• No results found

Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism

N/A
N/A
Protected

Academic year: 2021

Share "Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Resuscitation

j o ur na l h o me pa g e:ww w . e l s e v i e r . c o m / l o c a t e / r e s u s c i t a t i o n

Clinical

paper

Low

cerebral

blood

flow

after

cardiac

arrest

is

not

associated

with

anaerobic

cerebral

metabolism

Cornelia

W.

Hoedemaekers

a,∗

,

Philip

N.

Ainslie

b

,

Stijn

Hinssen

c

,

Marcel

J.

Aries

d

,

Laurens

L.

Bisschops

a

,

Jeannette

Hofmeijer

c

,

Johannes

G.

van

der

Hoeven

a

aDepartmentofIntensiveCareMedicine,RadboudUniversityMedicalCenter,Nijmegen,TheNetherlands bCentreforHeart,LungandVascularHealth,UniversityofBritishColumbia,BritishColumbia,Canada

cDepartmentofNeurology,RijnstateHospital,ArnhemanddepartmentofClinicalNeurophysiology,UniversityofTwente,Enschede,TheNetherlands dDepartmentofIntensiveCare,UniversityofMaastricht,MaastrichtUniversityMedicalCenter,Maastricht,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14June2017

Receivedinrevisedform10August2017 Accepted20August2017

Keywords: Cardiacarrest Cerebralbloodflow Lactate

Metabolism

Post-cardiacarrestsyndrome

a

b

s

t

r

a

c

t

Aimofthestudy:Estimationofcerebralanaerobicmetabolisminsurvivorsandnon-survivorsaftercardiac

arrest.

Methods:Weperformedanobservationalstudyintwentycomatosepatientsaftercardiacarrestand

19healthycontrolsubjects.Wemeasuredmeanflowvelocityinthemiddlecerebralartery(MFVMCA)

bytranscranialDoppler.Arterialandjugularbloodsampleswereusedforcalculationofthejugular

venous-to-arterialCO2/arterialto-jugularvenousO2contentdifferenceratio.

Results: After cardiac arrest, MFVMCA increased from 26.0[18.6–40.4]cm/sec on admission to

63.9[48.3–73.1]cm/secafter72h(p<0.0001),withnosignificantdifferencesbetweensurvivorsand

non-survivors(p=0.4853).TheMFVMCAincontrolswas59.1[52.8–69.0]cm/sec.Theoxygenextraction

fraction(O2EF)was38.9[24.4–47.7]%onadmissionanddecreasedsignificantlyto17.3[12.1–26.2]%at

72h(p<0.0001).ThedecreaseinO2EFwasmorepronouncedinnon-survivors(p=0.0173).O2EFinthe

controlgroupwas35.4[32.4–38.7]%.Thejugularbulb-arterialCO2toarterial-jugularbulbO2content

differenceratiowas>1atalltimepointsaftercardiacarrestanddidnotchangeduringadmission,with

nodifferencesbetweensurvivorsandnon-survivors.Valuesincardiacarrestpatientsweresimilarto

thoseinnormalsubjects.

Conclusions:Inthisstudy,lowCBFaftercardiacarrestisnotassociatedwithanaerobicmetabolism.

Hypoperfusionappearstobetheconsequenceofadecreaseofneuronalfunctioningandmetabolicneeds.

Alternatively,hypoperfusionmaydecreasecerebralmetabolism.Subsequently,metabolismincreases

insurvivors,consistentwithresumptionofneuronalactivity,whereasinnon-survivorslastinglow

metabolismreflectsirreversibleneuronaldamage.

©2017TheAuthors.PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCCBY

license(http://creativecommons.org/licenses/by/4.0/).

Introduction

Cardiacarrestisaleadingcauseofdeathinwesterncountries, andmostpatientsdiefromneurologicalinjury[1].Abnormal cere-bralbloodflow(CBF)isakeyfeatureofpost-anoxicbraininjury. Incomatosepatientsaftercardiacarrest,CBFisinitiallylowand graduallyrestorestowardsnormalvaluesduringthefirst72hafter returnofspontaneouscirculation(ROSC)[2–4].This

hypoperfu-夽 ASpanishtranslatedversionoftheabstractofthisarticleappearsasAppendix inthefinalonlineversionathttp://dx.doi.org/10.1016/j.resuscitation.2017.08.218. ∗ Correspondingauthorat:RadboudUniversityNijmegenMedicalCentre, Depart-mentofIntensiveCare,POBox9101,6500HBNijmegen,TheNetherlands.

E-mailaddress:Astrid.Hoedemaekers@radboudumc.nl(C.W.Hoedemaekers).

sionaftercardiacarrestcanpotentiallycauseamismatchbetween cerebraloxygendemandandsupply.Previousstudiesreporteda decreaseinthecerebralmetabolicrateofoxygen,secondarytothe cardiacarrest,providingateleologicalmechanismtomatchthis decreasedsupplyofoxygenandnutrientstothebrain[2–4].Itis yetunknown,whetherthisdecreaseinmetabolicrateis propor-tionaltothedecreaseinCBF:disproportionaladaptationofCBFto metabolismmayresultinhypoperfusionandischemiaor hyper-perfusionandhyperemia.

Recently, the mixed venous–arterial CO2 (Cv-aCO2)

to arterial–venous O2 (Ca-vO2) content difference ratio

(Cv-aCO2/Ca-vO2), has been suggested as a surrogate marker

for the balance between oxygen consumption (VO2) and CO2

production (VCO2) in sepsis patients. Under normal aerobic

http://dx.doi.org/10.1016/j.resuscitation.2017.08.218

(2)

conditions,O2 deliverymatchesCO2 production,andtheCa-vO2

approximatestheCv-aCO2.Althoughhypoperfusiondecreasesboth

O2consumptionandaerobicCO2production,anaerobicglycolysis

andATPhydrolysisincreaseanaerobicCO2production,leadingto

anincreasedCv-aCO2relativetoCa-vO2[reviewedin[5]].

Oxygen-derivedorCO2-derivedparametersasasingle

parame-tercorrelatepoorlywithanaerobicmetabolism.TheCa-vO2cannot

discriminatebetweentruetissuehypoxiaandstatesofareduced demandwithouthypoxia.AnaerobicCO2productionwillresultin

anincreasedCv-aCO2 [6].Atthesametime,duetotheso-called

CO2stagnationphenomenon,slowmicrocirculatorybloodflowwill

resultinincreasedtransferofCO2fromthetissuetothe

microcir-culation,resultinginanincreasedCv-aCO2intheabsenceoftissue

hypoxia.Insepsis,theCv-aCO2/Ca-vO2ratioisstrongmarkerforthe

detectionofanaerobicmetabolismandmorereliablethan conven-tionalparameterssuchashyperlactatemiaormixedvenousoxygen saturation[6–8].AnincreasedCv-aCO2/Ca-vO2ratiowasassociated

withapooroutcomeandseverityoforgandysfunctioninsepsis patients[9].

CBFis low aftercardiacarrest and maypotentiallyresult in increasedanaerobicmetabolism,despitenormaljugularbulb lac-tateconcentrations and normaljugular bulboxygensaturation. Theaimofthepresent studywastofurtherelucidatethe cou-plingbetweencerebraloxygendeliveryand demandduringthe post-cardiacarrestsyndromebydeterminationofparametersof cerebralanaerobicmetabolism.Wehypothesizedthatthechanges inCBFaftercardiacarrestwererelatedtochangesinmetabolism. In analogytothe Cv-aCO2/Ca-vO2 ratio,we calculated the

jugu-larvenous-to-arterial CO2/arterial to-jugularvenousO2 content

differenceratio(Cjb-aCO2/Ca-jbO2)asameasureofanaerobicCO2

generationinsurvivorsandnon-survivorsaftercardiacarrest.For thefirsttime,inordertoobtainnormativevalues,thesemetrics werealsocalculatedinhealthycontrolsubjects.

Materialandmethods Studypopulation

Weperformedasecondaryanalysisofprospectivelycollected datafrom two differenceobservational studiesin 20 comatose patientsafterout-of-hospitalcardiacarrestand19healthy con-trols.Thelocalinstitutionalreviewboardsapprovedtheoriginal studies.

Datafromthecardiacarrestpatientswereprospectively col-lected from two observational studies that studied the effect ofviscosity(n=10patients) andprolongedhypothermia (n=10 patients)onCBFaftercardiacarrest[10,11].Maininclusion cri-teriaforbothstudieswereGlasgowComaScale≤6afterROSCand age>18years.Exclusioncriteriaincludedpregnancy,thrombolytic therapy,contraindicationfortherapeutichypothermia,andchronic renalorhepaticfailure.

Dataof19normalhealthycontrolswerederivedfrom2 observa-tionalstudiesontheeffectsofmanipulationofPaO2andPaCO2on

theCBFandmetabolism[12,13].Thevolunteerswerenon-smokers, hadnohistoryofcardiovasculardiseases,andwerenottakingany medications.Onlydataobtainedatsealevelwereusedfor this study.

Post-cardiacarrestmanagement

CardiacarrestpatientswereadmittedtotheICUandtreated withmildhypothermiaat33◦Cfor24or72h,followedbypassive rewarming.Patientsweresedatedwithpropofoland/ormidazolam andsufentanil.Incaseofshivering,patientswereparalyzedusing intravenousbolusinjectionsofrocuronium.

Allpatientswereintubatedandmechanicallyventilated, aim-ingataPaO2>75mmHgandaPaCO2 between34and41mmHg.

Alpha-statwasusedforpHmaintenance.Monitoringofblood pres-sureandarterialbloodsamplingwasperformedwiththeuseof acatheterintheradialorfemoralartery.Meanarterialpressure (MAP)wasmaintainedbetween80and100mmHgwithadiuresis of>0.5mL/kg/hr.Patientsweretreatedwithvolumeinfusionand dobutamineornorepinephrine,ifnecessary.Bloodfromthejugular bulbwassampledfroma7-Frsingle-lumenjugularbulbcatheter. Datacollection

Post-cardiacarrestpatients

Demographicand clinicaldatawerecollected.Hemodynamic variables,temperature,andSaO2weremeasuredcontinuously.

Transcranial Doppler (TCD) of the middle cerebral artery (MCA)wasperformedtroughthetemporalwindowwitha2MHz probe(SonositeM-Turbo,SonoviewNederlandBV,Rijswijk,The Netherlands)onadmissionandat12,24,48and72hthereafter.

Arterialandjugularbloodsampleswerecollectedforbloodgas analysis,lactateandhemoglobinmeasurementsuponadmission andat12,24,48and72h.Outcomeaftercardiacarrestwasassessed uponICUdischarge.

Datacollectionhealthyvolunteers

TheleftMCA blood velocitywasmeasuredbyTCD (Spencer Technologies,Seattle,WA,USA)usinga2-MHzpulsedprobe.A20G arterialcatheter(Arrow,Markham,Ontario,Canada)wasinserted intotheleftradialartery,andajugularbulbcatheter(Edwards Pedi-aSatOximetrycatheter,Irvine,CA,USA)wasplacedintothejugular bulb.

Dataanalysis

Metabolicparameterswerecalculatedasfollows:

Contentofarterial(CaO2)andvenous(CvO2)oxygenwere

cal-culatedusingtheequations: CaO2



ml.dl−1



= [Hb] ·1.36·SaO2(%) 100 +0.003·PaO2 CvO2



ml.dl−1



= [Hb] ·1.36·SvO2(%) 100 +0.003·PvO2

Where1.36istheaffinityforoxygentohemoglobinforagiven arterialsaturation,and0.003isthepercentageofoxygendissolved intheblood.

Oxygenextractionfraction(O2EF)wascalculatedby:

O2EF (%)=

CaO2−CvO2

CaO2 ·

100%

WherearterialandjugularvenousO2contentdifferencesareequal

toCaO2andCvO2,respectively.

Thecontent ofcarbondioxide in thearterialenjugular bulb venousbloodsampleswascalculatedaccordingtoDouglasetal [14]. CCO2



mldl−1



=plasmaCCO2× (1− 0,0289×Hb (3,352−0,456×SO2)× (8,142−pH)



, withplasmaCCO2=2,226×S×PCO2×



1+10pH−pK



. SandpK’aretheplasmaCO2solubilityandapparentpK,

(3)

Table1

Demographicdatapost-cardiacarrestpatients.

Characteristics Men,n(%) 17(85%) Age(yr) 66[59.5–73] BMI(kg/m2) 26[24.8–26.5] Primaryrhythm,n(%) Shockable 10(50%) Non-shockable 10(50%) Timecollapse-ROSC 30[25–54] SAPS2 65.5[50.5–71.8] APACHEII 26[18.8–29.5]

pHuponhospitaladmission 7.19[7.07–7.27] BEuponhospitaladmission(mmol/l) −9.15[−15.8to−5.6] Lactateuponhospitaladmission(mmol/l) 6.8[3.6–10.9] Patientsdied,n(%) 9(45%) Dataareexpressedasmedian[interquartilerange]orasabsolutenumbers (per-centage).

BMI:Bodymassindex.

ROSC:returnofspontaneouscirculation. SAPS2:SimplifiedAcutePhysiologyScore.

APACHEII:AcutePhysiologyandChronicHealthEvaluationII.

calculatedas:

S=0,0307+0,00057× (37−T) +0,00002× (37−T)2

and

6,086+0,042× (7,4−pH) + (38−T) × (0,00472

+0,00139× (7,4−pH))

Thejugularbulb-arterialCO2contentdifferencewascalculated

as:

Cjb-aCO2(mldl−1)= CjbCO2−CaCO2.

Thejugularbulb-arterialCO2toarterial-jugularbulbO2content

differenceratiowasdefinedas

Cjb-aCO2/Ca-jbO2.

Lactateextractionfraction(LacEF)wascalculatedby:

LacEF (%)= Laca−Lacv

Laca ·

100%

WhereLacaandLacvequalthearterialandjugularvenous

concen-trationoflactate,respectively.

Statistics

StatisticalanalysiswasperformedusingGraphPadPrism

ver-sion5.0(GraphPadSoftware,LaJolla,CA).Normaldistributionof

thedatawasverifiedusingtheKolmogorov-Smirnovtest.Datain

thetextarepresentedasmedianwith25thand75thpercentile.

Changes over time wereanalyzed with the repeated-measures

test(onewayANOVA).Differencesbetweensurvivorsand

non-survivorsintimewereanalyzedwithtwo-wayanalysisofvariance.

TheStudent’st-testortheWilcoxonsigned-ranktestwasused

forthecomparisonbetweengroups,dependingonthedistribution

ofthedata.Ap-valueof<0.05wasconsideredtoindicate

signifi-cance.

Results

Demographicandclinicaldata

Weincluded20patientsaftercardiacarrest.Demographicand

clinicaldataaresummarizedinTable1.Ninepatientsdiedinthe

ICU:5 patients becauseof severe post-anoxic brain damage, 3

Fig.1. Meanflowvelocityinthemiddlecerebralarteryinsurvivors(whitebars) andnon-survivors(greybars)duringthefirst72haftercardiacarrest.Stripedbar representsvaluesinnormalcontrolsubjects.Dataareexpressedasmean±SD.

Fig.2.Oxygenextractionfractioninsurvivors(whitebars)andnon-survivors(grey bars)duringthefirst72haftercardiacarrest.Stripedbarrepresentsvaluesinnormal controlsubjects.Dataareexpressedasmean±SD.

patientsbecauseofcirculatoryfailureandin1patientactive treat-ment waswithdrawn becauseof severepreexisting pulmonary disease.PaO2andPaCO2werestableduringadmissionwithno

sig-nificantchangesbetweensurvivorsand non-survivors(datanot shown).Hemoglobin concentrationdecreasedsignificantly from 13.4[11.8–15.2]g/dLuponadmissionto11.3[9.4–11.8]g/dlat72h (p<0.0001),withnostatisticallysignificantdifferencesbetween survivorsandnon-survivors(p=0.54).Useofdosesofsedatives, inotropesandvasopressorsdidnotdifferbetweensurvivorsand non-survivors.

19subjects(17males,2females)wereincludedinthecontrol group,withamedianageof26[23.5–31]yrs.ValuesofPaO2and

PaCO2 wereessentiallyequaltothoseincardiac arrestpatients

(datanotshown). Thehemoglobinconcentrationinthecontrol groupwas14.8[14.0–15.1]g/dl.

Cerebralbloodflow

Inthepost-cardiacarrestgroup,theMFVMCA increasedfrom

26.0[18.6–40.4] cm/sec on admission to 63.9[48.3–73.1]cm/sec after72h(p<0.0001),withnosignificantdifferencesbetween sur-vivorsandnon-survivors(p=0.49)(Fig.1).TheMFVMCAinhealthy

controlswas59.1[52.8–69.0]cm/sec. Metabolicvariables

TheO2EFwas38.9[24.4–47.7]%onadmissionanddecreased

sig-nificantlyto17.3[12.1–26.2]%at72h(p<0.0001).Thedecreasein O2EFwassignificantlymorepronouncedinnon-survivors(p=0.02)

(Fig.2).TheO2EFinthecontrolgroupwas35.4[32.4–38.7]%.

TheCjb-aCO2 decreasedfrom7.68[4.04–12.1]uponadmission

to3.32[1.56–4.70]ml/dlat72h(p=0.08).Thedecreasein jugu-larbulb-arterialCO2contentdifferencewassignificantlystronger

innon-survivorscomparedtosurvivors(p=0.0061)(Fig.3).The Cjb-aCO2inthecontrolgroupwas7.88[6.96–9.09]ml/dlandequal

(4)

Fig.3. Thejugularbulb-arterialCO2contentdifferenceinsurvivors(whitebars)

andnon-survivors(greybars)duringthefirst72haftercardiacarrest.Stripedbar representsvaluesinnormalcontrolsubjects.Dataareexpressedasmean±SD.

Fig.4.Thearterial-jugularbulbO2contentdifferenceinsurvivors(whitebars)

andnon-survivors(greybars)duringthefirst72haftercardiacarrest.Stripedbar representsvaluesinnormalcontrolsubjects.Dataareexpressedasmean±SD.

tovaluesofcardiacarrestpatientsuponadmissiontotheICU.The decreaseinCjb-aCO2 waspredominantlycausedbyadecreasein

jugularbulbCO2content(Table2,Supplementarydigitalcontent).

TheCa-jbO2 decreasedfrom6.0[4.08–8.43]uponadmissionto

1.85[1.48–3.63]ml/dlat72h(p<0.0001).TheCa-jbO2waslowerin

patientsafter72hcompared tohealthycontrols(normalvalues 7.18[6.33–7.97]ml/dl, p<0.0001). The Ca-jbO2 decreased

signifi-cantlyinthefirst3days afteradmission, withalargerdecrease innon-survivorscomparedtosurvivors(p<0.0001),(Fig.4).This decreaseinCa-jbO2wasmainlyexplainedbyadecreasein

arte-rialoxygencontentduringtheadmission(Table2,Supplementary digitalcontent).

TheCjb-aCO2/Ca-jbO2was>1atalltimepointsinpatientsafter

cardiacarrestanddidnotchangesignificantlyduringadmission: (1.28[0.98–1.46]atadmissionand1.27[0.77–1.79]at72h),with nodifferencesbetweensurvivorsandnon-survivors(Fig.5).Inthe healthycontrolgrouptheratiowas1.16[1.01–1.25].

Arterialandjugularbulblactateconcentrationsdecreased sig-nificantlyinthefirst3daysafteradmissionfrom3.15[1.95–5.93] to 1.65[1.40–2.18]mmol/l and from 3.55[2.05–5.78] to 1.70[1.50–2.48]mmol/l,respectively (p<0.0001). Survivorsafter cardiacarresthadlowerarterialandjugularbulblactate concen-trationsthannon-survivors(datanotshown).Arterialandjugular bulblactateconcentrationsofcontrolsubjectsweresignificantly loweratalltime points(0.8[0.6–1.05]and 0.9[0.6–1.05]mmol/l respectively, p<0.0001) (data not shown). The lactate EF was 4.35[0.0–13.8]% upon admission and 0.0[−10.5–10.5]% at 72h (p=0.40).Therewasnosignificantdifferencebetweensurvivors andnon-survivors(p=0.48)(datanotshown).

Themetabolicvariableswerenotdifferentbetweenthegroup treatedwith24or72hofhypothermia(Tableelectronic supple-ment).

Fig.5.Thejugularbulb-arterialCO2toarterial-jugularbulbO2contentdifference

ratioinsurvivors(whitebars)andnon-survivors(greybars)duringthefirst72h aftercardiacarrest.Stripedbarrepresentsvaluesinnormalcontrolsubjects.Data areexpressedasmean±SD.

Discussion

Inthefirsthoursaftercardiacarrest,MVFmcawaslow,while O2EFremainedwithininthenormalrange.Despitethisapparent

mismatch,wefoundnoevidenceoftissue hypoxia,indicating a well-adjustedbalancebetweenoxygendeliveryandconsumption inbothsurvivorsandnon-survivors.Thesedatastronglyindicate thatcerebralmetabolismisdecreased,especiallyinthefirsthours afterthearrest.ReductionsinaerobicmetabolismandO2EFwere

more apparentin non-survivors aftercardiac arrest, and likely reflectiveofirreversibleneuronaldamage.

The Cjb-aCO2 decreased during admission, due to an

abso-lutedecreaseinvenousjugularbulbCO2content.Thisdecreased

Cjb-aCO2 is most consistent with a decrease in cerebral

gly-colysis and CO2 production afterROSC, suggesting a decreased

metabolism.Thisdecrease wasstrongestin non-survivors, sug-gestinglessCO2productioninirreversiblydamagedbraintissue.

ThejugularbulbCO2 contentgraduallyrestoredtowardsnormal

valuesinpatientswithagoodoutcome,indicatingarestorationof metabolisminthesecells.ThechangesinjugularCO2contentwere

accompaniedbyacontinuingdecreaseinO2EFinpatientswith

apooroutcome,whereas agradualrestorationofO2EFtowards

normal values occurred in surviving patients. Taken together, thesemetabolicchanges after cardiacarrest are bestexplained byrestorationofneuronalfunctioninginpatientsthateventually recover,andirreversiblelossoffunctionalcerebraltissuein non-survivors.

Adecreaseincerebralmetabolismisinagreementwith pre-viousstudiesinhumansandanimalmodels[15–20].Ontheone hand,thelowCBFstateinthefirsthoursaftercardiacarrest ren-dersthebrainatriskforischemia.Alternatively,thehypoperfusion followsthe inactivity ofthe brain.Low energy supply leadsto anabruptdiscontinuationofvariousneuronalfunctions,mainly synapticneurotransmission[21].Thisreductionin neurotransmis-sionlowersmetabolismquickly,and iswidelyassumedtobea compensatorymechanism[22].Inturn,thisleadstoareductionof metabolismandaconsequentreductionofperfusion.This hypothe-sisisinagreementwithourrepeatedobservationswithcontinuous EEG:cardiacarrestleadstoiso-electricpatternswithin10–40sin allpatients,reflectinganabruptstoppingofcorticalsynaptic trans-mission.Inrecoveringpatients,rhythmsrestorewithin12–24h. Otherwise,patternsremaindisturbedinpatientsthatinsufficiently recoverneurologically[23].

Thevenous-arterialCO2toarterial-venousO2 content

differ-ence ratio as a parameter for anaerobic metabolism was not significantlydifferentbetweenpatientsaftercardiacarrestandthe controlgroup,andindependentofoutcome.Thesedatasuggest

(5)

thatcerebralmetabolismaftercardiacarrestismainlyaerobicin nature,eveninpatientswithapoorneurologicoutcome.

Todate,moststudiesoncerebralischemia-reperfusioninjury aftercardiacarresthavefocusedonoxygen-derivedparameters todeterminethebalancebetweenoxygensupply anddemand. By calculation of a more specific parameter,we demonstrated thatcerebralmetabolismaftercardiacarrestismainlyaerobicin nature,eveninpatientswithapooroutcome.Assupplyof oxy-genwasnotalimitingfactorinthisstudy,itseemsunlikelythat enhancementofCBFinthesepatientswillimprovethepost-anoxic encephalopathy.Treatmentwithhypothermia at33◦Cdoesnot conferbenefitcomparedtotreatmentat36◦C,neitherdoes pro-longedhypothermiafor48hcomparedto24himproveoutcome aftercardiacarrest[24,25].Thereductioninmetabolicactivityafter cardiacarrestismuchstrongerthancanbeinducedby temper-aturechangesintherangeof 32–36◦Corbyuseofsedationin clinicallyrelevant dosages.Thissuggeststhat interventions tar-getingtemperaturemanagement, or bloodpressure toimprove outcomeinthesepatients,havealowprobabilityofeffect.More likely,theregulationofCBFandmetabolismisdirectlyorindirectly undercontrolofpathophysiologicalprocessesthatdetermine neu-ronalsurvival.Lossoffunctionalneuraltissueaftercardiacarrestis relatedtoalargenumberofmechanisms,includingexcitotoxicity, disruptedcalciumhomeostasis,freeradicalformation,pathological proteasecascades,andactivationofcell-deathsignalingpathways [26].Interventionstudiesaimingatmanipulationofoneormoreof thesepathwaysofinjurymaybemoreeffectivethanenhancement ofCBFduringthepost-cardiacarrestsyndrome.

Thisstudyhasa number of limitations. Althoughdatawere prospectivelycollected,itisaretrospectiveanalysisofdataina rel-ativelysmallsamplefromonesinglecenter.Wefoundnosignsof anaerobicmetabolism,usingaprotocolaimingatrelativelyhigher meanarterialpressures>80mmHg.Theserelativelyhigh perfu-sionpressuresmayprovidesufficientCBFforaerobicmetabolism, even inpatientswitha disturbed autoregulation. We foundno evidenceofanaerobicmetabolism,usingmethodsthatmeasure globalmetabolism.Wecannotexcludethepossibilitythatregional ischemiamightoccur.

Allpatientsweresedatedand treated withhypothermia for 24–72h.Theeffectsofsedationandhypothermiamayhaveaffected ourresults.It isgenerallyassumedthatcoolingreducescortical activity,however,this isnot a majorfactor inthetemperature rangesthatareusedinthesepatients[27,28].Propofolinduced changesarewellknown.InthedosagesthatwereusedintheICU, corticalactivityremainscontinuous[29].Evenifdiscontinuityis induced,burstsareheterogeneousandsuppressionsareshort[30] Thisisaphysiologicalresponseofarelativelyhealthybrainto seda-tionandcontrastswiththeabruptdiscontinuationofallneuronal activitywithin10–40safterinductionofhypoxia[31].Thepatients inthisstudyweretreatedwith24or72hofhypothermia(and con-comitantsedation).NosignificantdifferenceswerefoundinCBF ormetabolismdatawerefoundbetweenthe24and72htreated groups.ThesedatasupportthefactthatthechangesinCBFand metabolismismainlyrelatedtothepost-cardiacarreststate,rather thanahypothermiaorsedationeffect.

DerangementsinpHandPaCO2probablyinfluencedourresults.

Hypercapniaand/oracidosis caninducea reduction in cerebral metabolism The pH-dependent activity of phosphofructokinase (the enzyme responsible for the phosphorylation of fructose 6-phosphateinglycolysis)providesmechanisticsupportfor reduc-tions in CMRO2 with hypercapnia. Indeed, an accumulation of

glucose6-phosphate andfructose 6-phosphateis showninrats exposed to acute hypercapnia [32]. Additionally, hypercapnia depressescorticalactivitybyacidosis-inducedadenosinereceptor modulation[33–35].

Conclusion

Inthisstudy,lowcerebralperfusionaftercardiacarrestwasnot associatedwithanaerobicmetabolism.Itisunknownifthis hypop-erfusionisthecauseorconsequenceofasubstantialdecreaseof neuronalfunctioningandmetabolicneeds.Metabolismincreases inrecoveringpatients–consistentwithresumptionofneuronal activity–whereasinpatientswithapooroutcome,lowmetabolism reflectsirreversibleneuronaldamage.

Thetherapeuticandprognosticpotentialofthesenew parame-tersremaintobeestablished.

Acknowlegdements None.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.resuscitation. 2017.08.218.

References

[1].LaverS,FarrowC,TurnerD,NolanJ.Modeofdeathafteradmissiontoan inten-sivecareunitfollowingcardiacarrest.IntensiveCareMed2004;30:2126–8. [2].BisschopsLL,HoedemaekersCW,SimonsKS,vanderHoevenJG.Preserved

metaboliccouplingandcerebrovascularreactivityduringmildhypothermia aftercardiacarrest.CritCareMed2010;38:1542–7.

[3].BuunkG,vanderHoevenJG,FrolichM,MeindersAE.Cerebralvasoconstriction incomatosepatientsresuscitatedfromacardiacarrest?IntensiveCareMed 1996;22:1191–6.

[4].LemialeV,HuetO,VigueB,MathonnetA,SpauldingC,MiraJP,etal.Changesin cerebralbloodflowandoxygenextractionduringpost-resuscitationsyndrome. Resuscitation2008;76:17–24.

[5].Ospina-Tascon GA, Hernandez G, Cecconi M. Understanding the venous-arterialCO2toarterial-venousO2contentdifferenceratio.IntensiveCareMed 2016;42:1801–4.

[6].Mekontso-DessapA,CastelainV,AnguelN,BahloulM,SchauvliegeF,Richard C,etal.CombinationofvenoarterialPCO2differencewitharteriovenousO2 contentdifferencetodetectanaerobicmetabolisminpatients.IntensiveCare Med2002;28:272–7.

[7].Ospina-TasconGA,Bautista-RinconDF,UmanaM,TafurJD,GutierrezA,Garcia AF,etal.Persistentlyhighvenous-to-arterialcarbondioxidedifferencesduring earlyresuscitationareassociatedwithpooroutcomesinsepticshock.CritCare 2013;17:R294.

[8].Ospina-TasconGA,UmanaM,BermudezWF,Bautista-RinconDF,ValenciaJD, MadrinanHJ,etal.Canvenous-to-arterialcarbondioxidedifferencesreflect microcirculatoryalterationsinpatientswithsepticshock?IntensiveCareMed 2016;42:211–21.

[9].Ospina-TasconGA,UmanaM,BermudezW,Bautista-RinconDF,HernandezG, BruhnA,etal.Combinationofarteriallactatelevelsandvenous-arterialCO2 toarterial-venousO2contentdifferenceratioasmarkersofresuscitationin patientswithsepticshock.IntensiveCareMed2015;41:796–805.

[10].BisschopsLL,PopGA,TeerenstraS,StruijkPC,vanderHoevenJG,Hoedemaekers CW.Effectsofviscosityoncerebralbloodflowaftercardiacarrest.CritCareMed 2014;42:632–7.

[11].BisschopsLL,vanderHoevenJG,Hoedemaekers CW.Effects ofprolonged mildhypothermiaoncerebralbloodflowaftercardiacarrest.CritCareMed 2012;40:2362–7.

[12].WillieCK,MacLeodDB,SmithKJ,LewisNC,FosterGE,IkedaK,etal.The contribu-tionofarterialbloodgasesincerebralbloodflowregulationandfuelutilization inmanathighaltitude.JCerebBloodFlowMetab2015;35:873–81.

[13].AinsliePN,ShawAD,SmithKJ,WillieCK,IkedaK,GrahamJ,etal.Stabilityof cerebralmetabolismandsubstrateavailabilityinhumansduringhypoxiaand hyperoxia.ClinSci2014;126:661–70.

[14].DouglasAR,JonesNL,ReedJW.CalculationofwholebloodCO2content.JAppl Physiol1988;65:473–7.

[15].Beckstead JE, Tweed WA, Lee J, MacKeen WL. Cerebral blood flow and metabolisminmanfollowingcardiacarrest.Stroke;JCerebCirc1978;9:569–73. [16].BeinB,CavusE,StadlbauerKH,TonnerPH,SteinfathM,ScholzJ,etal.Monitoring ofcerebraloxygenationwithnearinfraredspectroscopyandtissueoxygen par-tialpressureduringcardiopulmonaryresuscitationinpigs.EurJAnaesthesiol 2006;23:501–9.

[17].EdgrenE,EnbladP,GrenvikA,LiljaA,ValindS,WiklundL,etal.Cerebral bloodflowandmetabolismaftercardiopulmonaryresuscitation:a pathophysi-ologicandprognosticpositronemissiontomographypilotstudy.Resuscitation 2003;57:161–70.

(6)

[18].MortbergE,CummingP,WiklundL,RubertssonS.Cerebralmetabolicrateof oxygen(CMRO2)inpigbraindeterminedbyPETafterresuscitationfromcardiac arrest.Resuscitation2009;80:701–6.

[19].MortbergE,CummingP,WiklundL,WallA,RubertssonS.APETstudyofregional cerebralbloodflowafterexperimentalcardiopulmonaryresuscitation. Resusci-tation2007;75:98–104.

[20].SchaafsmaA,deJongBM,BamsJL,Haaxma-ReicheH,PruimJ,ZijlstraJG.Cerebral perfusionandmetabolisminresuscitatedpatientswithseverepost-hypoxic encephalopathy.JNeurolSci2003;210:23–30.

[21].HofmeijerJ,vanPuttenMJ.Ischemiccerebraldamage:anappraisalofsynaptic failure.Stroke;JCerebCirc2012;43:607–15.

[22].AttwellD,LaughlinSB.Anenergybudgetforsignalinginthegreymatterofthe brain.JCerebBloodFlowMetab2001;21:1133–45.

[23].HofmeijerJ,BeerninkTM,BoschFH,BeishuizenA,Tjepkema-CloostermansMC, vanPuttenMJ.EarlyEEGcontributestomultimodaloutcomepredictionof postanoxiccoma.Neurology2015;85:137–43.

[24].KirkegaardH,SoreideE,deHaasI,PettilaV,TacconeFS,ArusU,etal.Targeted temperaturemanagementfor48vs24hoursandneurologicoutcomeafter out-of-Hospitalcardiacarrest:arandomizedclinicaltrial.JAMA2017;318:341–50. [25].NielsenN,WetterslevJ,CronbergT,ErlingeD,GascheY,HassagerC,etal. Targetedtemperaturemanagementat33degreesCversus36degreesCafter cardiacarrest.NEnglJMed2013;369:2197–206.

[26].NeumarRW,NolanJP,AdrieC,AibikiM,BergRA,BottigerBW,etal.Post-cardiac arrestsyndrome:epidemiology,pathophysiology,treatment,and prognosti-cationaconsensusstatementfromtheinternationalliaisoncommitteeon resuscitation(Americanheartassociation,australianandNewZealandcouncil onresuscitation,europeanresuscitationcouncil,heartandstrokefoundationof Canada,InterAmericanheartfoundation,resuscitationcouncilofasia,andthe resuscitationcouncilofsouthernafrica);theamericanheartassociation

emer-gencycardiovascularcarecommittee;thecounciloncardiovascularsurgery andanesthesia;thecounciloncardiopulmonary,perioperative,andcritical care;thecouncilonclinicalcardiology;andthestrokecouncil.Circulation 2008;118:2452–83.

[27].HofmeijerJ,Tjepkema-CloostermansMC,vanPuttenMJ.Outcomepredictionin postanoxiccomawithelectroencephalography:thesoonerthebetter. Resusci-tation2015;91:e1–2.

[28].SivarajuA,GilmoreEJ,WiraCR,StevensA,RampalN,MoellerJJ,etal. Prognos-ticationofpost-cardiacarrestcoma:earlyclinicalandelectroencephalographic predictorsofoutcome.IntensiveCareMed2015;41:1264–72.

[29].HindriksR,vanPuttenMJ.Meanfieldmodelingofpropofol-inducedchangesin spontaneousEEGrhythms.Neuroimage2012;60:2323–34.

[30].ReddyRV,MoorthySS,MatticeT,DierdorfSF,DeitchJrRD.An electroencephalo-graphiccomparisonofeffectsofpropofolandmethohexital.Electroencephalogr ClinNeurophysiol1992;83:162–8.

[31].vanDijkJG,ThijsRD,vanZwetE,TannemaatMR,vanNiekerkJ,BendittDG,etal. Thesemiologyoftilt-inducedreflexsyncopeinrelationto electroencephalo-graphicchanges.Brain:JNeurol2014;137:576–85.

[32].FolbergrovaJ,NorbergK,QuistorffB,SiesjoBK.Carbohydrateandaminoacid metabolisminratcerebralcortexinmoderateandextremehypercapnia.J Neu-rochem1975;25:457–62.

[33].ZappeAC,UludagK,OeltermannA,UgurbilK,LogothetisNK.Theinfluenceof moderatehypercapniaonneuralactivityintheanesthetizednonhuman pri-mate.CerebCortex2008;18:2666–73.

[34].ThesenT,LeontievO,SongT,DehghaniN,HaglerJrDJ,HuangM,etal. Depres-sionofcorticalactivityinhumansbymildhypercapnia.HumBrainMapp 2012;33:715–26.

[35].DullaCG,DobelisP,PearsonT,FrenguelliBG,StaleyKJ,AdenosineMasinoSA. ATPlinkPCO2tocorticalexcitabilityviapH.Neuron2005;48:1011–23.

Referenties

GERELATEERDE DOCUMENTEN

Unfortunately, the bilinear form corresponding to the boundary conditions couples spatial and angular variables in a non-smooth way rendering a tensor product approximation

A set of three arguments is put forward to test Gagnon’s theory in relation to the Yemeni case: (1) the elite that has the power is challenged; (2) the challenged elite has

First, the influence of virtual reality navigation training on overall navigation ability was examined for participants in the control group, control group with

The first notable difference between the gifted group and the non-gifted groups can be found in question 10 of the vocabulary acquisition survey: “I best memorize and learn

The radial distribution of time-averaged axial water velocity for single-phase flow, two-phase flow with the Schiller-Naumann drag law and with the Ishii-Zuber drag law at z = 0.44

inevitable, as well as the fact that erosion of the material might be an influence as well on blocks that are near the edges of the ranges. It would be interesting to see how these

Throughout Chapter 3, 4 and 5, the deliberation of travel habits is studied among those who already made the choice to adopt an e-bike (e-bike commuters in Chapter 3, rural

Reducing the input space to the 4 most relevant inputs (Zwicker Loudness, ASIL, AIM and SPLB) leads again to better results.. FE clearly gives the