• No results found

The structural MRI analysis of social cognition networks in ASD.

N/A
N/A
Protected

Academic year: 2021

Share "The structural MRI analysis of social cognition networks in ASD."

Copied!
26
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The  structural  MRI  analysis  of  social  

cognition  networks  in  ASD.  

 

Sofie  Valk,  University  of  Amsterdam   Supervisor:  

Boris  Bernhardt,  Max  Planck  Institute  of  Cognitive  and  Brain  Sciences    

   

Social  impairments  are  part  of  the  core  symptoms  of  autism  spectrum  disorder   (ASD).   In   this   study,   the   difference   in   brain   structures   involved   in   social   cognition  in  individuals  with  high  functioning  ASD  and  matched  healthy  controls   is   investigated.   To   this   end,   we   assessed   a   MR-­‐based   measurement   of   cortical   thickness.   We   found   no   difference   in   regional   cortical   thickness   between   ASD   and   healthy   controls.   However,   morphometric   correlation   analysis   revealed   patterns   of   hypoconnectivity   in   the   theory   of   mind   network   and   patterns   of   disrupted   connectivity   in   the   empathy   network   in   ASD.   Our   data   provides   anatomical   evidence   for   connectivity   disruptions   in   the   networks   related   to   social  cognition  in  ASD.    

               

(2)

Introduction  

Autism  spectrum  disorder  (ASD)  is  a  group  of  neuro-­‐developmental  disorders  of   early  onset  that  persists  into  adulthood  and  is  characterized  by  abnormalities  in   language,   social   interaction,   together   with   manifestations   of   stereotyped   and   repetitive  behavior1.  The  social  impairments  that  are  part  of  the  ASD  phenotype  

have  been  linked  with  impairments  in  mentalizing  and  the  inference  of  mental   states  from  other  persons2,  3.  These  processes  are  believed  to  rest  on  a  network  

formed   by   temporo-­‐parietal   and   medial   prefrontal   cortices4 ,   5.   Moreover,  

alexithymia,   a   sub-­‐clinical   trait   related   to   impairments   and   difficulties   in   describing   feelings   and   in   distinguishing   feelings   from   bodily   sensations   is   reported   to   be   found   in   severe   degrees   in   the   ASD   population6,  7.   There   is   less  

consistent   evidence   about   the   relation   between   alexithymia   and   the   social   cognitive  and  emotional  processing  in  the  brain8,  9  10,  11,  12.  Research  indicates  that  

such   emotional   deficits   may   arise   from   dysfunctions   in   cortical   networks   involved  in  social  cognition,  for  example  empathy  and  emotional  reactivity;  the   insula  and  the  anterior  cingulate  cortex13,  14,  15  and/or  in  regions  associated  with  

theory  of  mind;  the  prefrontal  cortex  and  the  temporal  parietal  junction11.  

 

Whether   ASD   relates   to   abnormal   brain   structure   is   poorly   understood.   Some   divergence   of   previous   magnetic   resonance   imaging   (MRI)   studies   in   adult   individuals   with   ASD   has   been   attributed   to   studying   heterogeneous   patient   groups,   to   abnormal   developmental   trajectories,   or   to   incomplete   matching   between  patients  and  controls.    However,  even  restricting  the  analysis  to  high-­‐ functioning  and  extensively  matched  patients  with  ASD,  studies  in  the  neocortex   have   yielded   inconclusive   results,   with   some   analyses   showing   gray   matter  

(3)

increases16,  17  while   others   have   shown   decreases   in   gray   matter18,  19  or   mixed  

results   of   increases   and   decreases   between   ASD   and   controls20,  21,  22,  23.   Indeed,  

previous   MRI-­‐based   cortical   thickness   analyses   have   reported   increases   in   frontal,  temporal-­‐limbic,  and  parietal  networks  in  high-­‐functioning  ASD  relative   to  control  subjects  16,  24,  but  also  decreases  in  similar  regions18.  

 

A  possible  explanation  for  the  lack  of  consistent  findings  in  ASD  is  that  previous   analysis  have  mostly  performed  univariate  regional  analyses,  and  thus  failed  to   sufficiently  characterize  a  structural  substrate  of  ASD  that  may  more  precisely  be   defined   as   a   disruption   of   interconnected   and   distributed   networks.   The   currently   dominant   theory   of   brain   connectivity   in   ASD   holds   that   there   are   alterations  in  long-­‐range  as  well  as  local  connectivity25,  26.  Most  of  the  analysis  of  

signal   correlations   derived   from   functional   resting-­‐state   MRI   demonstrated   reduced   long-­‐range   functional   connectivity,   especially   between   frontal   and   parietal   regions   located   in   the   frontal   cortex,   but   also   in   other   regions27,28.  

However  some  analysis  report  mixed  results  of  reduced  and  increased  functional   connectivity   in   ASD29,  30.   EEG   studies   show   the   same   patterns   of   results,   with  

mixed   results   of   hypo-­‐   and   hyperconnectivity31,  32.   In   the   structural   domain,  

diffusion   tensor   imaging   analysis   report   reduced   fractional   anisotropy   (FA)   in   ASD33 ,   34  but   also   mixed   results   of   increased   and   decreased   FA   in   frontal,  

temporal  and  occipital  regions35,  36.  Morphometric  correlation  analysis  has  been  

proposed   as   an   efficient   means   to   detect   subtle   alterations   in   large-­‐scale   structural   brain   connectivity37 ,   38 ,   39 ,   40 ,   41.   In   ASD,   the   single   previous  

(4)

covariance   between   the   amygdala   and   the   fusiform   cortex,   and   that   this   relationship  relates  to  impairments  in  emotional  face  processing42.  

 

Our  purpose  is  to  identify  abnormalities  in  ASD  in  the  organization  of  emotional   and   cognitive   perspective   taking   networks.     We   aim   to   test   possible   structural   abnormalities  in  individuals  with  autism  spectrum  disorder  directly  while  taking   into   account   the   increased   level   of   alexithymia   in   this   group.   We   therefore   investigated   the   structural   brain   basis   of   social   cognition   in   a   group   of   individuals   with   autism   spectrum   conditions   with   a   wide   distribution   of   alexithymia  scores  and  a  matched  control  group.      

Using  MRI-­‐based  cortical  thickness  measurements43  we  will  map  the  topography  

of  structural  alterations  in  patients  with  ASD  relative  to  controls.  We  will  employ   the  framework  of  vertex  wise  morphometric  correlation  analysis,  seeding  from   the   insular   and   cingulate   cortex   as   regions   consistently   activated   in   studies   of   empathy13  and  from  temporo-­‐parietal  and  medial  prefrontal  cortical  regions  as  

regions   consistently   activated   in   studies   of   cognitive   perspective   taking   and   mentalizing  4,  5.    

 

Methods   Subjects:    

Both  high  functioning  autism  spectrum  disorder  (ASD)  participants  and  healthy   controls   matched   for   Alexithymia,   age,   sex   and   partly   matched   for   IQ   participated  in  this  study.  Subjects  were  previously  recruited  at  the  Institute  of   Cognitive   Neuroscience   of   the   University   of   London.   Structural   MR   data   was  

(5)

acquired  between  2004  and  2007  as  part  of  different  functional  MR  studies  on   Alexithymia  and/or  autism.      

We   selected   our   subjects   based   on   scanner   parameters   and   degree   of   Alexithymia,  (TAS-­‐20)44,  45.  Our  final  sample  consists  of  16(4  female)  participants  

of   the   autism   spectrum   and   16(7   female)   controls.   Groups   were   statistically   gender-­‐matched   (Chi-­‐Squared=0.57,   p=0.55).   Groups   were   not   significantly   different   in   terms   of   age   (ASD:   mean±sd   34.8±13.3   years,   range:   21-­‐60   years;   Controls:  36.2±13.0  years,  range:  23-­‐63  years,  t(30)=0.8,  p  =  0.76)  and  IQ  (ASD:   mean±sd   119.8±15.2,   range:   91-­‐140;   Controls:   113.4±12.3,   range:   98-­‐149,   t(30)=1.3,   p   =   0.21,   whereby   IQ   was   assessed   with   the   Wechsler   Adult   Intelligence  Scale  (WAIS-­‐III  UK46).  Although  there  was  no  significant  difference  

between  groups  for  Alexithymia,  there  was  a  trend  for  higher  Alexithymia  scores   in  ASD  (ASD:  mean±sd  57.3±12.7,  range:  37-­‐78;  Controls:  49.1±12.4,  range  27-­‐ 65,  t(30)  p  =  0.08.  

All  participants  with  ASD  are  high  functioning  and  previously  diagnosed   with  autism  or  Asperger  Syndrome  by  an  independent  clinician  according  to  the   standard  Diagnostic  and  Statistical  Manual  of  Psychiatric  Disorders-­‐IV47  criteria  

for   their   participation   in   the   studies   of   the   University   of   London.   Control   participants  were  pre-­‐screened  for  any  neurological  or  psychiatric  disorders  and   did  not  exhibit  autistic  features.  

MRI  acquisition:      

MRI   data   was   acquired   on   a   1.5T   Siemens   sonata   scanner   (Siemens   Medical   Systems,  Erlangen).    We  used  a  3D  IR/GR  T1-­‐weighted  sequence  (TR=20.66  ms;   TE=8.46   ms;   flip   angle=25°;   256   coronal   slices;   matrix   size   =   176   x   224;  

(6)

FOV=224  mm;  slice  thickness=  1mm),  yielding  a  final  voxel  size  of  1.0  x  1.0  x  1.0   mm.  

  Fig  1.  Three  stages  from  the  FreeSurfer  cortical  analysis  pipeline.  A.  skull  stripped  image.  B.  white   matter  segmentation.  C.  surface  between  white  and  gray  (yellow  line)  and  between  gray  and  pia   (red  line)  overlaid  on  the  original  volume.

   

Cortical  thickness  measurements:    

We   used   FreeSurfer   to   semi-­‐automatically   reconstruct   representations   of   the   gray/white   matter   boundary   and   the   cortical   surface   from   the   T1-­‐weighted   images   (Version   5.1.0;   http://surfer.nmr.mgh.harvard.edu).   Previous   work   has   validated  FreeSurfer  against  histological  analysis48  and  manual  measurements49.  

FreeSurfer  has  shown  good  test-­‐retest  reliability  across  scanner  manufacturers   and   across   field   strengths.   The   processing   steps   have   been   described   in   detail   elsewhere43,  50,  51,  52  (see  figure  1).  Following  surface  extraction,  sulcal  and  gyral  

features  across  individual  subjects  were  aligned  by  morphing  each  subjects  brain   to   an   average   spherical   representation   that   allows   for   accurate   matching   of   cortical  thickness  measurement  locations  among  participants,  while  minimizing   metric  distortion.  The  entire  cortex  in  each  subject  was  visually  inspected,  and   segmentation   inaccuracies   manually   corrected.   For   whole-­‐brain   analysis,   thickness  data  was  smoothed  on  the  tessellated  surfaces  using  a  20mm  FWHM   Gaussian   kernel   prior   to   statistical   analysis.   Selecting   a   surface-­‐based   kernel  

(7)

reduces   measurement   noise   but   preserves   the   capacity   for   anatomical   localization,  as  it  respects  cortical  topological  features53.  

Statistical  analyses:  

Statistical   analyses   were   performed   using   the   SurfStat 54  (http://  

www.math.mcgill.ca/keith/surfstat)   toolbox   for   Matlab   (R2010a,   The   Mathworks,  Natick,  MA)    

a) Analysis   of   cortical   thickness   differences.   We   used   vertex   wise   t-­‐tests   to  

map   differences   in   cortical   thickness   at   each   vertex   between   ASD   and   controls.        

 

 

Figure   2.   Morphometric   correlation   analysis.   The   left   scatterplot   is   an   example   of   a   positive   correlation   between  the  mean  thickness  of  the  seed  region  of  each  participant  and  the  thickness  of  a  point  located  in  the   left  frontal  cortex.  The  right  scatterplot  is  an  example  of  no  correlation  between  the  mean  thickness  of  the   seed  region  and  a  point  located  in  the  right  central  cortex.    

 

b) Morphometric  correlation  analysis  (Fig  1).  We  studied  structural  networks  

of  the  seeds  involved  in  alexithymia  and  emotional  reactivity  ipsilaterally   (peaks  left  dorsal  anterior  insula13:  x  =-­‐40,  y=22,  z=0;  right  dorsal  anterior  

insula13:  x=39,  y=23,z=-­‐4;  left  anterior  midcingulate  cortex13:  x=-­‐2,  y=23,  

(8)

overlapped   in   a   meta-­‐analysis   of   studies   on   empathy13.   To   assess  

networks  of  cognitive  perspective  taking  (left  temporal  parietal  junction4:  

x=-­‐54,  y=-­‐60,  z=21;  right  temporal  parietal  junction4:  x=51,  y=-­‐54,  z=27,  

left   medial   prefrontal   cortex,   constructed   by   mirroring   the   right   coordinate   on   the   x-­‐place:   x=-­‐1,   y=59,   z=16,   right   medial   prefrontal   cortex5:   x=1,   y=59,   z=16),   clusters   are   created   by   smoothing   the   region  

around  the  peak  voxel  coordinate  with  a  10mm  FWHM  Gaussian  kernel.   Coordinates   are   presented   in   MNI   space.     Correlation   analysis   between   the  mean  thicknesses  of  each  seed  with  cortical  thickness  at  each  vertex   was  used  to  map  structural  networks  in  controls  and  ASD  separately.    A   significant   correlation   was   interpreted   as   a   connection.   We   also   used   linear   interaction   models   to   assess   differences   in   connectivity   between   both  groups.      

c) Correction   for   multiple   comparisons.   We   employ   corrected   significances  

based  on  the  structural  correlation  analysis  using  random  field  theory  for   non-­‐isotrophic  images55.  This  controls  the  chance  of  ever  reporting  a  false  

positive   finding   to   below   0.05.   In   addition,   we   also   display   uncorrected   trends  at  p<0.025.              

(9)

Results  

Group  differences  in  vertex  wise  cortical  thickness.  

There  was  no  FWE  corrected  difference  in  thickness  of  the  cortex  between  ASD   and   control,   (fig   3.).   However   there   was   a   trend   for   thickening   in   ASD   in   the   medial   central   frontal   region.   There   was   no   significant   difference   of   thickness   between  groups  in  the  region  of  interests  (see  appendix  table  1).  

 

Fig.  3.  The  vertex  wise  cortical  thickness  differences  between  ASDs  and  HCs.    

 

Group  differences  in  affective  processing  ROIs.    

The   left   dAi   in   controls   is   correlated   to   the   inferior   prefrontal   cortex,   the   superior   temporal   lobe   and   the   posterior   insular   region.   There   are   trends   for   correlation   to   the   occipital   lobe,   the   posterior   temporal   lobe   and   the   posterior   cingulate  cortex.  

The   left   dAI   in   ASDs   is   correlated   to   the   lateral   orbitofrontal   cortex   and   the   medial   frontal   cortex.   There   are   trends   for   correlation   to   the   posterior/mid   cingulate  cortex  and  the  inferior  medial  occipital  lobe.    

(10)

The   interaction   between   groups   for   correlation   showed   only   trends;   positive   interaction   in   the   in   the   medial   prefrontal   region   and   the   prefrontal   cortex,   negative  interaction  in  the  occipital  lobe.  

The   right   dAi   in   controls   is   correlated   to   the   inferior   prefrontal   cortex,   the   posterior  insular  region,  the  temporal  lobe,  the  occipital  cortex  and  the  fusiform   gyrus.   The   correlations   are   extensive.   There   are   trends   for   correlation   in   the   medial  central  cortex  as  well  as  in  t  he  medial  prefrontal  region.    

 

Figure   5.   The   dorsal   anterior   insula   correlations.   On   the   left   the   left   dorsal   anterior   insular   seed   and   the   correlations  in  the  left  hemisphere.  On  the  right  the  right  dorsal  anterior  insula  seed  and  the  correlations  in   the  right  hemisphere.  The  significant  clusters  are  delineated.  

 

The   right   dAI   in   ASD   is   correlated   to   the   orbitofrontal   cortex,   the   medial   prefrontal   cortex   and   the   superior   temporal   lobe.   There   are   trends   for   correlation   to   the   posterior   insular   region,   the   praecuneus,   the   fusiform   gyrus   and  the  occipital  lobe.    

The   interaction   between   groups   shows   no   significant   correlations.   There   are   trends  for  positive  interaction  in  the  praecuneus.  There  are  trends  for  negative   interaction  in  the  medial  central  regions  as  well  as  in  the  medial  occipital  lobe.    

(11)

The  left  MCC/ACC  in  controls  did  not  show  any  significant  correlations.  However   there  are  trends  of  correlation  to  the  medial  central  lobe,  the  frontal  regions  and   the  temporal  parietal  junction.      

The  left  MCC/ACC  in  ASDs  did  not  show  any  significant  correlations.  There  were   only  trends  localized  in  the  direct  region  of  the  seed.    

 

 

Figure   5.     The   ACC/MCC   correlations.   On   the   left   the   left   ACC/MCC   seed   and   the   correlations   in   the   left   hemisphere.   On   the   right   the   right   ACC/MCC   seed   and   the   correlations   in   the   right   hemisphere.   The   significant  clusters  are  delineated.  

 

The   interaction   between   groups   did   not   show   any   significant   interactions.   However  there  are  trends  for  negative  interaction  in  the  anterior  temporal  lobe   and  the  frontal  cortex.    

The  right  MCC/ACC  in  controls  did  not  show  any  significant  correlations.  There   were  some  trends  for  correlation  in  the  central  sulcus  and  the  parietal  occipital   fissure.    

The   right   MCC/ACC   in   ASDs   did   not   show   any   significant   correlations.   There   were  trends  in  the  region  of  the  MCC/ACC  itself  and  the  prefrontal  cortex.    

(12)

The   interaction   between   groups   did   not   show   significant   correlations.   There   were  positive  trends  in  the  mid  cingulate  cortex,  the  temporal  junction  and  the   anterior  insular  region.  There  were  trends  for  negative  interaction  in  the  central   sulcus,  the  posterior  central  lobe  and  in  the  parietal  occipital  fissure.    

Group  differences  in  theory  of  mind  ROIs.    

The  left  TPJ  in  controls  shows  extensive  correlation  to  the  occipital  regions,  the   posterior  insula,  the  central  lobe,  the  medial  central  lobe,  the  praecuneus  and  the   medial  occipital  lobe.  There  are  trends  for  correlation  to  the  inferior  and  anterior   temporal  lobe,  the  prefrontal  cortex  and  the  mid  cingulate  cortex.    

The   left   TPJ   in   ASDs   is   correlated   to   the   region   of   the   temporal   junction   itself.   There  are  trends  for  correlation  to  the  prefrontal  cortex,  the  superior  occipital   cortex  and  the  medial  prefrontal  cortex.    

 

Figure  6.    The  temporal  parietal  junction  correlations.  On  the  left  the  left  temporal  parietal  junction  seed   and  the  correlations  in  the  left  hemisphere.  On  the  right  the  right  temporal  parietal  junction  seed  and  the   correlation  in  the  right  hemisphere.  The  significant  clusters  are  delineated.  

 

The  interaction  between  groups  shows  only  trends  for  positive  interaction  in  the   medial  prefrontal  region.  However  there  are  significant  negative  interactions  in  

(13)

the  central  cortex,  the  medial  central  cortex  and  the  mid  cingulate  cortex.    There   are   trends   for   negative   interaction   in   the   occipital   lobe,   the   inferior   temporal   lobe  and  the  praecuneus.    

The  right  TPJ  in  controls  shows  no  significant  correlations.  There  are  trends  for   correlation  to  the  parietal  occipital  fissure,  the  praecuneus  and  the  central  sulcus   and  to  the  region  of  the  TPJ  itself.    

The   right   TPJ   in   ASDs   shows   no   significant   correlations.   There   are   trends   for   correlation   to   the   inferior   lateral   prefrontal   cortex,   the   superior   temporal   lobe   and  in  the  region  of  the  temporal  parietal  junction  itself.    

The  interaction  between  groups  shows  only  trends.  There  are  positive  trends  for   interaction  in  the  inferior  medial  prefrontal  region.  There  are  negative  trends  for   interaction  in  the  central  sulcus  and  the  perfumes.    

 

The  left  mPFC  in  controls  has  extended  correlations  in  the  central  and  prefrontal   cortex  stretching  to  the  central  sulcus.  There  are  few  trends,  one  in  the  calcarine   fissure  and  the  superior  occipital  lobe.    

The  left  mPFC  in  ASDs  has  extended  correlations  in  the  orbitofrontal  cortex  and   the   medial   frontal   cortex   and   the   anterior   insular   region.   There   are   trends   for   correlation  in  the  fusiform  gyrus  and  the  posterior  cingulate  cortex.    

The  interaction  between  groups  has  negative  interaction  in  the  central  superior   lobe  stretching  to  the  central  sulcus.  There  are  trends  for  positive  interaction  in   the  posterior-­‐  and  anterior  cingulate  cortex  and  the  fusiform  gyrus.    

The  right  mPFC  in  controls  is  extensively  correlated  to  the  prefrontal  cortex,  the   occipital   cortex,   the   medial   prefrontal   cortex   and   the   cuneus.   There   are   trends  

(14)

for  correlation  in  the  medial  and  posterior  temporal  lobe  and  the  region  of  the   temporal  parietal  junction.    

 

 

Figure  7.    The  medial  prefrontal  correlations.  On  the  left  the  left  medial  prefrontal  seed  and  the  correlations   in   the   left   hemisphere.   On   the   right   the   right   medial   prefrontal   seed   and   the   correlations   in   the   right   hemisphere.  The  significant  clusters  are  delineated.  

 

The   right   mPFC   in   controls   is   correlated   to   the   prefrontal   cortex,   the   insular   region  and  the  medial  prefrontal  cortex.  There  are  trends  for  correlation  in  the   central  lobe,  the  region  of  the  temporal  parietal  junction,  the  occipital  lobe,  the   mid  cingulate  cortex,  the  cuneus  and  the  parietal  occipital  fissure.    

The   interaction   between   groups   is   not   significant,   however   there   are   positive   trends   in   the   ventral   medial   prefrontal   cortex.   There   are   small   clusters   of   negative  trends  across  the  cortical  surface.    

 

Discussion  

The   paradigm   of   the   present   study   is   unique   in   that   it   enabled   us   to   assess   morphometric   correlation   analysis   on   a   group   of   high   functional   ASD   subjects   with   a   wide   distribution   of   alexithymia   scores   and   matching   controls.   To   our  

(15)

knowledge,  this  is  the  first  structural  MR  study  that  examines  subjects  with  ASD   that   are   matched   with   a   control   group   on   alexithymia.   Alexithymia   is   a   subclinical   trait   that   is   associated   with   hypo   activation   of   the   theory   of   mind   regions11  and  with  the  empathic  social  cognitive  symptoms  in  ASD14,  15.    Also  only  

one   other   study   employed   morphometric   correlation   analysis   to   investigate   possible  abnormal  brain  networks  in  ASD42.  Previous  studies  on  the  structure  of  

the  brain  in  ASD  have  reported  contradictory  results16,  17,  18,  19,  20,  22  of  both  cortical  

thickening  and  thinning  in  ASD.  Moreover,  studies  assessing  the  connectivity  in   ASD  have  reported  divergent  results  as  well27,  29,  30,31,  36.    

The  present  study  aimed  at  identifying  abnormalities  in  ASD  in  the  organization   of  emotional  and  cognitive  perspective  taking  networks.  In  contrast  to  previous   studies16,  17,  18,  19,  we  found  no  structural  alterations  in  patients  with  ASD  relative  

to  controls.  Employing  the  framework  of  vertex  wise  morphometric  correlation   analysis,   we   found   less   connectivity   in   ASD   seeding   from   regions   consistently   activated   in   studies   on   empathy13,   the   insular   and   cingulate   cortex.   We   found  

hypoconnectivity  in  ASD  seeding  from  regions  consistently  activated  in  studies   of  cognitive  perspective  taking  and  mentalizing  4,  5.  Our  data  provides  anatomical  

evidence  for  connectivity  disruptions  in  the  networks  related  to  social  cognition   in  ASD.  

Regional  thickness  differences  

Contrary   to   previous   reports16,   14,   18,   19   we   found   no   regional   grey   matter  

thickness  differences  between  ASDs  and  healthy  controls.  This  indicates  there  is   no  regional  difference  between  the  diagnostic  groups.  Our  ASD  group  consisted   of  high  functioning  ASD  and  the  groups  were  matched  for  alexithymia.  This  could  

(16)

explain  why  we  found  no  regional  difference.  Our  group  consisted  only  of  adults,   with   a   mean   age   of   34.8   and   36.2   years   in   respectively   ASDs   and   controls.   Subjects   in   many   other   studies   were   children   and   adolescents56,   26.   ASD   is   a  

neurodevelopmental   disorder   and   there   is   a   relation   between   age   and   cortical   thinning   in   ASD  19.   This   could   explain   why   our   results   differ   from   previous  

findings.     Another   possible   explanation   is   a   lack   of   statistical   power,   since   our   group  size  was  relatively  small.    

Connectivity  of  ROIs  associated  with  theory  of  mind    

To  assess  the  connectivity  of  the  seeds  with  the  rest  of  the  brain  we  employed  a   correlation  analysis  between  the  thickness  of  the  seed  region  and  the  thickness   of  the  vertices  of  the  ipsilateral  hemisphere.  We  found  hypoconnectivity  in  the   theory   of   mind   networks   in   ASDs.     This   is   in   line   with   the   currently   dominant   theory  of  brain  connectivity  in  ASD25,26.    There  was  more  extended  connectivity  

between  the  left  TPJ  seed  and  the  cortex  in  controls  and  negative  interaction  in   the   superior   lateral   and   medial   central   regions.   We   found   only   trends   for   hypoconnectivity  in  the  right  TPJ.    The  TPJ  is  bilaterally  associated  with  theory  of   mind4.  The  TPJ  is  reported  to  be  less  selectively  activated  by  ASD  subjects  in  a  

specific  mentalizing  task  compared  to  controls57  and  is  typically  associated  with  

self-­‐other  distinction58,  59,  60.  However  the  right  TPJ  function  is  not  restricted  to  

theory   of   mind   alone61,   but   is   also   involved   in   attention   mechanisms62,  63.   The  

involvement  of  the  right  TPJ  in  multiple  processes  could  be  a  explanation  for  the   reduced   correlations   we   found   in   this   hemisphere.   Also,   we   found   more   extended   network   connectivity   in   the   left   and   right   medial   PFC.   Although   the   connectivity   stretched   to   more   posterior   medial   regions   in   controls,   the  

(17)

connectivity   in   ASD   stretched   only   to   lateral   frontal   regions.   Previously   it   has   been   suggested   the   medial   prefrontal   cortex   can   be   functionally   split   in   a   part   that  is  related  to  more  emotional  cognition  involved  in  theory  of  mind  and  a  part   that  is  related  to  a  more  cognitive  and  action  monitoring  components  of  theory   of  mind64.  Moreover,  it  has  been  reported  controls  employ  both  emotional  and  

cognitive   mechanisms   in   theory   of   mind,   while   ASDs   only   employ   cognitive   strategies65.    The  altered  connectivity  patterns  in  ASD  may  indicate  ASD  subjects  

use  different  cognitive  resources  to  employ  theory  of  mind  related  strategies  on   the  structural  level  as  well.    

Connectivity  of  ROIs  associated  with  empathy  and  affective  processing    

We  found  less  connectivity  between  the  empathy  regions  in  the  rest  of  the  brain   in   ASDs   compared   to   the   connectivity   in   controls.   The   results   show   mixed   patterns   of   correlations   in   both   groups,   and   no   significant   interactions.   This   could  be  the  result  of  the  alexithymia  matching  in  our  groups,  and  our  results  are   in   line   with   the   functional   findings   of   the   study   of   Bird   et   al14.   They   found   no  

difference   in   activation   in   the   left   anterior   insular   region   between   ASD   and   controls   that   were   corrected   for   alexithymia.   We   found   a   more   extended   difference  in  connectivity  between  ASDs  and  controls  in  the  right  dorsal  anterior   insular   seed.   The   right   dorsal   anterior   insular   region   specifically   has   been   reported   to   be   hypo-­‐activated   in   ASD   in   a   meta-­‐analysis   of   a   mix   of   social   cognition   studies66.     This   may   contribute   to   the   more   extensively   impaired  

networks   relating   to   the   right   dAI   in   ASD.     ACC/MCC   seed   has   no   significant   correlations   with   other   brain   areas   in   both   ASDs   and   controls.   This   could   be   because   a   lack   of   statistical   power   in   our   group.   However   there   are   trends   for  

(18)

more  connectivity  of  left  ACC/MCC  in  controls  and  also  for  negative  interaction.   The  ACC/MCC  that  was  reported  as  a  significant  cluster  in  the  coordinate  based   meta-­‐analysis13   was   located   in   the   left   hemisphere.   It   has   been   proposed   the  

ACC/MCC   contributes   to   the   appropriate   motor   responses   to   painful,   negative,   events   in   general67  and   its   empathy   related   activation   when   pain   in   occurs   in  

others   illustrates   the  shared   representation   account   of   understanding   others68.  

Because  the  divergence  of  functions  of  the  MCCACC,  it  is  possible  that,  just  as  in   the   right   TPJ,   the   cortical   thickness   correlations   of   this   region   are   reduced   because  this  region  is  involved  in  many  interacting  processes.  

Limitations  

There   are   some   limitations   in   the   current   study.   The   size   of   our   group   was   relatively   small.   It   is   clear   from   trends   in   correlations   of   the   seed   region   that   there  is  the  need  for  more  statistical  power,  since  now  sometimes  a  seed  has  no   significant   correlation   to   any   region   and   there   are   very   big   differences   in   the   number  of  correlated  clusters  between  hemispheres.    

Our  groups  were  matched  for  alexithymia;  both  groups  had  a  wide  distribution   of  alexithymia  scores.  In  regular  controls  and  ASD  individuals  this  distribution  is   different,   since   high   levels   of   alexithymia   is   prevalent   in   1   in   10   people   in   a   healthy   population.   In   this   research   1   in   3   healthy   controls   had   high   levels   of   alexithymia.  This  has  both  been  a  limitation  as  well  as  an  asset.  Our  groups  were   atypical,  but  we  could  control  for  the  possible  modulating  effect  of  alexithymia.   Also   our   seed   regions   were   derived   from   different   studies,   and   not   all   were   meta-­‐analysis.  Only  the  seeds  of  the  dAI  and  the  ACC/MCC  resulted  from  meta-­‐ analysis   of   empathy   for   pain   studies.   The   seeds   we   used   were   the   regions   of  

(19)

activation  that  were  found  to  be  overlap  between  the  different  studies.  The  left   dAI  seed  however  was  located  partly  in  the  inferior  frontal  gyrus  and  consisted   of  two  seeds.  The  right  dAI  also  seems  to  be  located  in  the  inferior  frontal  gyrus.   The  right  MCC/ACC  seed  was  very  small.  The  other  seeds  were  from  the  Mitchell   et   al.   (2002)5   study,   the   mPFC   seeds   and   the   TPJ   seeds   were   from   Saxe   et   al.  

(2003)4   study.   Here   the   peak   voxels   of   the   activation   are   smoothed   with   a  

Gaussian  kernel  of  10mm  in  order  to  account  for  the  region  of  the  peak  voxel  as   well.   We   chose   a   relatively   dorsal   mPFC   peak.   We   mirrored   the   seed   found   in   Mitchell,  because  they  only  reported  of  a  peak  located  in  the  right  hemisphere,  in   order  to  construct  a  bilateral  seed  of  the  medial  prefrontal  cortex.    

  Our   results   are   in   line   with   previous   accounts   of   hypoconnectivity   in   ASD18,19,  22,23.  Since  regions  relating  to  social  cognition  are  highly  specialized57,  it  is  

likely   there   are   mixed   patterns   of   connectivity   in   ASD   compared   to   healthy   controls,  with  each  region  of  interest  modulating  different  functional  roles.      

Final  remarks  

The   present   data   provide   novel   insights   into   the   structure   of   brain   networks   involved  in  social  cognition  in  healthy  controls  and  ASD  subjects.  We  provide  a   fine-­‐graded   distinction   between   the   structural   correlates   of   two   different   capacities   underlying   social   cognition:   mentalizing   ability   and   empathic   ability,   in  order  to  dissociate  the  possible  impairments  of  both  networks.  We  accounted   for  a  wide  distribution  alexithymia  scores  in  both  groups,  in  order  to  control  for   possible   structural   differences   related   to   alexithymia.     Importantly,   our   data   support   the   theory   of   structural   hypoconnectivity   in   ASD   and   argue   these  

(20)

structural   alterations   are   connected   to   ASD   symptoms   in   the   social   cognitive   domain.                                                                                

(21)

Appendix   Table  1.  :      

Thickness  t-­‐test  of  the  seeds  between  groups.      

ROI:   t-­‐value  

Whole  brain  thickness     t(30)=0.92,  p<0.36  

Left  dAI   t(30)=1.55,  p<0.13   Right  dAI   t(30)=0.62,  p<0.54   Left  MCCACC   t(30)=0.45,  p<0.65   Right  MCCACC   t(30)=0.81,  p<0.42   Left  TPJ   t(30)=1.36,  p<0.18   Right  TPJ   t(30)=1.32,  p<0.20   Left  mPFC   t(30)=0.17,  p<0.87   Right  mPFC   t(30)=1.18,  p<0.25    

Table  2.:  Correlation  between  seeds  and  Tas-­‐score    

ROI   Autism   Healthy  Control  

Left  dAi   r=-­‐0.12,  p<0.66   r=0.16,  p<0.56   Right  dAI   r=-­‐0.13,  p<0.63   r=0.40,  p<0.12   Left  MCCACC   r=-­‐0.07,  p<0.79   r=0.10,  p<0.72   Right  MCCACC   r=-­‐0.11,  p<0.69   r=-­‐0.11,p<0.69   Left  mPFC   r=-­‐0.07,  p<0.79   r=0.24,  p<0.36   Right  mPFC   r=-­‐0.47,  p<0.07   r=0.49,  p<0.06   Left  TPJ   r=0.22,  p<0.41   r=0.52,  p<0.04   Right  TPJ   r=-­‐0.16,  p<0.54   r=0.45,  p<0.08    

Table  3:  Correlation  between  seeds  in  the  left  hemisphere  (A=  ASD,  C=  HC).       MCCACC   TPJ   mPFC   dAi   A:  r=-­‐0.09,  p<0.73   H:  r=0.04,  p<0.87     A:  r=0.39,  p<0.14   H:  r=0.18,  p<0.50     A:  r=0.75,  p<0.00   H:  r=-­‐0.08,  p<0.77     MCCACC     A:  r=-­‐0.02  p<0.94   H:  r=0.51,  p<0.05     A:  r=-­‐0.22,  p<0.40   H:  r=0.29,  p<0.28     TPJ       A:  r=0.47,  p<0.07   H:  r=-­‐0.07,  p<0.79      

Correlation  between  seeds  in  the  right  hemisphere  (A=  ASD,  C=  HC).  

  MCCACC   TPJ   mPFC   dAi   A:  r=0.04,  p<0.88   H:  r=-­‐0.06,  p<0.84     A:  r=0.26,  p<0.33   H:  r=0.38,  p<0.15     A:  r=0.36,  p<0.17   H:  r=0.50,  p<0.05     MCCACC     A:  r=-­‐0.21,  p<0.44   H:  r=0.06,  p<0.83     A:  r=0.17,  p<0.54   H:  r=-­‐0.02,  p<0.93     TPJ       A:  r=0.15,  p<0.57   H:  r=0.00,  p<0.99  

(22)

Literature    

1  APA,  A.  P.  A.  (2000).  Diagnostic  and  statistical  manual  of  mental  disorders  (DSM-­‐IV-­‐TR)  (4th  

edition  ed.).  Washington  D.C.    

2    Frith,  U.,  Happe,  F.,  (2006)  Autism  spectrum  disorder.  Current  Biology  15(19),  R786-­‐790  

 

3  Singer,  T.,  Seymour,  B.,  O'Doherty,  J.,  Kaube,  H.,  Dolan,  R.  J.,  &  Frith,  C.  D.  (2004).  Empathy  for  

pain  involves  the  affective  but  not  sensory  components  of  pain.  [Research  Support,  Non-­‐U.S.   Gov't].  Science,  303(5661),  1157-­‐1162.  doi:  10.1126/science.1093535  

 

4  Saxe,  R.,  Kanwisher,  N.,  (2003)  People  thinking  about  thinking  people.  The  role  of  the  temporal-­‐

parietal  junction  in  “Theory  of  mind”.  NeuroImage  19,  1835-­‐1842    

5  Mitchell,  J.P.,  Heatherton,  Macrae,  C.,  (2002)  Distinct  neural  systems  subserve  person  and  object  

knowledge.  P.N.A.S.  99(23),  15238-­‐15243    

6  Berthoz,  S.,  &  Hill,  E.  L.  (2005).  The  validity  of  using  self-­‐reports  to  assess  emotion  regulation  

abilities  in  adults  with  autism  spectrum  disorder.  [Research  Support,  Non-­‐U.S.  Gov't  Validation   Studies].  Eur  Psychiatry,  20(3),  291-­‐298.  doi:  10.1016/j.eurpsy.2004.06.013  

 

7  Hill,  E.,  Berthoz,  S.,  &  Frith,  U.  (2004).  Brief  report:  cognitive  processing  of  own  emotions  in  

individuals  with  autistic  spectrum  disorder  and  in  their  relatives.  [Research  Support,  Non-­‐U.S.   Gov't].  J  Autism  Dev  Disord,  34(2),  229-­‐235.    

 

8  Heinzel,  A.,  Minnerop,  M.,  Schafer,  R.,  Muller,  H.  W.,  Franz,  M.,  &  Hautzel,  H.  (2011).  Alexithymia  

in  healthy  young  men:  A  voxel-­‐based  morphometric  study.  J  Affect  Disord.  doi:   10.1016/j.jad.2011.06.012  

 

9  Borsci,  G.,  Boccardi,  M.,  Rossi  R.,  Rossi,  G.,  Perez,  J.,  Bonetti,  M.,  Frisoni,  G.B.,  (2009)  Alexithymia  

in  healthy  women:  a  brain  morphology  study.    J  Affect  Disord.  114(1-­‐3),  208-­‐215    

10  Gundel,  H.,  Lopez-­‐Sala,  A.,  Ceballos-­‐Baumann,  A.  O.,  Deus,  J.,  Cardoner,  N.,  Marten-­‐Mittag,  B.,  .  .  .  

Pujol,  J.  (2004).  Alexithymia  correlates  with  the  size  of  the  right  anterior  cingulate.  Psychosom  

Med,  66(1),  132-­‐140.    

 

11  Moriguchi,  Y.,  Ohnishi,  T.,  Lane,  R.D.,  Maeda,  M.,  Mori,  T.,  Nemoto,  K.,  Matsuda,  H.,  Komaki,  G.,  

(2006)  Impaired  self-­‐awareness  and  Theory  of  mind:  an  fMRI  study  of  mentalizing  in   alexithymia.  NeuroImage  32(3),  1472-­‐1482  

 

12  Swart,  M.,  Kortekaas,  R.,  Aleman,  A.,  (2009)  Dealing  with  feelings:  characterization  of  the  trait  

alexithymia  on  emotion  regulation  stratigies  and  cognitive-­‐emotional  processing.  PLoS  One  4(6),   e5751  

 

13  Lamm,  C.,  Decety,  J.,  &  Singer,  T.  (2011).  Meta-­‐analytic  evidence  for  common  and  distinct  

neural  networks  associated  with  directly  experienced  pain  and  empathy  for  pain.  [Meta-­‐Analysis   Research  Support,  Non-­‐U.S.  Gov't  Review].  NeuroImage,  54(3),  2492-­‐2502.  doi:  

10.1016/j.neuroimage.2010.10.014    

14  Bird,  G.,  Silani,  G.,  Brindley,  R.,  White,  S.,  Frith,  U.,  &  Singer,  T.  (2010).  Empathic  brain  responses  

in  insula  are  modulated  by  levels  of  alexithymia  but  not  autism.  [Research  Support,  Non-­‐U.S.   Gov't].  Brain,  133(Pt  5),  1515-­‐1525.  doi:  10.1093/brain/awq060  

 

15  Silani,  G.,  Bird,  G.,  Brindley,  R.,  Singer,  T.,  Frith,  C.,  &  Frith,  U.  (2008).  Levels  of  emotional  

awareness  and  autism:  an  fMRI  study.  [Comparative  Study  Research  Support,  Non-­‐U.S.  Gov't].  Soc  

(23)

16    Hardan,  A.,Y.,  Muddasani,  S.,  Vermulapalli,  M.,  Keshavan,  M.S.,  Mishew,  N.J.,  (2006)  An  MRI  

study  of  increased  cortical  thickness  in  autism.  Am  J  Psychiatry  163(7),  1290-­‐1292    

17  Rojas,  D.C.,  Peterson,  E.,  Winterrowd,  E.,  Reite,  M.L.,  Rogers,  S.J.,  Tregellas,  J.R.  (2006)  Regional  

gray  matter  volumetric  changes  in  autism  associated  with  social  and  repetivtive  behavior   symptoms.  BMC  Psychiatry  13,  6-­‐56    

 

18  Hadjikhani,  N.,  Joseph,  R.  M.,  Snyder,  J.,  &  Tager-­‐Flusberg,  H.  (2006).  Anatomical  differences  in  

the  mirror  neuron  system  and  social  cognition  network  in  autism.  [Comparative  Study  Controlled   Clinical  Tria  Research  Support,  N.I.H.,  Extramural  Research  Support,  Non-­‐U.S.  Gov't].  Cereb  

Cortex,  16(9),  1276-­‐1282.  doi:  10.1093/cercor/bhj069  

 

19  Wallace,  G.L.,  Dankner,  N.,  Kenworthy,  L.,  Giedd,  J.N.,  Martin,  A.  (2010)  Age-­‐related  temporal  

and  parietal  cortical  thinning  in  autism  spectrum  disorder.  Brain  133(12),  3745-­‐3754    

20  Raznahan,  A.,  Toro,  R.,  Daly,  E.,  Robertson,  D.,  Murphy,  C.,  Deeley,  Q.,  Bolton,  P.F.,  Paus,  T.,  

Murphy,  D.G.,  (2010)  Cortical  anatomy  in  autism  spectrum  disorder:  an  in  vivo  MRI  study  on  the   effect  of  age.  Cereb  Cortex  20(6),  1332-­‐1340  

 

21  Bigler,  E.D.,  Tate,  D.F.,  Neeley,  E.S.,  Wolfson,  L.J.,  Miller,  M.J.,  et  al.    (2003)  Temporal  lobe,  

autism,  and  macrocephaly.  American  Journal  of  Neuroradiology  24,  2066-­‐2076    

22  Jiao,  Y.,  Chen,  R.,  Ke,  X.,  Chu,  K.,  Lu,  Z.,  Herskovits,  E.H.,  (2010)  Predictive  models  of  autism  

spectrum  disorder  based  on  brain  regional  cortical  thickness.  NeuroImage  50(2),  589-­‐599    

23  Hyde,  K.L.,  Samson,  F.,  Evans,  A.C.,  Mottron,  L.,  (2010)  Neuroanatomical  differences  in  brain  

areas  implicated  in  perceptual  and  other  core  features  of  autism  revealed  by  cortical  thickness   analysis  and  voxel-­‐based  morphometry.  Human  Brain  Mapping  31(4),  556-­‐566  

 

24  Mak-­‐Fan,  K.  M.,  Taylor,  M.  J.,  Roberts,  W.,  &  Lerch,  J.  P.  (2011).  Measures  of  Cortical  Grey  Matter  

Structure  and  Development  in  Children  with  Autism  Spectrum  Disorder.  J  Autism  Dev  Disord.  doi:   10.1007/s10803-­‐011-­‐1261-­‐6  

 

25  Courchesne,  E.,  Pierce,  K.,  (2005)  Why  the  frontal  cortex  in  autism  might  be  only  talking  to  

itself:  local  over-­‐connectivity  but  long-­‐distance  disconnection.  Curr.  Opin.  Neurobiol.  15,  225-­‐230    

26  Vissers,  M.E.,  Cohen,  M.X.,  Geurts,  H.M.,  (2012)Brain  connectivity  and  high  functioning  autism:  

A  promising  path  of  research  that  needs  refined  models,  methodological  convergence,  and   stronger  behavioral  links.  

 

27  Kana,  R.K.,  Keller,  T.A.,  Cherkassky,  V.L.,  Minshew,  N.J.,  Just,  M.A.  (2009)  Atypical  frontal-­‐

posterior  synchronization  of  Theory  of  mind  regions  in  autism  during  mental  state  attribution.  

Soc.  Neuroscience  4(2),  135-­‐152  

 

28  Ebisch,  S.J.,  Gallese,  V.,  Willems,  R.M.,  Mantini,  D.,  Groen,  W.B.,  Romani,  G.L.,  Buitelaar,  J.K.,  

Bekkering,  H.,  (2011)  Altered  intrinsic  functional  connectivity  of  anterior  and  posterior  insula   regions  in  high-­‐functioning  participants  with  autism  spectrum  disorder.  Human  Brain  Mapping   32(7),  1013-­‐1028  

 

29  Assaf,  M.,  Agannathan,  K.,  Calhoun,  V.D.,  Miller,  L.,  Stevens,  M.C.,  Sahl,  R.,  O’Boyle,  J.G.,  Schultz,  

R.T.,  Pearlson,  G.D.  (2010)  Abnormal  functional  connectivity  of  default  mode  sub-­‐networks  in   autism  spectrum  disorder  patients.  Neuroimage,  53(1),  pp.  247-­‐256  

 

30  Shih,  P.,  Shen,  M.,  Ottl,  B.,  Keehn,  B.,  Gaffrey,  M.S.,  Muller,  R.A.  (2010)  Atypical    network  

connectivity  for  imitation  in  autism  spectrum  disorder.  Neuropsychologia.  48(10),  pp.  2931-­‐2939    

(24)

31  Barttfeld,  P.,  Wicker,  B,  Cukier,  S.,  Navarta  S.,  Lew,  S.,  Sigman,  M.  (2011)  A  big-­‐world  networks  

in  ASD:  dynamical  connectivity  analysis  reflects  a  deficit  in  long-­‐range  connections  and  an  excess   of  short-­‐range  connections.    

 

32  Leveille,  C.,  Barbeau,  E.B.,  Bolduc,  C.,  Limoges,  E.,  Berthiame,  C.,  Chevrier,  E.,  Mottron,  L.,  

Godbout,  R.,  (2010)  Enhanced  connectivity  between  visual  cortex  and  other  regions  of  the  brain   in  autism:  a  REM  sleep  EEG  coherence  study.  Autism  Research  3(5),  280-­‐285  

 

33  Catani,  M.,  Jones,  D.K.,  Daly,  E.,  Embiricos,  N.,  Deeley,  Q.,  Pugliese,  L.,  Curran,  S.,  Robertson,  D.,  

Murphy,  D.G.M.,  (2008)  Altered  cerebellar  feedback  projections  in  Asperger  syndrome.  

NeuroImage  41,  1184-­‐1191  

 

34  Thakkar,  K.N.,  Polli,  F.E.,  Joseph,  R.M.,  Tuch,  D.S.,  Hadjikhani,  N.,  Barton,  J.J.,  Manoach,  D.S.,  

(2008)  Response  monitoring,  repetitive  behavior  and  anterior  cingulate  abnormalities  in  autism   spectrum  disorders  (ASD)  Brain  131,  2464-­‐2478  

 

35  Cheng,  Y.,  Chou,  K.H.,  Chen,  I.Y.,  Fan,  Y.T.,  Decety,  J.,  Lin,  C.P.,  (2010)  Atypical  development  of  

white  matter  microstructure  in  adolescents  with  autism  spectrum  disorders.  NeuroImage  50,   873-­‐882  

 

36  Cheung,  C.,  Chua,  S.E.,  Cheung,  V.,  Khong,  P.L.,  Tai,  K.S.,  Wong,  T.K.,  Ho,  T.P.,  McAlonan,  G.M.,  

(2009)  White  matter  fractional  anistropy  differences  and  correlates  of  diagnostic  symptoms  in   autism.  J.  Child  Psychol.  Psychiatry  50,  1102-­‐1112  

 

37  Rykhlevskaia,  E.,  Gratton,  G.,  &  Fabiani,  M.  (2008).  Combining  structural  and  functional  

neuroimaging  data  for  studying  brain  connectivity:  a  review.  [Research  Support,  N.I.H.,   Extramural  Research  Support,  Non-­‐U.S.  Gov'  Review].  Psychophysiology,  45(2),  173-­‐187.  doi:   10.1111/j.1469-­‐8986.2007.00621.x  

 

38  Lerch,  J.,  Worsley,  K,  Shaw,  W.,  Greenstein,  D.,  Lenroot,  R.,  Giedd,  J.  &  Evans,  A.  (2006)  Mapping  

anatomical  correlations  across  cerebral  cortex  (MACACC)  using  cortical  thickness  from  MRI.  

NeuroImage,  31(3),  993-­‐1003  

 

39  Bullmore  E.,  Frangou,  S.  &  Murray,  R.  (1997)  The  dysplastic  net  hypothesis:  an  integration  of  

developmental  and  dysconnectivity  theories  of  schizophrenia.  Schizophr.  Res.  28(2-­‐3)  143-­‐156    

40  Mitelman  S.,  Buchsbaum  M.,  Brickman  A.  &  Shihabuddin  L.  (2005)  Cortical  intercorrelations  of  

frontal  area  volumes  in  schizophrenia.  NeuroImage  27(4).  753-­‐770    

41  Bernhardt,  B.,  Worsley,  K.,  Besson,  P.,  Concha,  L.,  Lerch,  J.,  Evans,  A.  &  Bernasconi,  N.  (2008)  

Mapping  limbic  network  organization  in  temporal  lobe  epilepsy  using  morphometric  

correlations:  insights  on  the  relation  between  mesiotemporal  connectivity  and  cortical  atrophy.  

NeuroImage  42(2),  515-­‐524  

 

42  Dziobek,  I.,  Bahnemann,  M.,  Convit,  A.,  &  Heekeren,  H.  R.  (2010).  The  role  of  the  fusiform-­‐

amygdala  system  in  the  pathophysiology  of  autism.  [Research  Support,  Non-­‐U.S.  Gov't].  Arch  Gen  

Psychiatry,  67(4),  397-­‐405.  doi:  10.1001/archgenpsychiatry.2010.31  

 

43  Fischl,  B.  &  Dale,  A.  (2000).  Measuring  the  thickness  of  the  human  cerebral  cortex  from  

magnetic  resonance  images.  PNAS  97,  11050-­‐11055.    

44  Bagby  R.,  Parker  J.  &  Taylor,  G.  (1994).  The  twenty-­‐item  Toronto  Alexithymia  Scale—I.  Item  

selection  and  cross-­‐validation  of  the  factor  structure.  J  Psychosom  Res.  38(1).  23-­‐32    

45  Bagby,  R.,  Taylor,  G.  &  Parker,  J.  (1994).  The  twenty-­‐item  Toronto  Alexithymia  Scale—II.  

Convergent,  discriminant,  and  concurrent  validity.  J  Psychosom  Res.  38(1).  33-­‐40    

(25)

46  Wechsler,  D.  (1999)  Wechsler  Adult  Intelligence  Scale  -­‐3rd  UK  Edition  (WAIS  ®  -­‐  III  UK).  

London:  The  Psychlogical  Corporation    

47  APA,  A.  P.  A.  (2000).  Diagnostic  and  statistical  manual  of  mental  disorders  (DSM-­‐IV-­‐TR)  (4th  

edition  ed.).  Washington  D.C.    

48  Rosas,  H.,  Liu,  A.,  Hersch,  S.,  Glessner,  M.,  Ferrante,  R.,  Salat,  D.,  van  der  Kouwe,  A.,  Jenkins,  B.,  

Dale,  A.,  &  Fischl.,  B.  (2002).  Regional  and  progressive  thinning  of  the  cortical  ribbon  in   Huntington's  disease.  Neurology  58,  695-­‐701  

 

49  Kuperberg,  G.,  Broome,  M.,  McGuire,  P.,  David,  A.,  Eddy,  M.,  Ozawa,  F.,  Goff,  D.,  West,  W.,  

Williams,  S.,  van  der  Kouwe,  A.,  Salat,  D.,  Dale,  A.  &  Fischl,  B.  (2003).  Regionally  localized  thinning   of  the  cerebral  cortex  in  schizophrenia.  Arch.  Gen.  Psychiatry  60,  878-­‐888.  

 

50  Han,  X.,  Jovicich,  J.,  Salat,  D.,  van  der  Kouwe,  A.,  Quinn,  B.,  Cyanner,  S.,  Busa  E.,  Pacheco,  J.,  

Albert,  M,  Killiany,  R.,  Maguire,  P.,  Rosas,  D.,  Makris,  N.,  Dale,  A.,  Dickerson,  B.  &  Fischl,  B.  (2006).   Reliability  of  MRI-­‐derived  measurments  of  human  cerebral  cortical  thickness:  the  effects  of  field   strength,  scanner  upgrade  and  manufacturer.  NeuroImage  32,  180-­‐194  

 

51  Dale,  A.,  Fischl,  B.  &  Sereno,  M.  (1999)  Cortical  surface-­‐based  analysis.  I.  Segmentation  and  

surface  reconstruction.  NeuroImage  9,  179-­‐194    

52  Fischl,  B.,  Sereno,  M.  &  Dale,  A.  (1999).  Cortical  surface-­‐based  analysis.  II:  Inflation,  flattening,  

and  surface-­‐based  coordinate  system.  NeuroImage  9,  195-­‐207    

53  Lerch,  J.  &  Evans,  A.  (2005).  Cortical  thickness  analysis  examined  through  power  analysis  and  a  

population  simulation.  NeuroImage  24,  163-­‐173    

54  Worsley,  K.,  Taylor,  J.,  Carbonell,  F.,  Chung,  M.,  Duerden,  E.,  Bernhardt,  B.,  Lyttelton,  O.,  Boucher,  

M.  &  Evans,  A.  (2009)  SurfStat:  A  Matlab  toolbox  for  the  statistical  analysis  of  univariate  and   multivariate  surface  and  volumetric  data  using  linear  mixed  effects  models  and  random  field   theory.  NeuroImage  47,  S102  

 

55  Worsley,  K.,  Andermann,  M.,  Koulis,  T.,  MacDonald,  D.  &  Evans,  A.  (1999)  Detecting  changes  in  

nonisotropic  images.  Hum.  Brain  Mapp.  8,  98-­‐101    

56  Chen,  R.,  Jiao,  Y.,  Herskovits,  E.  H.,  (2011)  Structural  MRI  in  Autism  Spectrum  Disorder.   Pediatric  Research  69(5),  63-­‐69  

 

57  Lombardo,  M.V.,  Chakrabarti,  B.,  Bullmore,  E.,  Baron-­‐Cohen,  S.,  (2011)  Specialization  of  right  

temporo-­‐parietal  junction  for  mentalizing  and  its  relation  to  social  impairments  in  autism.  

NeuroImage  56(3),  1832-­‐1838  

 

58  Decety,  J.,  Grezes,  J.  (2006)  The  power  of  simulation:  Imaging  one’s  own  and  other’s  behavior.   Brain  Research  1079,  4-­‐14  

 

59  Schulte-­‐Ruther,  M.,  Markowitsch,  H.  J.,  Fink,  G.R.,  Piefke,  M.,  (2007)  Mirror  neuron  and  the  

theory  of  mind  mechanisms  involved  in  face-­‐to-­‐face  interactions:  A  functional  magnetic   resonance  imaging  approach  to  empathy.  Journal  of  Cognitive  Neuroscience  19,  1354-­‐1372  

60  Vogeley,  K.,  Fink,  G.R.,  (2003)  Neural  correlates  of  the  first-­‐person-­‐perspective.  Trends  in   Cognitive  Sciences  7,  38-­‐42  

 

61  Mitchell,  J.P.  (2008)  Activity  in  Right  Temporo-­‐Parietal  Junction  is  not  selective  for  Theory  of  

mind.  Cerebral  Cortex  18(2),  262-­‐271    

Referenties

GERELATEERDE DOCUMENTEN

ad I : De plantdichtheid waarbij het hoogste saldo per arbeidsuur werd begroot, ging bij de late trek bij opzetten van wortels groter dan 2 cm van.. 200.000 naar 150.000

(sleuf XXXVII) Klein gedeelte van een kringgreppel welke voor de rest geheel was vergraven. (sleuf XXXVII, XXXVIII en XXXIX) Gedeelte van een

1.8 Factors affecting the potency, efficacy and agonist activity in transcriptional regulation Initially, the EC50 value for a receptor-agonist complex and the partial agonist

The data of the present investigations place particular emphasis on the behaviour of 4-kCPA during elution on SCOT OV-275 columns and implications for the selectivity

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 XXIV ISPRS Congress

With the utilization of waste material for the generation of new products, energy and resources consump- tion within manufacturing systems can be reduced if additional demands for

218 Furthermore, as dividend recapitalizations have the potential to create value and current academic evidence does not indicate an increase in the probability of default of

Official criteria for tangible room attributes in three-star European hotels stated by the Hotelstars Union (2015) for 2015-2020, sorted by minimum requirements and relative