfaAesar).The

cop-perfoilwasintroducedintoafurnaceat1100◦Cwithagasflowof

100sccmofCH4,500sccmofArand6sccmofH2leadingtosingle

layergraphenebeinggrownonbothsidesoftheCufoil.The

sin-glelayergraphene[10mm×10mm]wasthentransferredusing

thewettransfermethod[27]ontoanamorphousSisurface.The

graphenelayerwastransferredusingaPMMAsupportlayer,which

wasremovedbyannealingat350◦CwithArandH2for∼3h.

Thesubstrateonto whichthegraphenewastransferredwas

basedonaSiwafer,whichhadaMolayer(9nmthick)deposited

onit,followedby22nmofamorphoussilicon.Bothlayerswere

depositedbysputterdeposition,andthethicknesseswereknown

via depositioncalibration based on X-ray reflectivity

measure-ments.Theamorphoussiliconwasnotprotectedfromatmosphere

afterremovalfromthedepositionchamber,thus,thetop∼1–2nm

isoxidized.Themolybdenumlayerisnecessarytoreflectinfrared

radiation, allowing reflection absorption infrared spectroscopy

(RAIRS)tobeperformedinsitu.

Allsurfacechemistryexperimentswereperformedinthesame

experimentalsetup[28,29]sequentiallywithoutbreakingvacuum.

Thechamber’sbasepressureismaintainedat5×10−9mbar.

Dur-ingexperiments,hydrogenisintroducedtothechamber,increasing

the background pressure up to 1×10−5mbar. The chamber is

equippedwithRAIRS,TPDspectroscopy,surfacecleaningfacilities,

surfacedosing,andattachedtoanEUVsource.

Table1

Experimentalconditionsofthesurfaceandchamberwithinitialwaterdose,partial

pressureofH2andthefinalwatercoverageafterexposure.

Experiment InitialWater Dose(mL) Partial pressure(H2) FinalWater coverage(mL) NoEUV 0.75mL 2×10−9mbar 0.75 EUV 0.75mL 3×10−9mbar 0.75 EUV 2.25mL 1×10−7mbar 3.00 EUV+H2 0.75mL 1×10−7mbar 0.98 EUV+H2 0.75mL 1×10−6mbar 1.42 EUV+H2 0.75mL 1×10−5mbar 3.56

RAIRSspectraaremeasuredatgrazingincidenceusinganFTIR

spectrometer (Bruker Vertex 70V), equipped with a liquid N2

cooleddetector.Eachspectrumissummedover256scanswith

aresolutionof4cm−1,withbackgroundscansbeingrecordedat

thelowestpossiblestablesampletemperatureof80K.Toobtain

TPDspectra,thesampletemperatureisrampedfrom80Kto450K

atarateof1K/sec.Thesampleisplacednormaltotheentranceof

aconethatisattachedtoadifferentiallypumpedquadrupolemass

spectrometer(QMS—HidenAnalytical).Theconehasanentrance

apertureof4mm,located∼2mmawayfromthesample.The

tem-peratureismeasuredusingathermocoupleattachedtothesample

withaMoclamp.Topreventdamagetographene,thesample

tem-peraturewaslimitedto450K,whichissufficienttoremovewater,

CO,andhydrogen.Basedonexperimentsonaruthenium(0001)

surfaceusingthesamechamber,weshowthat thebackground

depositionrateofallchambercontaminantsisverylow(<0.005

monolayers(ML)perhour)[19].

Deionizedwater,cleanedusingthefreeze-pump-thawprocess,

isdosedonthesamplethrougharetractablequartztubeconnected

toa pinhole.Surface coverageis calibratedagainstTPD spectra

obtainedfromacleanRusurface[28].

ThechamberisattachedtoaXeplasmadischargeEUVsource

(PhilipsEUVAlphaSource2)witharepetitionrateof500Hz.The

sourceisfilteredbyreflectionfromaMo/Simultilayermirror(55%

reflectivityat13.5nm)andtransmissionthroughaSi/Mo/Zr

mem-brane(35%transmissionat13.5nm)[30].Thisresultsin apeak

reflectivityof19%at13.5nmwithaFWHMof0.2nmandabroad

reflectivitypeakof9%at21.5nmwithaFWHMof3.1nm[14,21,31].

TheEUVbeamhasanaverageintensityof35–55mW/cm2,anda

profilethatisapproximatelyGaussianwithafullwidthhalf

max-imum(FWHM)of3mm.Overthecourseoftheexperiments,the

EUVpulsefluencevariedfrom90to110␮J/cm2.

Thegeneralexperimentalprocedureconsistedof:thegraphene

was first cooled to 80K, and a reference RAIRS spectrum was

obtained.Thesamplesurfacewasdosedwithwater,andthe

cham-berwasfilledtoachosenbackgroundpressureofhydrogen.The

samplewasthenexposedtoEUVandRAIRSspectrawereobtained

beforeEUVexposure,andevery10minduringtheexposure.After

EUVexposure,aTPDspectrumwasobtained.Therangeofexposure

conditionsaresummarizedinTable1.

AfterTPD/RAIRSexperimentshadbeencompleted,exsituX-ray

photoelectronspectra(XPS)weremeasuredusingmonochromatic

Al-K␣radiation,employingaThermoFisherThetaprobe

instru-mentwithabeamspotsizeof1mmindiameter.Parallelangle

resolvedXPSspectraweremeasuredinananglerangefrom26◦to

80◦,thedisplayedspectracorrespondtoatake-offangleof34◦.

3. Resultsanddiscussion

ThegrapheneonSisamplewasexposedtoEUVwithadditional

H2partialpressuresof0mbar,at10−7mbar,10−6mbar,10−5mbar

(seeninTable1).Alltheexposureswere1hlong.Thecumulative

EUVdoseforthisexperimentwascalculatedtobe0.32–0.39J/cm2,

(3)

Fig.1.RAIRSspectraoftheC OstretchpeakofCO2,enolsandarylketoneasseenonthesurfaceofthesinglelayergraphene.Waterdoseis0.75mLunlessotherwise

specified.Anewbackgroundspectrumistakenbeforeeachexposure,directlybeforedosingH2Otothesurface.

anincrease intemperatureduringEUV irradiation),eliminating

thermodynamically driven processes from consideration. Thus,

photonandphotoelectron-drivenprocessesareresponsibleforthe

observedchangesinsurfacestructureandcomposition.

Fortheseexperiments,RAIRSOHpeaks,suchasthelibration

modes(750–950cm−1)andbendingmodes(1500–1700cm−1)are

tooweakforthewatercoverageused.OHstretchingmodesfrom

water(3000–3700cm−1)werevisible,butdidnotprovideany

sig-nificantinformationaboutthestructureandinteractionofwater

onthesurfaceandarethereforenotshown[32].

3.1. FormationofketonesandadsorbedCO2onthesurfaceof

singlelayergraphene

AsdetailedinGerakinesetal.[33],theformationofCO2is

evi-denced byvibrational modesin the2200–2400cm−1 region.In

Fig.1,anasymmetric(as)C Ostretchpeakispresentat2343cm−1

and2373cm−1(peakI1,I2),indicatingthepresenceofCO2.When

onlywateris presentonthesurface,intheabsenceofEUV,an

inversepeakisseenforI2,indicatingremovalofCO2fromthe

sur-face.Subsequently,athigherpartialpressures(10−6,10−5mbar)of

H2inthepresenceofEUV,thepeakreappears,indicatingCO2asa

possibleendproductofcarbonoxidation.

WithanincreaseinH2concentration,abroadpeakstartstoform

at2454cm−1(peakJ1).Thiscorrespondstoliteraturereportsfora

C Ostretchforketo-enolformation,specificallytheC Ostretches

forarylketonesandtheenolformsofa1,3-diketone(asshownin

Fig.2)[34].Enolof1,3–diketonesaremorefavorableduetotheir

increasedstabilitywhenformingasixmemberedring—

hydro-genbondedinthiscase.AsH2pressureincreases,thisC Ostretch

formsa broadpeak at2477cm−1 (peakJ2), whichconfirms the

formationofketonesonthesurface[32].Inaddition,ablue-shift

isseenforpeakJasthehydrogenpressureisincreased,

indicat-ingmoreketo-enolvibrationsdetectedonthesurface[34].These

ketonesareformedduetographeneoxidizingandbreakingdown

intoarylandketo-enolstructures,duetoEUVinducedH2andH2O

dissociationonthesurface.Hradicals,formedbyEUV-induced

dis-sociationofH2,createdefectsitesinthegraphenelayer,which

are subsequently oxidizedby OH groups or Oformedby

EUV-inducedH2Odissociation.AsindicatedinTable1,exposuretoa

higherpressureofH2resultsinadditionalwaterbeingdepositedon

thesample,duetocontaminationofthegasline.Inordertocheck

whethertheformationofketo-enolspeciesisindeedrelatedtoEUV

inducedreactionsinthepresenceofH2andH2OandnottoEUV

exposurewithlargerH2Ocoverages,acontrolexperiment with

initiallyhigherdosedwatercoverage(2.25mL)andlowH2

pres-sure(1×10−7mbar)wascarriedout.Undertheseconditions(Fig.1,

3rdlinefromtop)noketo-enolformationisobserved,provingthat

presenceofH2pressures>1×10−6mbarandadsorbedwaterare

bothneededforEUV-inducedketo-enolformation.Assumingthat,

forthelowexposuresinthisstudy,themajorityofketone

forma-tionoccursalonggrainboundaries(seeFig.2),themostlikelyforms

areenolsof1,3-diketoneandhydroxylarylketones.

Keto-enolformationisonlyseenatahighhydrogenpressure

(10−5–10−6mbar),duetohigherdefectcreationbyEUV-induced

radicals,whichiscomparedinFig.3.AtaH2pressureof10−6mbar

and 10−5mbar, the height of peak J increases at a rate of

0.0015%/minand0.0132%/minrespectively.Thisincreaseinpeak

Fig.2.Graphenebreakingdownintohydroxylarylgroupsandsubsequentlyformingketones.Arylketonesandketo-enoltautomerismhavethesamestretchvibration

(4)

1036 B.K.Mundetal./AppliedSurfaceScience427(2018)1033–1040

Fig.3. Growthofketo-enolC Ostretch(peakJ)ascomparedtoEUVexposuretimeatdifferentH2pressures.Theverticalaxisindicatesthenegativepeakintensityinthe

RAIRStransmissionplot,soahighervalueindicateslargersurfacecoverage.

heightis8.8timestherateat10−6mbar,indicatingthatgraphene

beginsoxidizingrapidlywithahigherpartialpressureofH2.

Twolocationsaremostlikelyforoxidation,andtheformationof

enolsandketones:pointdefectsandgrainboundaries.Pointdefects

canbeeffectivelydeterminedusingRamanspectroscopy.Results

fromCancadoetal.[35]statethatID/IGratiosofgraphenecanbe

usedtospecifytheinterdefectdistance.Agraphenereferencelayer

producedwiththesamegrowthprocess,buttransferredontoaNi

surfaceinsteadofaSisurfacehasanID/IGof0.75,which

trans-latestoaninter-defectdistanceof14nm.Sincethetypicalgrain

sizeofourgrapheneis∼100nm,correspondingtoatypicalgrain

areaof∼8000nm2,thisinter-defectdistancewouldcorrespondto

∼100pointdefectspergrain,oneorderlowerthantheoxidation

sitesavailablethroughgrainboundaries[36].Therefore,itislikely

thattheRAIRSspectralchangesaredominatedbyketone

forma-tionalongthegrainboundarieswhichleadstograinboundaries

unzippingathigherH2pressures,toformmoresitesforoxidation

[36].

3.2. Saturationofenolformationonthesurface

Asdiscussed earlier, enols of 1–3 di-ketone are most likely

formedduetothepreferentialoxidationofgraphenealonggrain

boundaries.Furthersequentialexperimentswereconductedtotest

ifoxidationsaturates:e.g.,thatthegrainboundariesbecomefully

oxidizedandoxidationthenslows.ThiscanbeseeninFig.4where

thegrowthoftheC Ostretchfromenolsandarylketone(peakJ)for

differentexposuresisshown.Asnotedearlier,peakJfirstappears

whentheH2OcoveredsurfaceisexposedtoEUVandmolecularH2

at10−6mbar(traceI),indicatingthatgrapheneisstartingto

oxi-dize.Asmentionedpreviously,thispeakincreaseswithincreasing

mol.H2pressure(traceII).Followingtheseexposures,thesurface

Fig.4.Changeinketo-enolformation(peakJ)aftersubsequentexposuresofEUVandH2tothegraphenelayerat10−6and10−5mbar.Anewbackgroundspectrumistaken

(5)

Fig.5.Changeinketo-enolformation(peakJ)overtimeaftersubsequentexposuresofEUVandH2tothegraphenelayerat10−6and10−5mbar.Anewbackgroundspectrum

istakenaftereachexposure.

Table2

Rateofgrowthofketo-enolformation(peakJ)asseeninFig.5.

Traces Transmission%

minute I:EUV+H2,10−6mbar 0.0015

II:EUV+H2,10−5mbar 0.0132

III:EUV+H2,10−6mbar 0.0008

IV:EUV+H2,10−5mbar 0.0023

wasagainexposedtoEUVandH2at10−6mbar(traceIII).Asseen

incurveIIIinFig.4,thereisnoindicationoffurther(outofplane)

enolorarylketoneformationonthesurfaceforthispartial

pres-sure.ThisisbecauseoxidationofthegraphenelayeratH2pressure

of10−6mbarhassaturated,andforfurtheroxidationtohappen,

theH2pressureneedstobeincreasedtocreateadditionaldefect

siteswherewatercanreact.Furthermore,atasubsequent

expo-sureatanH2partialpressureof10−5mbar(traceIV)enolandaryl

ketonegrowthismuchslowerthaninthepreviousexperimentat

thesamepressure(traceII),indicatingthattheoxidationprocess

issaturating.

Thisgrowthfor peakJcanbequantifiedinFig.5wherethe

change in keto-enol formation is measuredover thecourse of

onehourat differentEUVexposuresand H2 pressures.Asseen

inTable2,therateofgrowthofpeakJisshowntoreducewith

increasingmolecularH2pressureinthepresenceofEUV,

indicat-ingthatketo-enolformationsaturatesasexposuretimetoEUVand

H2increases.

3.3. Temperatureprogrammeddesorptionofwaterfrom

graphenesurface

InFig.6,thetemperatureprogrammeddesorptionofwaterfrom

thegraphene/Sisurfaceis shown.Whenthesurfaceis exposed

toEUV,thecoverageofwaterdoesnotchangesignificantly.An

increaseinwatercoverageisobservedforhigherhydrogen

pres-sures;0.23mLfor10−7mbarofH2,0.67mLfor10−6mbarofH2

and2.81mLfor10−5mbarofH2.Theamountofwaterdesorbedfor

increasingH2partialpressuresishighduetowatercontamination

fromtheH2line.

Also,twodistinctpeakscanbeseenfortheTPDspectrainFig.6,

indicating that water hastwo bindingmodes onthesubstrate.

Whenwater is first dosed onthe cold surface, it forms an

H-bonded2Dicenetworkonthegraphenelayer[37].Asmorewateris

depositedontopofthesurface,a3Dicenetworkforms.The

desorp-tionpeakseenat∼139KinFig.6isduetoH2Omoleculesdesorbing

from3Dice networks.Followingthis, thegrapheneboundH2O

moleculesin2Dicenetworksarethenexttodesorbat∼160K.

For verylow coverage ofwater, whenthe surfaceis leftfor

120mininthechamberwithnowaterdosedonthesurface,Fig.7(a)

showsthatwatercoverageonthesurfaceincreaseswithtimedue

toresidualgases.Thisis alsoclearlynotedforlow coveragesin

Fig.7(b)aswell,whenasmallamountofwater(0.01mL)isdosed

onthesurface.Comparedtothecasewithnoinitialcoverage,the

amountofwaterinFig.7(b)increasesbyafactorof3.4and7.3for

60and120min,relativeto30minexposuretoresidualgas,

respec-tively.Incomparison,inFig.7(a),thewateronthesurfaceincreases

byafactorof0.1and0.6forthesameperiodsof60and120min,

indicatingthatwaterismorelikelytoattachtowatermolecules

thanitistothegraphenelayer.Additionally,thetwopeaksseen

forlowcoveragesinFig.7(a)illustratethata2Dwaternetwork

isthefirsttoform,withwatermoleculesattachingtothedefects

andgrainboundariesofgraphene,andthenwaterattachingtothe

defectboundwater.SimilarlyinFig.7(b),acommonleadingedgeis

seen,suchthatthedesorptionpeakshiftstoahighertemperature

forincreasingcoverage,indicatingpeaksthetwopeaksinFig.7(a)

convergingtoformasingularpeak.Consequently,thisbecomesthe

firstdesorptionpeakinFig.6.This0thorderdesorptionbehavior

ischaracteristicfordesorptionofwateradsorbedtootherwater

moleculesasshowninClayetal.[38]Sincegrapheneisknown

tobehydrophobicinnature[39],waterclustersaremorelikelyto

form,suchthat0thorderdesorptionofwatercanbeobserved,even

forsubmonolayercoverages.

3.4. X-rayphotoelectronspectroscopy

Fig.8showstheXPSspectraandfitfortheC1speakofgraphene

beforeandafteritisexposedtomultipledosesofH2O,EUVand

H2seeninFigs.1–7.Table3liststheatomicconcentrationofsp2,

sp3andC Obondsalongwiththefullwidthhalfmaximumofthe

fittedsp2peakfortheunexposedgraphenesampleandthe

sam-pleexposedtoEUV.Notably,thesp2bondconcentrationdecreases

from13±1%to6±4%afterexposure,while,incontrast,thesp3

concentrationincreasesfrom5±1%to12±4%.Theincreaseinsp3

bondingisaconsequenceofcombinationofoxidationand

hydro-genation,asexpected.Itshouldbenotedthattheseparationofthe

(6)

1038 B.K.Mundetal./AppliedSurfaceScience427(2018)1033–1040

Fig.6.TPDspectraofH2OafterdepositionofwaterandexposuretoEUVandH2.Thenumbersrefertoadditionalwaterseenonthesurfaceascomparedtothesurface

withoutEUVandH2.Thespectrahavebeensmoothedover4values.

Fig.7. Controlexperimentsforresidualgasinchamberwith(a)lowcoverageand(b)coverage(0.01mL)withwateronthesurface.

Table3

AtomicconcentrationofC1sspectralcomponents,carbonthickness,nativeSiO2concentrationofthesubstrateofgraphenesamplesbeforeandafterexposuretomultiple

dosesofEUVandH2.TheCthicknessismeasuredusingangleresolvedXPS.

Sample Csp2(atomic%) Csp3(atomic%) C O(atomic%) Si O(atomic%) O1s(atomic%) sp2FWHM(eV) Carbonthickness(nm)

UnexposedgrapheneonSi 13±1 5±1 1.0±0.3 16±1 26±1 0.90±0.1 0.34 ExposedgrapheneonSi 6±4 12±4 7±2 15±1 26±1 0.9±0.2 0.40

exposedsample,whichhasbeenreflectedintheerrormarginsof

thequantification.

TheconcentrationofC Ogroupsincreasesfrom1%to7%,

con-firmingthatgrapheneoxidizesinthepresenceofadsorbedwater,

andexposuretoEUVandH2.Itshouldbenotedthatthehighsp2

contentofpristinegrapheneresultsinatailofthesp2peak

extend-inguptothebindingenergyrangewhereC Obondsaredetected

forexposedgraphene[40].Therefore,thequantifiedamountofC O

speciesmaybeoverestimatedfortheunexposedsample.

Finally,aslightincreaseincarbonthicknesswasobserved,due

tothedepositionofamorphoushydrocarbonsfromresidual

hydro-carbonsintheEUVsource,orduetosamplehandling[41,42].

4. Conclusions

Single layer graphene on an amorphous silicon substrate

exposed toEUV radiation inthe presenceof water and

(7)

Fig.8.XPSspectraofgraphenecoveredSisamplebefore(top)andafter(bottom)

exposuretoEUVandH2.TheC1sspectraisrawdata,whilesp2,sp3andC Ocurves

arefitted.

throughtheformationofketoneandenolgroups,suchastheenol

formsof1,3-diketone,mostlikelyatthegrainboundariesand/or

pointdefects.ThisformationisnotedviaRAIRS,whichindicates

thatringstructuredegradationoccursthroughgrapheneoxidation,

duetothewaterpresentonthesurface.Additionally,thiscanbe

confirmedbyXPSwhichshowsanincreaseinthebond

percent-ageofoxygenboundtocarbononthesurfaceafterEUVexposure.

Meanwhile,sp2bondsingraphenecleavetoformsp3bonds,also

confirmedviaXPS,duetoEUVphotonsand/orhydrogenradicals

breakingsp2bonds,leadingtographenebecomingmoredefective.

Furthermore,therateoftheoxidationprocessatgivenwater

cov-erageandhydrogenpressureslowsdownandnearlysaturatesover

time,whilestillsp2carbonisleftaftertheexposure.Thisbehavior

couldbeattributedtosaturationofthereactionoccurringatgrain

boundariesand pointdefects.Finally, thisworkshows thatthe

balanceofEUV-inducedphotochemistryofgrapheneinthe

pres-enceofwaterandhydrogenisverydifferentfromruthenium,an

importantreferencecappingmaterialforEUVoptics[43].Whilefor

rutheniumanincreasedpressureofH2leadsto(complete)

reduc-tionoftheoxidationoftheRuresultingfromEUVinducedreactions

ofwater,incaseofgraphenetheoxidationreactionisenhancedby

ahigherhydrogenpressure.Thisshowsthat abalancebetween

oxidationandreductionofagraphenecapcanmostlikelynotbe

obtained,suchthattheuseofgraphenewithalowdefectdensity

isofutmostimportance.

Acknowledgements

TheauthorswouldliketothankDr.RobbertvandeKruijsand

Mr.TheovanOijenforpreparationofsubstrate,Mr.EldadGrady

forhelpwithsynthesisofgrapheneand,Mr.LucStevensandMr.

GoranMilinkovicforhelpwithexperimentalmeasurements.This

researchissupportedbytheDutchTechnologyFoundationSTW

(projectnumber140930),whichispartoftheNetherlands

Orga-nizationforScientificResearch(NWO),andwhichispartlyfunded

bytheMinistryofEconomicAffairsaswellasASMLand ZEISS.

Wealsoacknowledgethefinancialandfacilitarycontributionsby

ASML,ZEISS,PANalytical,andtheProvinceofOverijsselthrough

theIndustrialFocusGroupXUVOpticsattheMESA+Institute.

References

[1]A.K.Geim,K.S.Novoselov,Theriseofgraphene,Nat.Mater.6(3)(2007) 183–191.

[2]A.K.Geim,Graphene:statusandprospects,Science324(5934)(2009) 1530–1534.

[3]S.Hu,M.Lozada-Hidalgo,F.C.Wang,A.Mishchenko,F.Schedin,R.R.Nair,E.W. Hill,D.W.Boukhvalov,M.I.Katsnelson,R.A.W.Dryfe,etal.,Protontransport throughone-atom-thickcrystals,Nature516(7530)(2016)227–230.

[4]K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozov, A.K.Geim,Two-dimensionalatomiccrystals,Proc.Natl.Acad.Sci.U.S.A.102 (30)(2005)10451–10453.

[5]C.Lee,X.Wei,J.W.Kysar,J.Hone,Measurementoftheelasticpropertiesand intrinsicstrengthofmonolayergraphene,Science321(5887)(2008)385–388.

[6]M.Han,B.Özyilmaz,Y.Zhang,P.Kim,Energyband-gapengineeringof graphenenanoribbons,Phys.Rev.Lett.98(20)(2007).

[7]K.I.Bolotin,K.J.Sikes,Z.Jiang,M.Klima,G.Fudenberg,J.Hone,P.Kim,H.L. Stormer,Ultrahighelectronmobilityinsuspendedgraphene,SolidState Commun.146(9–10)(2008)351–355.

[8]Y.Zhang,Y.W.Tan,H.L.Stormer,P.Kim,Experimentalobservationofthe quantumHalleffectandBerry’sphaseingraphene,Nature438(7065)(2005) 201–204.

[9]J.S.Bunch,S.S.Verbridge,J.S.Alden,A.M.vanderZande,J.M.Parpia,H.G. Craighead,P.L.McEuen,Impermeableatomicmembranesfromgraphene sheets,NanoLett.8(8)(2008)2458–2462.

[10]V.Berry,Impermeabilityofgrapheneanditsapplications,Carbon62(0) (2013)1–10.

[11]A.M.V.D.Zande,R.A.Barton,J.S.Alden,C.S.Ruiz-Vargas,W.S.Whitney,P.H.Q. Pham,J.Park,J.M.Parpia,H.G.Craighead,P.L.McEuen,Large-scalearraysof single-layergrapheneresonators,NanoLett.10(12)(2010)4869–4873.

[12]J.W.Suk,A.Kitt,C.W.Magnuson,Y.Hao,S.Ahmed,J.An,A.K.Swan,B.B. Goldberg,R.S.Ruoff,TransferofCVD-grownmonolayergrapheneonto arbitrarysubstrates,ACSNano5(9)(2011)6916–6924.

[13]R.R.Nair,P.Blake,A.N.Grigorenko,K.S.Novoselov,T.J.Booth,T.Stauber, N.M.R.Peres,A.K.Geim,Finestructureconstantdefinesvisualtransparencyof graphene,Science320(5881)(2008)1308.

[14]B.L.Henke,E.M.Gullikson,J.C.Davis,X-rayinteractions:photoabsorption, scattering,transmission,andreflectionatE=50-30,000eV,Z=1-92,At.Data Nucl.DataTables54(2)(1993)181–342.

[15]M.Bayraktar,W.A.Wessels,C.J.Lee,F.A.vanGoor,G.Koster,G.Rijnders,F. Bijkerk,Activemultilayermirrorsforreflectancetuningatextreme ultraviolet(EUV)wavelengths,J.Phys.D:Appl.Phys.45(49)(2012)494001.

[16]D.-E.Jiang,B.G.Sumpter,S.Dai,Uniquechemicalreactivityofagraphene nanoribbon’szigzagedge,J.Chem.Phys.126(13)(2007)134701.

[17]L.Liu,M.Qing,Y.Wang,S.Chen,Defectsingraphene:generation,healing,and theireffectsonthepropertiesofgraphene:areview,J.Mater.Sci.Technol.31 (6)(2015)599–606.

[18]P.A.Denis,F.Iribarne,Comparativestudyofdefectreactivityingraphene,J. Phys.Chem.C117(37)(2013)19048–19055.

[19]M.Pachecka,J.M.Sturm,C.J.Lee,F.Bijkerk,AdsorptionandDissociationof CO2onRu(0001),J.Phys.Chem.C121(12)(2017)6729–6735.

[20]T.E.Madey,N.S.Faradzhev,B.V.Yakshinskiy,N.V.Edwards,Surface phenomenarelatedtomirrordegradationinextremeultraviolet(EUV) lithography,Appl.Surf.Sci.253(4)(2006)1691–1708.

[21]D.I.Astakhov,W.J.Goedheer,C.J.Lee,V.V.Ivanov,V.M.Krivtsun,K.N.Koshelev, D.V.Lopaev,R.M.vanderHorst,J.Beckers,E.A.Osorio,etal.,Exploringthe electrondensityinplasmainducedbyEUVradiation:II.Numericalstudiesin argonandhydrogen,J.Phys.D:Appl.Phys.49(29)(2016)295204.

[22]B.M.Mertens,B.vanderZwan,P.W.H.deJager,M.Leenders,H.G.C.Werij, J.P.H.Benschop,A.J.J.vanDijsseldonk,Mitigationofsurfacecontamination fromresistoutgassinginEUVlithography,Microelectron.Eng.53(1–4) (2017)659–662.

[23]L.E.Klebanoff,M.E.Malinowski,W.M.Clift,C.Steinhaus,P.Grunow,Useof gas-phaseethanoltomitigateextremeUV/wateroxidationofextremeUV optics,J.Vac.Sci.Technol.A:Vac.Surf.Films22(2)(2004)425–432.

[24]Q.Sun,TheRamanOHstretchingbandsofliquidwater,Vib.Spectrosc.51(2) (2016)213–217.

[25]A.Gao,E.Zoethout,J.M.Sturm,C.J.Lee,F.Bijkerk,Defectformationinsingle layergrapheneunderextremeultravioletirradiation,Appl.Surf.Sci.317 (2014)745–751.

[26]N.Mitoma,R.Nouchi,K.Tanigaki,Photo-oxidationofgrapheneinthe presenceofwater,J.Phys.Chem.C117(3)(2013)1453–1456.

[27]X.Li,W.Cai,J.An,S.Kim,J.Nah,D.Yang,R.Piner,A.Velamakanni,I.Jung,E. Tutuc,etal.,Large-areasynthesisofhigh-qualityanduniformgraphenefilms oncopperfoils,Science324(5932)(2009)1312–1314.

(8)

1040 B.K.Mundetal./AppliedSurfaceScience427(2018)1033–1040 [28]F.Liu,J.M.Sturm,C.J.Lee,F.Bijkerk,ExtremeUVinduceddissociationof

amorphoussolidwaterandcrystallinewaterbilayersonRu(0001),Surf.Sci. 646(2016)101–107.

[29]J.M.Sturm,C.J.Lee,F.Bijkerk,ReactionsofethanolonRu(0001),Surf.Sci.612 (2013)42–47.

[30]W.A.Soer,M.J.J.Jak,A.M.Yakunin,M.M.J.W.vanHerpen,V.Y.Banine,Grid spectralpurityfiltersforsuppressionofinfraredradiationinlaser-produced plasmaEUVsources,in:F.M.Schellenberg,B.M.LaFontaine(Eds.),Spievol. 7271(2009),72712Y–72712Y–9.

[31]E.R.Kieft,J.J.A.M.vanderMullen,G.M.W.Kroesen,V.Banine,Time-resolved pinholecameraimagingandextremeultravioletspectrometryonahollow cathodedischargeinxenon,Phys.Rev.E68(5)(2003)056403.

[32]R.W.Silverstein,G.C.Bassler,Spectrometricidentificationoforganic compounds,J.Chem.Educ.39(11)(1962)546–553.

[33]P.A.Gerakines,Infraredbandstrengths:laboratorytechniquesand applicationstoastronomicalobservations,Bull.Am.Astron.Soc.34(2002) 911.

[34]R.M.Silverstein,F.X.Webster,D.J.Kiemle,D.L.Bryce,Spectrometric IdentificationofOrganicCompounds,JohnWiley&Sons,2014.

[35]L.G.Cancado,A.Jorio,E.H.Ferreira,F.Stavale,C.A.Achete,R.B.Capaz,M.V. Moutinho,A.Lombardo,T.S.Kulmala,A.C.Ferrari,Quantifyingdefectsin grapheneviaRamanspectroscopyatdifferentexcitationenergies,NanoLett. 11(8)(2011)3190–3196.

[36]C.S.Ruiz-Vargas,H.L.Zhuang,P.Y.Huang,A.M.vanderZande,S.Garg,P.L. McEuen,D.A.Muller,R.G.Hennig,J.Park,Softenedelasticresponseand

unzippinginchemicalvapordepositiongraphenemembranes,NanoLett.11 (6)(2011)2259–2263.

[37]A.Clemens,L.Hellberg,H.Gronbeck,D.Chakarov,Waterdesorptionfrom nanostructuredgraphitesurfaces,Phys.Chem.Chem.Phys.15(47)(2013) 20456–20462.

[38]C.Clay,S.Haq,A.Hodgson,Intactanddissociativeadsorptionofwateron Ru(0001),Chem.Phys.Lett.388(1)(2004)89–93.

[39]T.Werder,J.H.Walther,R.L.Jaffe,T.Halicioglu,P.Koumoutsakos,Onthe water-carboninteractionforuseinmoleculardynamicssimulationsof graphiteandcarbonnanotubes,J.Phys.Chem.B107(6)(2003)1345–1352.

[40]J.Díaz,G.Paolicelli,S.Ferrer,F.Comin,Separationofthesp3andsp2 componentsintheC1sphotoemissionspectraofamorphouscarbonfilms, Phys.Rev.B54(11)(1996)8064–8069.

[41]J.Chen,E.Louis,H.Wormeester,R.Harmsen,R.vandeKruijs,C.J.Lee,W.van Schaik,F.Bijkerk,Carbon-inducedextremeultravioletreflectanceloss characterizedusingvisible-lightellipsometry,Meas.Sci.Technol.22(10) (2011)105705.

[42]J.Chen,E.Louis,C.J.Lee,H.Wormeester,R.Kunze,H.Schmidt,D.Schneider,R. Moors,W.vanSchaik,M.Lubomska,etal.,Detectionandcharacterizationof carboncontaminationonEUVmultilayermirrors,Opt.Express17(19)(2009) 16969–16979.

[43]I.Nishiyama,H.Oizumi,K.Motai,A.Izumi,T.Ueno,H.Akiyama,A.Namiki, ReductionofoxidelayeronRusurfacebyatomic-hydrogentreatment,J.Vac. Sci.Technol.B23(6)(2005)3129.

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

In a process and device for depositing an at least partially crystalline silicon layer a plasma is generated and a substrate (24) is exposed under the influence of the plasma to

In a process and device for depositing an at least partially crystalline silicon layer a plasma is generated and a substrate (24) is exposed under the influence of the plasma to

In a process and device for depositing an at least partially crystalline silicon layer a plasma is generated and a substrate (24) is exposed under the influence of the plasma to

In a process and device for depositing an at least partially crystalline silicon layer a plasma is generated and a substrate (24) is exposed under the influence of the plasma to

Notulen van de algemene vergadering van de Nederlandse Vereniging van Wis- kundeleraren op zaterdag 1 november 1975 in het gebouw van de SOL te Utrecht. Korthagen de vergadering. Hij

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

 Gebruik bij niezen, hoesten en/of neus snuiten een papieren zakdoek, of hoest in de binnenkant van de elleboog. Gooi de zakdoek direct weg