• No results found

Exploring Interaction Effects of Climate Policies: a Model Analysis of the Power Market

N/A
N/A
Protected

Academic year: 2021

Share "Exploring Interaction Effects of Climate Policies: a Model Analysis of the Power Market"

Copied!
22
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Exploring Interaction Effects of Climate Policies

Mulder, Machiel; Zeng, Yuyu

Published in:

Resource and Energy Economics

DOI:

10.1016/j.reseneeco.2018.09.002

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Mulder, M., & Zeng, Y. (2018). Exploring Interaction Effects of Climate Policies: a Model Analysis of the

Power Market. Resource and Energy Economics, 54 , 165–185.

https://doi.org/10.1016/j.reseneeco.2018.09.002

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Resource

and

Energy

Economics

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / r e e

Exploring

interaction

effects

of

climate

policies:

A

model

analysis

of

the

power

market

Machiel

Mulder

,

Yuyu

Zeng

DepartmentofEconomics,EconometricsandFinance,FacultyofEconomicsandBusiness,UniversityofGroningen,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20December2016

Receivedinrevisedform24July2018

Accepted6September2018

Availableonline26September2018

Keywords: Climatepolicy Electricitymarket Interactioneffects Renewables Carbontax

a

b

s

t

r

a

c

t

Theeffectivenessofclimatepolicystronglydependsonhowthesemeasuresare imple-mented.Nationalpolicymeasuresmayhaveinternationalspillovereffectswhichpartly neutralizedomesticemissionreduction,whiledifferenttypesofpolicymeasuresmay off-seteachotheraswell.Thispaperexplorestheconditionsfortheseinteractioneffectsby usingaconcisepartial-equilibriumtwo-countrymodeloftheelectricitymarketwhichalso includesasystemforemissionstrading.Wefindthattheinternationalspillovereffects notonlydependontheintegrationofelectricitymarkets,butalsoonthetightnessofthe emissions-tradingsystem.Weshowthatthistightnessisnegativelyrelatedtothedegree thesupplyofrenewableenergyisstimulated.Wefindthatthemorerenewableenergyis stimulated,thelessdomesticreductionincarbonemissionsisoffsetbyspillovereffects.A morebindingcapintheemissions-tradingsystemmakesnationalpolicieslesseffective. Hence,ifclimate-policymeasuressuchassubsidiesforrenewableenergymakethecapin thetradingschemelessbinding,theseclimate-policymeasuresbecomemoreeffective.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Inordertoreducecarbonemissionsinthepowersector,governmentsareimplementingasetofpolicymeasures.These

measuresvaryfromsubsidiesforrenewable-energytechniquestotaxesonfossil-fuelelectricityproductionandmechanisms

fortradinginemissionrights.Whilesomemeasuresaretakenonnationallevel,othershaveaninternationalcharacter.

WithintheEU,theimplementationofclimatepoliciesispursuedbytheEuropeanCommission.TheRenewableEnergy

Directive(2009/28/EC),forinstance,setsabindingtargetof20percentfinalenergyconsumptionfromrenewablesources

by2020.EachEUMemberStatehastorealizetherenewable-energytarget,butthesecountriesarefreetochoosetheirown

policiestostimulatedeploymentofrenewable-energysources.EUcountriesutilizedifferentmeasuresforthispurpose,

suchasfeed-in-tariffsubsidiesandquotasystems(Haasetal.,2010).Inadditiontothis,severalcountriesareconsidering

toimposeconstraintsonconventional powerplants,in particularcoal-firedpowerplants(EIA,2014; EZ,2015).These

measuresvaryfromimplementingadditionalenvironmentalstandards(e.g.onfuelefficiencyoremissionsperunit)making

夽 Thispaperiswrittenaspartoftheresearchproject“Redesigningtheelectricitymarketinordertofacilitatethetransitiontowardsasustainable

energysystem”,financedbyNWOandvariousstakeholdersintheDutchenergyindustry(EnergieNederland,TenneT,NetbeheerNederland,VEMWand

Consumentenbond)andendorsedbyACMandStatkraft.TheauthorsthankthemembersoftheProjectgroup,theValorisationBoardaswellastheScientific

AdvisoryBoardfortheirinputduringthisproject.Theauthorsarealsogratefultoseminarparticipantsatthe39thIAEEconferenceinBergen,Norway.The

authors,however,arefullyresponsibleforthecontentsofthispaper.

∗ Correspondingauthorat:FacultyofEconomicsandBusiness,Nettelbosje2,9747AEGroningen,TheNetherlands.

E-mailaddress:machiel.mulder@rug.nl(M.Mulder).

https://doi.org/10.1016/j.reseneeco.2018.09.002

0928-7655/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/

(3)

itcomplicatedifnotimpossiblefor(old)coal-firedpowerplantstooperateorimposingacarbontaxwhichinparticular

raisethegenerationcostsofcoal-firedpowerplants.Besidesthissetofdifferentnationalpolicymeasurestoreducecarbon

emissionsbythepowersector,anemissions-tradingsystemhasbeenimplementedonEUlevel.ThisEUEmissionTrading

System(ETS)isthelargestcapandtrademechanismforCO2emissionsintheworld.Itsetsupacaponthetotalamount

ofCO2emittedbyinstallationsoffirmssubjecttothisscheme.Thiscapisannuallyreducedinordertorealizeanoverall

reductionincarbonemissions.Theinitialallocationofthecaptoparticipantswasinitiallydonebygrandfathering,butmore

andmoreauctioningisusedasallocationmethod(EuropeanCommission,2012).Inthesecondarymarket,participants

cantradeinpermitswhichresultsinacarbonprice.Meanwhile,theEuropeanCommissionispromotingtheintegration

ofnationalelectricitymarketstofacilitateborder-freetradingacrossEurope,see(Keay,2013).Asaresult,nationalpower

marketshavebecomemorecloselyintegratedwitheachother,whichmayincreasetheinternationalspilloversofnational

climatepolicies.

Itiswellestablishedineconomicliteraturethatthecoexistenceofdifferenttypesofclimatepoliciesmayhave

coun-teractingeffects(Schmalensee,2012;Goulder,2013;Böhringeretal.,2016).Thisholdsinparticularwhenacap-and-trade

emissionsschemeisimplemented.Inthatcase,theoretically,thelevelofemissionsisonlydeterminedbythecapinthe

emissions-tradingscheme(Tietenberg,2006).Ifthecapremainsthesame,otherinstrumentsonlyaffectthecostsofreaching

thattarget,butnottheamountofemissions.Ifanemissionstradingschemeiscombinedwithsubsidiesforsolarpanels,

forinstance,itcanbeexpectedthattheemissionswithinthepowersectorarereducedwhichlowerstheoveralldemand

forand,hence,thepriceofemissionspermits,whichinturncanstimulateotherfirmsparticipatingwithintheemissions

tradingschemetoraisetheiremissionssinceemittinghasbecomecheaper(seee.g.vandenBerghetal.,2013;Böhringer

andRosendahl,2011).Thiseffectiscalledthewaterbedeffectofclimatepolicy.

Inthispaper,weexploretheconditionsfortheinteractioneffectstooccur.Forthatpurpose,weanalyzetheinteraction

ofthreetypesofpolicymeasurestorealizeatransitionoftheelectricityindustrybasedonfossilfuelstowardsanindustry

withalowerlevelofcarbonemissions.Thesepolicymeasuresaresubsidiesforrenewableelectricity,acarbontaxfor

fossil-fuelpowerplantsandaninternationalemissionstradingscheme.Thechoiceforthesethreetypesofpolicymeasures

(emissionstrading,subsidiesrenewablesandcarbontax)isbasedonthefactthatallthreetypesofmeasuresarecurrently

implementedordiscussed,albeittoadifferentextentinseveralEuropeancountries.IntheNetherlands,forinstance,the

governmentrecentlydecidedtoimplementa carbontaxontopoftheEuropeanemissiontradingschemeandseveral

domesticsupportschemesforrenewableenergyinordertorealizeaminimumpriceforcarbon.Inthispaperwedonot

discusstheprosandconsoftheindividualclimate-policyinstrumentsassubsidies,taxesandemissionstrading.Although

onecandiscusswhichinstrumentisbestequippedtorealisecarbonreductioninacost-effectiveway(seee.g.Aldyetal.,

2010),inpracticegovernmentsusepackagesofdifferenttypesofinstruments(HughesandUrpelainen,2015;Kauttoetal.,

2012;DelRioandMir-Artigues,2014;Sijm,2005).Thereforeitisalsoimportanttounderstandhowtheyinfluenceeach other.

Aswewanttoanalyzetheinteractionamongvariousclimate-policymeasures,webuildaconcisestylizedmodeloftwo

connectedelectricitymarketscombinedwitharegionalemissions-tradingmarket.Inthismodel,someelectricityproducers

areperceivedasstrategicplayers,hencetheycanexercisemarketpowerandinfluencethewholesaleprices.Suchamodel

isfairlywellequippedtosimulatethesituationwithafewcentralizedpowerproducers,asitexistsinseveralEuropean

countriessuchastheDutchandGermanelectricitymarket(seealsoWillemsetal.,2009;Mulderetal.,2015;tenCateand

Lijesen,2004).Wetakethestochasticnatureofbothsupplyanddemandintoaccount.Firmsbasetheirdecisionsregarding

investmentsandthedispatchofplantsonexpectedvaluesforweatherconditions,loadlevelsandscarcitylevels.Including

probabilitydistributionsforwindanddemandallowsustocontrolforthevolatilityofmarketconditionsinthepower

market.Internationaltradeisbasedonprice-arbitrageopportunities.Thesizeofthecross-bordertransmissioncapacity

determinesthepotentialmagnitudeofinternationaltradeand,hence,thepotentialcross-borderspillovereffects.Thetwo

countriesinthismodeldifferinsize,sowehavealargeandasmallcountry.Differencesinscaleofcountriesareimportant

toconsiderinordertobetterassessinternationalspillovereffectsfrompoliciesimplementedinthedifferentcountries.One

mayexpectthatthemagnitudeofthespillovereffectsarehighestwhentheyoriginatefromalargecountryandaffecta

neighboringcountrysmallerinsize.Asaninternationalcarbonpermitmarketisaddedtotheelectricitymarket,thecarbon

priceispartofthevariablegenerationcostsoffossil-fuelproducers.Inaddition,countriesmayimplementacarbontaxon

electricityproducers.Inordertoalsoanalyzetheinternationalspillovereffectsofdifferentnationalpolicies,weassume

thatthecarbontaxisonlyimplementedinonecountryatthesametime.Countriesarealsoabletostimulate

renewable-electricitygenerationbygivingsubsidieswhicharefinancedbyataxonelectricityconsumption.Themodeliscalibrated

tomoreorlessreflectthecurrentcharacteristicsoftheGermanandDutchpowermarket.Theobjectiveofthiscalibration

isjusttohaveareasonablebenchmarkforthenumericalanalysis,nottomakerealisticsimulationsofthepowermarkets

inthesecountries.Thenumericalanalysisremainsofastylizednaturewiththepurposetoexploretheconditionsforthe

occurrenceofinteractioneffectsamongclimate-policyinstruments.

Usingthenumericalapplicationofourmodel,wefindthatcombiningthethreedifferentclimate-policymeasures,

includ-inganemissions-tradingsystem,mayhaveaneteffectonthelevelofcarbonemissions,despiteoftheabove-mentioned

waterbedeffect.Thisresultcomesfromthefactthatthecarbonpriceinthetradingschemehasafloor,i.e.itcanneverbe

lowerthanzero.Thismeansthatwhenotherclimate-policymeasuresareeffectiveinreducingthedemandforpermits,they

mayalsoneutralizethewaterbedeffect.Ourfindingsshowthatimplementingnationalpoliciesontopofaninternational

(4)

taxontopofanemissionstradingschememayresultinmoreemissionsreductionsasthewaterbedeffectdoesnotalways

work,thisdoesnotmeanthatsuchapolicyisefficient.

Theremainderofthispaperisorganizedasfollows.WereviewrelevantliteratureinSection2.InSection3,wedescribe

thekeyelementsofthepartialequilibriummodelofthewholesaleelectricitymarketanddefinehowthemarketequilibrium

isdetermined.Section4presentstheresultsforthepolicyvariants.Section5,finally,concludes.

2. Literature

Thispaperbuildsonandcontributestotheliteratureofpowermarketmodelingandinteractioneffectsofclimatepolicies.

Akeyquestionregardingthemodellingoftheelectricitymarketishowtodealwithstrategicbehaviour.Willemsetal.(2009)

comparetwooligopolisticmodelsoftheelectricitymarket:CournotandSupplyFunctionEquilibrium.1Theyshowthatboth

modelsexplainroughlythesamefractionoftheobservedpricevariationsintheGermanelectricitymarket.Furthermore,

theysuggesttouseCournotmodelforshort-termmodelanalysisassuchamodelcaneasilyaccommodateadditionalmarket

conditionssuchasnetworkconstraints.Mulderetal.(2015)applytheCournotmodeltotheDutchelectricitymarkettaking

boththeintermittentwindenergysupplyandfringesuppliersbyCombinedHeatandPower(i.e.,CHP)intoaccount.Asa

resultoftheintermittentandfringesupplies,thewholesalepricestendtobelower.Usingacompetitiveequilibriummodel

withoutstrategicbehavioramongpowergenerators,SaguanandMeeus(2014)investigatetheinteractionbetween

cross-bordertransmissioninvestmentsandrenewable-energypolicies.Theirmainconclusionisthatrenewableenergytradein

ordertocomplywitheachmemberstatetargetsisbeneficialforbothzones,butthatanimperfectregulatoryframeworkfor

transmissioninvestmentcreatesasignificantcostforrealisingrenewable-energytargets.Inourmodel,some“big”producers

areperceivedasstrategicplayers,hencetheycanexercisemarketpowerandinfluencethewholesaleprices.Suchamodel

fairlywellresemblesthesituationwithafewcentralizedpowerproducers,suchasintheDutchandGermanelectricity

market.

Usingseveraldifferentmodelsincludingpartialequilibriummodelsandgeneralequilibriummodels,Calderónetal.

(2016)findsignificantCO2reductionsthroughhighcarbonpricesandabatementtargetsinColombia.Benavente(2016)

usesacomputablegeneralequilibriummodeltoexaminetheimpactofacarbontaxinChile.Theyconcludethatsucha

policyiseffectiveatreducingcarbonemissionsbutatthecostofGDPlosses.EllertonandFullteron(2014)findthatacarbon

taxonelectricityintheU.S.cangeneratenetnegativedomesticleakageasitraisesthecostsforotherindustries,which

resultsinlowerdemandand,hence,lowerproductionlevelsandcarbonemissionsbytheseindustries.Thisimpactofhigher

costsinthepowerindustryonoverallcarbonemissionswasalsofoundbyMcKibbinetal.(2014).Theseauthorsconclude

thatthedomesticcarbonemissionsoutsidethepowersectordecreaseashigherelectricitypricesslowoveralleconomic

activity.Notethattheabove-mentionedpapersonlyconsiderdomesticcarbontaxtoreducedomesticcarbonemissions.In

amorethanonecountrysetting,Elliottetal.(2010)confirmsthatauniformtaxamongallmembercountriesiseffectiveat

reducingcarbonemissions.

Intheabovementionedliterature,theanalysisofinteractionofcarbontaxeswithotherclimatepoliciesisnottakeninto

account.Fromliteratureonemissionstradingweknowthatthecoexistenceofdifferenttypesofclimatepoliciesmayhave

counteractingeffects.Whenacap-and-tradeemissionsschemeisimplemented,thelevelofemissionsisdeterminedbythe

capintheemissions-tradingscheme(Tietenberg,2006).Ifthecapremainsthesame,otherinstrumentsonlyaffectthecosts

ofreachingthattarget,butnotnecessarilytheamountofemissions(seee.g.vandenBerghetal.,2013).Asaresult,thefinal

levelofemissionsremainsunchangedwhilethecontributionofdifferentemitterstothisoveralllevelhaschanged,which

raisesthecostsofreachingthecap.BöhringerandRosendahl(2011)findthatthecostsofrealisingaCO2reductiontargetof

25%increasebymorethan60%ifthepercentagerenewableenergyisstimulatedbymorethan10%.Inotherwords:incaseof

anemissions-tradingscheme,othermeasuresdirectedatrealisingemissionreductionmerelyaffectthelevelaswellasthe

allocationofcostsofreachingtheemissioncapamongtheparticipantsofthetradingschemewithoutaffectingtheoverall

levelofemissions(i.e.thebenefitsintermsofreductionsofemissionsremainthesame).Becauseofthisinteractioneffect,

Böhringer(2014)concludesinhisoverviewoftwodecadesofEuropeanClimatepolicy,thatrenewable-energysubsidies

andenergy-efficiencymandatescanresultinhighercostsforrealisingenergysavings,energyefficiencyimprovements,and

fuelswitchingthanincaseofastand-alonecap-and-tradesystem.Theeffectivenessofclimatepolicycanalsoseriouslybe

reducedthroughcarbonleakage.Caronetal.(2015),forinstance,showthatthecap-and-tradeemissionstradingscheme

inCaliforniamayresultinanincreaseofemissionsinneighboringmarketswhichmayneutralizeabouthalfoftherealized

reductionbythescheme.

Fromthesepapers,welearnthatcombiningdifferenttypesofclimate-policymeasuresreducesthecost-effectivenessof

climatepolicy.Thisstrandofliteraturealsostatesthataddingotherpolicyinstrumentstoasystemofemissionstradingdoes

notresultinanyadditionalemissionsreduction(Sijm,2005;SorrellandSijm,2003).Theargumentsinfavourofotherpolicy

measures,suchassubsidiesforrenewableenergy,arederivedfromtheperceivedbenefitsintermsoflearningeffectsor

securityofenergysupply.Thecontributionofourpaperisthatweanalysetheconditionsunderwhichtheinteractionoccurs

ordoesnotoccur.Inparticular,weanalyseinwhichcircumstancesclimate-policymeasuressuchassubsidiesforrenewables

1CournotequilibriumassumesthatproducerscompeteintheproductionquantitywhiletheSupplyFunctionEquilibriumassumethatproducerscompete

(5)

Fig.1.Frameworkofatwo-countrymodeloftheelectricitymarketwithclimate-policyinstruments.

andtaxesonfossil-fuelusehaveanadditionalreducingeffectoncarbonemissionswhenalsoanemissions-tradingscheme

exists.

3. Concisemodeloftheelectricitymarket

Inordertoanalysetheinteractionofdifferenttypesofclimate-policymeasures,wedevelopandapplyaconcisestylized

two-countrymodeloftheelectricitymarketplusaregionalemissions-tradingscheme.Theframeworkofthismodelis

depictedinFig.1.Inthefollowingsections,weintroducethecorrespondingcomponentsindetail.

3.1. Supplyside

Onthesupplyside,theelectricitymarketiscomposedofbothcentralizedanddecentralizedpowerproducers.Theset

ofcentralizedpowerproducersincountrycisdenotedasNc={1,2,...,nc}.Ingeneral,ncistakentobeasmallnumber.For

example,intheDutchelectricitymarket,thereareonlyafewmajorelectricityproducers(ENGIE,E.ONBenelux,Essent(part

ofRWE)andNuon(nowsubsidiaryofVattenfall)).Inmostcases,thepowermarketisoperatedonahourlybasis.Therefore,

wemodeltheelectricitymarkethourlyandh∈{1,2,...,24}denoteshoursinadaythroughoutthewholeyear.Theyears

areindexedbyy∈{1,..., ¯y}.Themodelissimulatedsuchthat“1”representsthecurrentsituationand“ ¯y”denotestheend

year.Notethatpcyhisthewholesalepriceperhourincountrycyeary.

Theenergymixemployedbyproducersconsistsoffossil-fuelfiredplants(F)includinggasandcoal-firedplants,wind

turbines(W),solarcells(S)andcombinedheatandpower(H).Theenergyresourcesforcentralizedpowerproducersinclude

fossil-fuelplantsandwindturbines.Notethatthedifferencebetweenfossil-fuelplantsandwindturbinesisthatthecosts

onthemarginforthewindturbinesarealmostzero,whilethemarginalcostsforfossil-fuelplantsarenotzeroandalso

includeCO2prices.Wedonotconsidertechnologyupgradestoreducethemarginalcostsoffossil-fuelplantsaswemay

assumethattheseareconstantintheshortterm.

Assumption1. Eachcentralizedpowerproduceri∈Nchasthesameconstantmarginalcostmc ∈R+forfossil-fuelplants

overyearyincountryc.

Notethatwedoallowdifferentfossil-fuelproductiontechniquesinthesetwocountries.Hence,theconstantmarginal

costsmightdifferbetweenthem.Thedeploymentofwindenergymainlydependsontheweatherconditionsandisstochastic,

exante.Letwhdenotethecapacityfactorathourhtoexploitthewindenergycapacity.Becauseofthegeographicalproximity

ofneighboringcountries,weassumethattheproductionbywindturbinesissubjecttothesamestochasticpatterninboth

countries.

Assumption2. Weassumethatwhfollowsacertaindiscretedistribution,withrealizationsjh ∈R+andeachrealization

jhhasaprobabilityjh ∈R+.Notethat



j

j h=1.

Notethatqi

cyhiscomposedoftheproductionamountbyfossil-fuelplantsandalsowindturbines,hence

(6)

NotethatqiFcyhandqiWcyharetheproductionpartbyfossil-fuelplantsandwindturbines,respectively.Andtherealizedwind

energyproductioniscalculatedbasedontherealizedcapacityfactorandtheinstalledgenerationcapacity,

qiW cyh= j h×Q iW cy . (2)

Atthebeginningofacertainyear,eachcentralizedpowerproducer’swindenergycapacityQiW

cy isgivenandisassumed

tobecommonknowledge.NotethattheproductionamountisconstrainedbythegenerationcapacityQiF

cyandQcyiW,hence wehaveqiF cyh≤Q iF cyandqiWcyh≤Q iW

cy .TheaggregatefossilfuelgenerationcapacityincountrycyearyisdenotedasQcyF and

QF

cy=



i∈NcQ

iF

cy.Thefirmscaninvestinfossil-fuelgenerationcapacityeachyearandwedenoteQcyF astheinvestmentin

fossil-fuelplantsincountrycyeary.

Becauseofthelargenumberofdecentralizedpowerproducers,theyaremodeledasprice-takerswhichcannotexercise

marketpowertoinfluencewholesalemarketprices.Hence,thedecentralizedpowerproducerequalizestheirmarginal

benefitstotheirmarginalcosts.Theaggregatedecentralizedpowerproduction(D)onlyusescombinedheatandpower

(DH),andsolarcells(DS).Costsonthemarginfromwindandsolarenergiesproductionareassumedtobezerowhile

combinedheatandpowerisasideproductofthehorticulturalsuppliers,whosemainobjectiveistoproduceheatfortheir

greenhouses.Weassumethattheyhaveincreasingmarginalcosts(seealsoMulderetal.,2015).

Assumption3. TheproductionamountbycombinedheatandpowerqDH

cyhisassumedtobealinearfunctionofelectricity

prices,

qDH

cyh=˛D+ˇDpcyh,

where˛D>0andˇD>0.

Inaddition,theexpectedproductionamountbysolarcellsistheproductofthehourlycapacityfactorandtheinstalled

generationcapacities.Letuhbetheexpectedcapacityfactorofsolarcellsathourh.Hence,wehavethefollowing,

qDScyh=uh×QcyDS,

whereQDS

cy denotestheyearlygenerationcapacityforsolarcells.ThesumofCHPandsolarcellscomposestheaggregated

productionamountbyfringesuppliers,

qDcyh=˛cyh+ˇpcyh, (3)

where˛cyh=˛D+uh×QcyDSandˇ=ˇD.

3.2. Demandside

Thedemandsideofthewholesaleelectricitymarketconsistsoflargeelectricityusers(L)andretailers(R).Retailerssell

electricityfurthertoconsumersandprosumers.Weassumealineardemandfunctionforlargeelectricityusersasfollows:

pcyh+tL+h=aLh−bLhqLcyh, (4)

whereaL

handbLhareparameterstobecalculated,tListhetaxrateforlargeelectricityusersandhisthehourlynetwork

tariffpaidbylargeelectricityusers.Hence,weimplicitlyassumethatthetaxrateandnetworktariffsdonotchangeover

timey.

Theretailpriceisequaltothewholesalemarketprice(pcyh),plusaretailmargin(r),taxes(orlevies)tRandthedynamic

networktariffsh.Hence,thedemandfunctionforconsumersandprosumerscanbespecifiedasfollowing,

pcyh+tR+r+

h=aRh−bRhqRcyh, (5)

whereaR

handbRhareparameterstobecalculated.Theaggregationofthedemandfromlargeusersandretailersinducesthe

totaldemandfunctionfacedbyproducers,

qcyh=qLcyh+qRcyh=ah−bhpcyh, (6)

whereahandbharecalculatedfromEqs.(4)and(5)and,

ah= a L h−t L h bLh + aR h−t Rr h bRh , bh= 1 bL h + 1 bR h .

Notethatbyintroducingadynamicnetworktariffh,wemovetheaggregatedemandfunctionupwardordownwardona

hourlybasis,buttheslopeoftheaggregatedemandfunctiondoesnotchange.Therefore,theaggregatedemandfunction

(7)

3.3. Marketequilibrium

Thewholesaleelectricitymarketis modeledasanimperfectmarket.Facinga certaindemandcurve,theproducers

competeintermsofquantities.Themarketreachesequilibriumwheneachproducer’sstrategyisthebestresponseto

thestrategiesactuallyemployedbyitscompetitors.Domesticelectricitydemandismetbycentralizedproducersandthe

aggregatedecentralizedproduction,hence

qcyh=



i

qicyh+qDcyh. (7)

Andtheresidualdemandfacedbyiisgivenby,

qi

cyh=ah−bhpcyh−q−icyh−˛cyh−ˇpcyh, (8)

whereq−icyhdenotesthesumoftheothercentralizedproducers’productionamountexcepti.Notethatintheaboveequation,

wehavereplacedqD

cyhbyEq.(3).RearrangingEq.(8),weobtain,

pcyh=

ah−˛cyh−qicyh−q−icyh

bh+ˇ

, (9)

Inpractice,forwardcontractsplayanimportantroleinelectricitywholesalemarkets.Electricityproducerssellapart

oftheirgenerationinforwardmarkets.AllazandVila(1993)haveshownthatfirmshaveanincentivetodosoasthismay

reducethemarketpowerofcompetitorsinthespotmarket.Asaresultofthesaleofelectricityinforwardmarkets,the

competitioninthespotmarketsismorefiercewhichhasapricereducingeffect,whiletheactualproductionishigher(see

alsoMulderetal.,2015).Becauseofthisrelationshipbetweenforwardandspotmarketcompetition,weexplicitlycontrolfor

theimpactofforwardmarketssalesontheactualproductionlevelofthestrategicplayers.Hence,weassumethatcentralized

powerproducersareactiveintheforwardmarket.Letqifcyhbetheforwardtradingquantitybyfirmiandpfcyhbetheforward

price.FollowingAllazandVila(1993),“underperfectforesight,equilibriumrequirestheforwardmarkettobeefficient.

Thismeansthattheforwardpriceasafunctionoftheforwardpositionsmustbeequaltothepricethatwillresultfrom

theCournotcompetitiononthespotmarketgiventhesepositions.Therefore,noarbitrageispossible.”Giventheforward

positionsbyeachfirm,firmscompeteovertheproductionquantityinthespotmarket.Hence,theproductionquantityhas

tobesolvedasafunctionoftheforwardpositions.Thenfirmsoptimizetheirforwardpositionsgiventhequantitysolved

fromtheproductionperiod,seeAllazandVila(1993).Notethatinourmodelpartoftheproductionismetbywindenergy.

AllthederivationsfortheoptimalproductionandforwardpositionsareincludedinAppendixC.Wehavethefollowing

resultsforthemarketequilibrium,

Proposition4. Underthefollowingconditions,

1.ThedecentralizedpowerproductionisgivenbyEq.(3);

2.TheaggregatedemandfunctionisgivenbyEq.(6);

3.Thedemandissatisfiedbycentralizedpowerproducersanddecentralizedpowerproduction;

4.Theexpostproductionfromwindenergyiscalculatedbasedonactualcapacityfactorjhandgenerationcapacity(Eq.(2));

5.Centralizedpowerproducersusebothfossilfuelsandwindenergy(Eq.(1));

Wehavethefollowingresult:theoptimalproductionamountusingfossilfuelsbyfirmiathourhandtimeyisgivenby,

qiFcyh=nc



ah−˛cyh−mc(bh+ˇ)



−qiWcyh−nc(qiWcyh+q−iWcyh )

n2

c+1

;. (10)

FromEq.(10),wecaneasilyseethatanyproductionbywindturbineswillreplacetheelectricitygenerationbyfossil-fuel

plantsforproduceri.Foreachvalueofthecapacityfactorforwindturbinesjh,wewouldhaveacorrespondingmarket

equilibriumregardingfossil-fuelsproduction(10)andwholesaleprices(9).2

3.4. Internationaltradeandlawofoneprice

Inthissection,wefurtherinvestigatehowimportandexportinfluencethedomesticprice,whichisdeterminedby(9).

Iftherearepricedifferencesbetweenthetwocountries,weassumethattraderswillprofitfromexportfromalowerprice

2 Inthemodelcalibrationandpolicyanalysis,wealsoputanadditionalconstraintthatthehourlychangeswithinthefossil-fuelelectricityproduction

(8)

countrytoahigherpricecountry.3Forcountryc,letIE

cyhbethenetexportamountinhourhyeary,i.e.,exportminusimport.

Letpu

cyhbetheuniformpricesbetweenthesetwocountriestogetherwithtradingamountIEcyh,hencewehavethefollowing

pucyh= ah−˛cyh−



iq i cyh+IEcyh bh+ˇ . (11) Notethatqi

cyharesolvedfromEq.(10)togetherwiththeexanteexpectedwindenergyproduction.4Inaddition,wehave

puS,yh=puL,yh, (12)

and

IES,yh+IEL,yh=0. (13)

CombiningEqs.(11)–(13),wesolvefor thecorrespondingpu

cyh andIEcyh.Inthesecondstep,wecheckforthecapacity

constraintIUbetweenthesetwocountries.IfIES,yh>IU,thenthe(absolute)sizeoftheimportandexportisequaltothe

capacityconstraintwhilethedifferentpricespdcyhinbothcountryareasfollows:

pd S,yh= ah−˛S,yh−



iqiS,yh+IU bh+ˇ , pd L,yh= ah−˛L,yh−



iqiL,yh−IU bh+ˇ .

IfIES,yh<−IU,thenthecross-borderflowsareintheoppositedirectionwhilethepricesinbothcountriesareasfollows:

pd S,yh= ah−˛S,yh−



iqiS,yh−IU bh+ˇ , pd L,yh= ah−˛L,yh−



iqiL,yh+IU bh+ˇ .

3.5. Carbonmarketandtheinteractionwiththeelectricitymarket

Finally,weaddaninternationalcarbonpermitmarkettothesetofnationalelectricitymarkets.Theelectricityindustryis

assumedtobetheonlyparticipantinthismarket.LetcapybethecarbonemissioncapandPCO2ybetheaverageCO2price.

Foreachfossil-fuelproductiontechnique,thecarbonemissioncoefficientisdenotedasec.Insuchasetting,theadjusted

constantmarginalcostsaccyforcountrycinyearyareasfollows:

accy=mc+PCO2y×ec. (14)

Giventheconstantmarginalcostsaccy,wecalculatethefossil-fuelproductionaccordingtoEq.(10).Thenwecomparethe

actualaggregatedcarbonemissionsoveraperiodwiththeemissioncapforthatperiod.Ifthecarbonemissionsareabove

thecap,wekeepincreasingthecarbonpricesuntiltheemissionsareequaltoorbelowthecap.Hence,thecarbonpriceis

determinedbythecapandtheaggregateddemandforcarbonpermits.

3.6. Bankingofpermits

IntheEUETS,allowancescannotonlybefreelyusedwithinaphase(thecurrentphasebeing2013–2020),butalsosaved

untilthenextphase.Thissavingofpermitsiscalledbanking.Intheaboveanalysiswedidnotcontrolforthisbankingoption.

Inordertoanalysetheimpactofbankingonthemodelresults,wealsorunasensitivityanalysiswherefirmscanfreely

transferanypermitwhichisnotusedtothenextperiod.

Thisismodelledasfollows:iftheaggregatedlevelofemissionsduringaperiodisbelowthecapforthatperiod,then

weassumethatallunusedpermits(whichisequaltothedifferencebetweencapandemissions)istransferredtothenext

period,raisingtheactualcapinthatperiod.

3Wedonotmakeanyassumptiononthetypeofconnectionbetweenmarketsandhowtraderscanmakeuseofcross-bordercapacity,butwedotake

intoaccounttheexistenceofacross-borderconstraint.Notethatinthefirststepofthecalculation,weallowtraderstoequalizethepricesbetweenthese

twocountriesnothinderedbyacross-bordertransmissionconstraint.Inthesecondstep,wecontrolforthisconstraint.

(9)

Table1

Parameterschosenforthesmallandlargecountries.

Smallcountry Largecountry

Numberofcentralizedproducers 5 8

Constantvariablegenerationcosts(Euro/MWh) 35 30

Windpowergenerationcapacity(GW) 2.9 57.5

Solarpowergenerationcapacity(GW) 1.1 22.5

4. Numericalanalysis

4.1. Parameters,scenariosandpolicyvariants

Inordertoanalysetheinteractioneffectsbetweenclimate-policymeasures,weconductanumericalanalysiswithour model.Werefertoatwointerconnectedregioncasewherewehavealargeandsmallcountry.Differencesinscaleofcountries areimportantinordertobetterassessinternationalspillovereffectsfrompoliciesimplementedinthelargercountrytothe smallercountry.TheparametersforbothcountriesarederivedfromthecharacteristicsofGermany(large)andNetherlands (small),respectively,justtohaveabenchmarkforthecalibrationbutwithouttheobjectiveoffullyrepresentingthese countriesormakingaspecificpolicyanalysisforthesecountries.Table1listsabriefsummaryofrelevantparameterswe

haveusedinthispaper.

AccordingtotheStatlinedatabaseofStatisticsNetherlands,theinstalledcapacityforwindenergyincludingonshore

andoffshorewindparksisroughly2.9GWin2014.5MostwindenergyproductionintheNetherlandsisrunbycentralized

powerproducers.Thecapacityfactorperhourtoemploythewindpowergenerationcapacityiscalculatedbasedonthedata

fromtheDutchRoyalMeteorologicalInstitute.6TheinstalledcapacitiesforwindpowergenerationinGermanyaretaken

tobeabout57.5GW.Becauseofthegeographicalproximity,thecapacityfactorofwindenergyproductioninGermanyis

assumedtohavethesamediscretedistributionperhourasintheNetherlands.

DecentralizedpowerproductionmainlyreferstoCHPandsolarenergy. Theminimumruncapacity forCHPinthe

NetherlandsandGermanyisestimatedtobe5GWh.Weroughlyestimatethat˛D=5000andˇD=30.Theinstalledsolar

generationcapacityin2014arearound1.1GWintheNetherlandsand22.5GWinGermany.7Wecouldcalculatethesolar

cellshourlycapacityfactoruhbasedonthehistoricaldatafrom2006to2014.

DetailsofhowwecalculatethehourlyaggregatedemandfunctionarereportedinAppendixD.Theelectricity

consump-tionamountandwholesalepricesarebasedonaloadprofile.Priceelasticitiesarebasedontheresultsintheliterature

fortheelectricitymarket,seeLijesen(2007).Wehavetakenhourlypriceelasticitiesandingeneral,ahigherelasticityfor

off-peakhoursandalowerelasticityforpeakhours(9–20h).Allhourlyelasticitiesareintherangeof−0.3and−0.2.

Inordertokeepthemodelsimulationsassimpleaspossible,weapproacheachyearbysimulatingonly24consecutive

hours.8Hence,weignoreweeklyandseasonalfluctuationsindemandandsupplyandtreattheoutcomeofa24-simulation

asrepresentativeforallhoursinayear.Forthesimulationoftheemissiontradingscheme,forinstance,thismeansthatthe

modelworkswithadailycapanddailyprice,butthiscapandthispricemustbeseenastheannualcapandtheaverage

annualprice.

Asthesupplyanddemandconditionsmayvarystronglyoveryeartoyear,weworkwithscenariosregardingwindspeed

anddemandlevels.9Foreachwindspeedlevel,weuseaprobability,basedonempiricalevidencefortheNetherlands.In

ordertodefinethehourlyprobabilitydistributionweuseactualhourlydataonwindspeed.Werankthehourlydatafrom

lowesttohighestlevelandthendeterminetheaveragevalueinthreeclasses:thelowest31%,thenext38%andthehighest

31%ofallobservations.Table3givestheresultsforthewindspeed.Forthedemandlevel,wescaleupordowntheintercept

ahoftheinversedemandfunction.Foreachscalingfactor,weassignacorrespondingprobabilityandthisholdsforeach

hour.Table2reportstheresultfordemandlevelineachhour.

Notethatforeachhour,wehave3possiblerealizationsofthewindenergycapacityfactorand3scalingsofthedemand.

Therefore,weendupwith9scenariosforeachhour.Runningthemodelforeachhourforeachscenario,weobtainforeach

houraprobabilitydistributionofallresults.ThisMonto-Carlotypeofanalysisenablesustodealwiththeimpactofextreme

circumstances,inparticularregardingtheimpactofrenewablesontheelectricitymarketandtheemissions-tradingscheme.

5 http://statline.cbs.nl/Statweb/selection/?DM=SLEN&PA=83109ENG&LA=EN&VW=TaccessedonNovember5,2015. 6 http://www.knmi.nl/home.

7 Datasource:https://en.wikipedia.org/wiki/SolarpowerintheNetherlands.

8 Otherwisewewouldneedtosimulate8760hperyear,whichwouldcostalotofcomputationtimeforamodelwithimperfectcompetitionwith

stochasticdistributionsofexternalfactors,whileaddingsuchcomplexityisnotneededforthepurposeofouranalysis.

9 Theintermittentcharacterofrenewablesaswellasthestochasticityofdemandisdealtwithbyscenarioswherewehavedistributionsforboth.The

modelisrunforanumberofscenarios.Ineachscenarioaspecific(joint)distributionofwindanddemandoccurs.Implicitlyweassumethatthefirms

havefullcertaintyaboutwhichscenariotheyarein.Inotherwords,weimplicitlyassumethatthereisnodeviationbetweentheexpectationsfortheshort

runandtherealisation.Hence,onecanalsosaythatweignoretheproblemsofbalancingandprogrammeresponsibility.Webelievewecanignorethese

(10)

Table2

Inversedemandinterceptscalingfactors.

ahScalingfactor Probability

0.8 0.31

1 0.38

1.2 0.31

Table3

Windpowercapacityfactorwithprobabilitiesineachhour.

Hour Lowcapacitywithprob0.31 Mediumcapacitywithprob0.38 Highcapacitywithprob0.31

1 0.005 0.056 0.397 2 0.005 0.056 0.397 3 0.005 0.056 0.397 4 0.005 0.056 0.423 5 0.005 0.056 0.397 6 0.007 0.063 0.423 7 0.008 0.071 0.451 8 0.011 0.089 0.479 9 0.013 0.110 0.541 10 0.016 0.121 0.573 11 0.023 0.146 0.607 12 0.027 0.160 0.642 13 0.032 0.171 0.678 14 0.032 0.174 0.678 15 0.032 0.160 0.642 16 0.027 0.146 0.607 17 0.020 0.121 0.541 18 0.016 0.099 0.479 19 0.011 0.080 0.451 20 0.008 0.071 0.418 21 0.007 0.063 0.423 22 0.007 0.063 0.423 23 0.005 0.056 0.397 24 0.005 0.056 0.397 Table4

Matrixrepresentationof8policyvariants.

Emissioncaplevel

BaseCap LowCap HighCap

CarbonTax

No Baseline BaselineLowCap BaselineHighCap

Largecountry CarbonTaxL CarbonTaxLLowCap CarbonTaxLHighCap Smallcountry CarbonTaxS

CarbonTaxorSubsidyRES No BaselinenoRES

Usingtheabovedataforthedeterminationofthestartingvaluesofthemodelaswellastheprobabilitydistributions fortheexogenouscircumstances,wesimulatetheelectricitymarketforaperiodof15periods,coveringtheperiod2016 -2030.Now,weconsider8policyvariantsasdescribedinTable4.

Inthe“Baseline”variantitisassumedthatbothcountriesannuallyincreasetherenewable-energycapacitywhilealsoa

internationalcap-and-tradeemissionstradesystemexists.TheannualincreaseinREScapacityisbasedontheassumption

that10%ofelectricitytaxrevenuesisusedtofinancethesubsidiesfortheseinvestments.Theinitialcarbonemissioncap

levelischosentobe1.04Mtonsperday,whichisaboutequaltotheaggregateddailyemissionsbythepowerindustryin

GermanyandtheNetherlands.Inthe“Baseline”,weassumethatthecapisreducedby0.5%annually.Inthepolicyvariants

“LowCap”and“HighCap”thecapisannuallyreducedby1%and0.25%respectively.Weareinparticularinterestedinthe

effectsofintroducingacarbontaxinrelationtothetightnessoftheemissionstradingschemewhichisrepresentedby

theinitiallevelofthecap.Inthevariantswithacarbontaxitisassumedthatthelargercountryimposesacarbontaxof

11.25euro/MWhonfossil-fuelgenerationplants.10Inordertocomparetheresultsofthecarbontax,wecomparethreepairs

ofvariants:BaselinevsCarbonTaxL,BaselineLowCapvsCarbonTaxLLowCap,BaselineHighCapvsCarbonTaxLHighCap.

Thisallowsustoexaminetheeffectsofafossil-fueltaxgivendifferentlevelsofthecaponcarbonemissionandgivenamore

orlessexogenousautonomousgrowthinrenewable-energycapacity.WealsocomparethevariantsBaseline,CarbonTaxL

10AccordingtotheCO

2emissionscoefficientstonsperMWh,wehavetaken0.3forgas-firedplantsand0.6forcoal-firedplantsinthesimulation.For

aportofolioof50%coal-firedand50%gas-firedfossil-fuelplantswithacarbonpriceof25europerton,wechoosealevelof11.25europerMWhforthe

(11)

Fig.2. DurationcurvesofhourlyRESproduction,Baseline,2016and2030.

andCarbonTax Stoassesstheimpactofaproducertaxinthesmallcountrycomparedtoaproducertaxinthelargercountry.

Finally,inordertoanalysetheinteractionbetweentheemissionstradingschemeandsubsidiesforrenewableenergy,wealso

comparetheresultsofthevariantsBaselinevsBaselinenoRES.Intheformerpolicyvariants,emissionstradingiscombined

withsubsidiesforrenewableenergy,whileinthelattertheonlyclimatepolicyimplementedistheemissiontradingscheme.

4.2. Results

Wefirstpresentthenumericalresultsforthe“Baseline”,whichisthescenariowherebothcountriesstimulateRESby

givingsubsidiesforinvestments,whilealsoaninternationalcap-and-tradesystemexists.Weareinterestedinthefollowing

metrics:thewholesaleelectricityprices,thehourlyRESproduction,theutilisationoffossil-fuelplants(definedasaverage

hourlyproductioninpercentageofinstalledcapacity),theCO2pricesand,finally,theCO2emissions.Then,wecomparethis

BaselinewiththeBaselinenoRESwherenosubsidiesforRESareincluded.Next,weconsiderthevariantof“Prodtax”which

imposesafossil-fueltaxinthelargecountryontopofthe“Baseline”.Finally,weconductasensitivityanalysisbychanging

theemissioncaplevel.11

4.2.1. Baseline

Asaresultofanexogenousstimulationofinvestmentsinrenewableenergycapacityin the“Baseline”variant,this

capacityincreasesstrongly.Asaconsequence,thevolatilityinthesupplybyrenewablesincreasesstronglyaswell(Fig.2).

Thisisrelatedtothefactthatthehourlyproductionlevelbyrenewablesissometimesclosetozeroincaseofunfavourable

weathercircumstancesindependentofthesizeofinstalledcapacity.Hence,thelowestlevelofproductionbyrenewable

energycapacityishardlyaffectedbythesizeofthiscapacity,whilethemaximumlevelisstronglyrelatedtothis(Fig.2).

Onaverage,thehourlyrenewableenergyproductionismuchhigherin2030comparedwiththelevelin2016.Thisstrong

increaseinREScapacityfairlywellresemblestheactualdevelopmentsinmanyEuropeancountries.Theutilisationof

fossil-fuelplantsinbothcountriesgoesdownasaresultoftheincreaseinRES,seeFig.13.Inaddition,theannualreductioninthe

carbonemissioncapraisesthescarcityofcarbonpermitsand,hence,thecarbonprice,seeFigs.4and5.Duetothedifferent

sizeoftheinitialinstalledgenerationcapacities,themarginalproductionismoreoftenrunbytheRESinthelargecountry

andlessofteninthesmallcountry.Inthelattercountry,theupwardpriceeffectoftheincreasingcarbonpricesdominates

theprice-reducingeffectoftheincreasingshareofRES.Asaresult,thestrongincreaseofRESsignificantlyreducestheprice

ofelectricity(asinthelargecountry),butthisappearsnottobethecaseinthesmallcountry(seeFig.3).Asthecross-border

capacityhasalimitedsize,tradersarenotabletofullybenefitfromthesepricedifferences.Theremainingpricedifferences

indicatethatthiscapacityisfullyutilized.

4.2.2. Subsidiesrenewableenergy

Beforeanalyzingtheinteractionbetweencarbontaxes,emissionstradingandsubsidiesforrenewables,wefirstanalyze

theinteractionbetweenthelattertwoclimatepolicyinstruments.Thecarbonpriceissignificantlyhigherinthelatter

variant,asisshownbyFig.8.Thishigherpriceisneededaswithoutsubsidiesforrenewableenergythecarbonpriceneeds

todotheworktokeeptheemissionsbelowthecap.Becauseofthevolatilityinthecarbonpricesduetothefluctuations

inexternalcircumstances(windanddemand),thecarbonpricemaybecome(closeto)zeronowandthenasisshownby

11 NoteforFigs.36:thethickestlinesdenotethevariantswiththedefaultcap(“Baseline”and“Prodtax”),thethinnestlinesdenotethevariants

withthehighercap(“BaselineHighCap”and“ProdtaxHighCap”)andthelineswithintermediatethicknessdenotethevariantswiththelowercap

(12)

Fig.3. Averagedailywholesaleprice,largeandsmallcountry,pervariant,2016–2030.

Fig.4.AverageCO2price,pervariant2016–2030.

(13)

Fig.6. DurationcurveofaveragedailyCO2price,pervariant,2030.

Fig.7. CO2emissions,largeandsmallcountry,pervariant,2016–2030.

(14)

Fig.9.DurationcurveCO2priceinBaselineandBaselinenoRES,2016–2030.

Fig.10.CO2emissionsinBaselineandBaselinenoRES,2016–2030.

Fig.9.Fig.10showstheemissionsintheBaselinevariant,withbothemissionstradingandrenewableenergyinvestments,

andtheemissionsintheBaselinenoRESvariantwhereemissionstradingistheonlypolicyinstrument.Itappearsthatin

thelattervarianttheemissionlevelsarehigher,whichindicatesthatthesubsidiesforinvestmentsinrenewabledohavean

additionaleffectonemissions,whichiscausedbythefactthatthewaterbedeffectdoesnotoccurwhenthecarbonpriceis

zero.

4.2.3. Carbontax

Now,thequestioniswhathappensifthelargecountryintroducesacarbontaxontopofthemeasuresstimulatingthe

REScapacityandtheinternationalemissionstradingsystem.Thedirecteffectisthatthegenerationcostsofthefossil-fuel

powerplantsinthiscountryincrease.Asbothcountriesareconnected,theincreaseingenerationcostsinthelargecountry

impliesthatthiscountrywantstoimportfromthesmallercountryinthosehourswhenREScapacityisnotsettingtheprice.

Asaresult,productionshiftstothesmallercountry.Theintroductionofacarbontaxinthelargecountryraisestheutilisation

offossil-fuelcapacityinthesmallcountry(seeFig.13).Hence,theintroductionofacarbontaxinonecountryresultsina

carbonleakage.Thiseffectisrelativelylargewhenthetaxisimplementedinthelargecountry(Fig.7)Thisinternational

spillovereffectofnationalclimatepoliciesalsoraisestheelectricitypriceintheothercountry,asweobserveapriceincrease

inbothcountriescomparedwiththe“Baseline”(Fig.3).

Ifthecarbontaxisintroducedinthesmallcountryinsteadofthelargecountry,thesimilartypeofeffectsoccuralbeit

smaller.TheimpactontheCO2pricesintheregionismuchsmaller,whilealsotheimpactontheoverallemissionsofCO2

issmaller(Fig.11).Whenthesmallcountryintroducesthecarbontax,theshareofrenewablesinthedomesticproduction

increasesrelativelystrongly,whiletheshareinthelargecountryishardlyaffected(Fig.12).

Theshiftinthelocationoftheproductionbyfossil-fuelplantsdoes,however,notmeanthatthereisnoeffectonthe

priceofcarbon(Fig.4).Theintroductionofacarbontaxinonecountryresultsinalower(average)CO2pricewhichimplies

thattheoveralldemandforpermitshasbeenreduced.Thenegativeimpactofthecarbontaxonthecarbonpriceshowsthe

existenceofthewaterbedeffect:theemissionstradingsystembecomeslesseffectiveifacarbontaxisintroduced.However,

(15)

Fig.11.CO2priceandemissions,inBaselineandvariantswithcarbontax,2016–2030.

Fig.12.ShareofRESindomesticgeneration,largeandsmallcountry,pervariant,2016–2030.

effectdoesnotfullyneutralizetheeffectofthecarbontax.ThisresultisrelatedtothefactthatthepriceofCO2maybezero

fromtimetotime(Fig.6).IfthepriceofCO2iszeroanyotherreductioninthedemandforcarbonpermitscannothaveany

effectonthepriceanymore.Hence,wefindthatthecombinationofdifferentpolicymeasurestoreducecarbonemissions

(16)

Fig.13.Utilisationoffossil-fuelcapacity,Baselineandvariantwithcarbontaxinlargecountry,largeandsmallcountry,2016–2030.

4.2.4. Welfareeffectsofcarbontax

Imposingacarbontaxraisesthemarginalcostsofelectricityproductionwhichincreasestheelectricityprice.Asaresult

consumershavetopaymore,whichreducestheirconsumersurplus.Astheimpactofthecarbontaxonelectricityprices

isthebiggestinthedomesticmarket,becauseofcross-bordercapacityconstraints,theconsumerwelfareismoststrongly

affectedbythedomesticcarbontax(Fig.14).

Remarkablytheproducersurplusincreasesasaresultofthecarbontax.Althoughthecarbontaxraisesthecostsofthe

conventionalproducers,theproducersofRESdonothavetopaythistax,buttheydobenefitfromtheresultingelectricity

prices.Hence,bothconsumersandRESproducersbenefitfromtheintroductionofacarbontax,whiletheproducersof

conventionalpowerfacesalossintermsoflowerproductionlevelsandlowerprofitsperunit.

4.2.5. Sensitivityanalysis

Whenwelowertheemissioncap,subsequentlyweobservealowercarbonemissionlevelandahighercarbonprice

(Fig.4).Becauseofthehighercarbonprice,wefindhigherelectricitywholesalepricesinthesmallcountry:the

price-reducingeffectoftheincreaseinREScapacityiscompletelyneutralizedbytheprice-increasingeffectofthetightercarbon

market(seeFig.3).Wealsoobserveastrongerspillovereffectofacarbontaxonfossil-fuelproduction:theutilisationofthe

(17)

Fig.15. Utilisationoffossil-fuelcapacityintheBaselineLowCapandCarbonTaxLowCap,2016–2030.

fossil-fuelplantsincreasesmorestronglyduetotheintroductionofthecarbontaxinonecountry(seeFig.15).Thisimplies

thatincaseoftighteremissions-tradingsystem,theinternationalspillovereffectofnationalpolicies,likeacarbontax,are

larger.Moreimportantly,becauseofthestrongereffectontheCO2prices,thereislesseffectonCO2emissions(seeFig.5).

Thisisrelatedtothefactthatincaseofalowercapthecarbonpricesarelessoftenzerowhichmakesitpossibletostronger

obtainthewaterbedeffectwhichneutralizesemissionreductionsresultingfromthecarbontax.

Whenweaddthepossibilityofbankingpermitsandusingtheminthenextperiod,theresultsremainbasicallythesame

(Fig.16).Incaseofbanking,theCO2priceappearstobezeroinboththeBaselineandthepolicyvariantwithacarbontax.This

resultfollowsfromthefactthatbankingcanresultinahighersupplyinthenextperiodwhenthereisanoversupplyinthe

previousone.Hence,bankingcanmaketheredundancyoftheemissiontradingschemeevenstronger.Asaconsequence,

introducingacarbontaxwhentheemissionstradingmarketisloose,forinstancebecauseofthepossibilityofbanking,

thiscombinationofclimate-policymeasuresmayresultinareductionofcarbonemissions.Thegenerallessonhereisthat

regulatorymeasureswhichmakethecapintheemissionstradingschemelessbinding,mayreducethewaterbedeffect.

5. Concludingremarks

Inthispaperwehaveexploredtheconditionsunderwhichinteractioneffectsoccurbetweendifferenttypesof

climate-policymeasures.Governmentsarecombiningdifferenttypesofpolicymeasuresinordertorealisetheirambitiousobjectives

regardingthereductionofcarbonemissions.Itiswellestablishedintheliteraturethatthecombinedeffectmaybelower

thanthesumoftheindividualeffects.Combiningsubsidiesforrenewableenergyortaxesonfossilfuelstogetherwitha

cap-and-tradesystemsuffersfromthewaterbedeffect.Moreover,nationalpoliciestoreducedomesticemissionsmaybe

offsetbyinternationalspillovereffects.Thequestionwehaveexplorediswhetherthisoffsettingeffectalwaysoccursor

whetheritmaybesubjecttospecificconditions.ThistopicisrelevantbecauseintheEU,eachcountryhasthefreedomto

chooseitsownnationalenergypolicydespiteofEuropeanclimate-policyobjectives.Europeancountriesapplyamixture

ofdifferenttypesofpolicymeasureswhichmakeithighlyrelevanttoanalyzethenatureofandtheconditionsforthe

interactioneffects.

Usinganumericalpartialtwo-countryequilibriummodelofthepowermarketwhichalsoincludesacap-and-trade

carbonsystem,wefindspillovereffectsduetotheintegrationofthetwomarkets.Imposingafossil-fueltaxinonecountry

leadstoahighercostforfossil-fuelproducers.Hence,thiscountryimportsmorefromtheneighboringcountry.Asaresult

ofthis,weobserveahigherutilizationoffossil-fuelcapacityintheneighboringcountry.Thespillovereffectsaresmaller

whenthecarbontaxisintroducedinthesmallcountryinsteadofinthelargecountry.BoththeCO2priceandtheoverall

CO2 emissionsintheregionarelessaffectedthenwhenthelargecountryimplementsacarbontax.Thelowerthecap

(18)

Fig.16.CO2priceandemissionswiththeoptionofbankingpermits,BaselineandCarbonTaxL,2016–2030.

reducecarbonemissionsmaybeoffsetbyinternationalspillovereffects.Coordinationofsuchpoliciesmayimprovethe

effectivenessofsuchpolicies.

However,wefindthatthewaterbedeffectdoesnotalwayshold.Itappearsthataddingotherclimate-policymeasuresto

anemissions-tradingsystemmayhaveaneteffectonthelevelofcarbonemissions.Thisresultcomesfromthefactthatthe

carbonpriceinthetradingschemehasafloor,i.e.itcanneverbelowerthanzero.Ifsubsidiesforrenewableenergyresult

inalargeamountofrenewable-energycapacitythismayinsomeperiodsresultinanoveralldemandforcarbonpermits

beingbelowthesupplyofpermitswhichbringsthecarbonpricetozero.Insuchcircumstances,givingmoresubsidiesfor

renewablesorimposingataxoffossilfuelreducetheemissionsbyfossil-fuelplantswithoutbeingneutralizedbyawaterbed

effect.Hence,wefindthatthewaterbedeffectonlyholdsifthecap-and-tradesystemisconstantlybinding,whichmeans

thatthereisalwaysapositivepriceforthecarbonpermits.Theprobabilityofalwaysbindingemissions-tradingsystem,

however,reducesifcountrieskeepincreasingthesizeofinstalledREScapacityasiscurrentlythecaseinmanyEuropean

countries.Moreover,asimilareffectmayoccurifregulatorymeasuresaretakenwhichmaketheemissions-tradingscheme

lesstight,suchasbankingwhichincreasesthetimeflexibilityofparticipantswithinthescheme.Thepolicyconsequenceof

thisfindingisthatnationalclimatepoliciessuchassubsidyschemesforrenewablesmayhaveapositiveeffectonreduction

ofcarbonemissions,althoughthegeneralliteraturesaysthatsuchcannotbethecasewhenanemissions-tradingscheme

exists.

Thesefindingsarebasedonanumericalanalysisofaconcisemodeloftheelectricitymarket.Thenumericalsimulations

donotenableustodrawgeneralconclusions,asthefindingsmaybesensitivetothechosenparametervalues.Nevertheless,

anumericalapplicationofamodeldoesgiveinsightsintheinterrelationshipsofanumberoffactorsaffectingthemarket.

Becauseofitstheoreticalandstylizednature,thismodelanalysisdoesnotgivepreciseestimatesofthesizeofthe

rela-tionshipsandtheprobabilityofthesituationsinwhichtheinteractioneffectdonotoccur.Althoughthemodelhasarather

detailedrepresentationoftheelectricitysector,itlargelyignoresthesector’sinteractionswiththerestoftheeconomy,

suchasfossilfuelproduction,aggregateinvestmentandemployment.Suchinteractionsarealsoimportantforevaluating

theeffectivenessofclimatepolicies.Empiricalresearchisneededtoobtainpreciseestimatesforthemagnitudeofactual

interactioneffectsbetweencurrentclimate-changepolicies.

Asweonlyfocusedontheoccurrenceandabsenceofinteractioneffectsofdifferenttypeofclimatepolicies,wedidnot

discusstheefficiencyoftheseinteractioneffects.Althoughaddingacarbontaxontopofanemissionstradingschememay

resultinmoreemissionsreductionsasthewaterbedeffectdoesnotalwayswork,thisdoesnotmeanthatsuchapolicyis

efficient.Inordertoanalysetheefficiencyeffectsofclimatepolicies,amoregeneralequilibriumapproachisneededtaking

(19)

AppendixA. Fossilfuelplantsinvestment

WhentheexpectedproductionbyRenewableEnergySupply(RES)isloworzero,theneedforfossilfuelproduction

mightexceedthecurrentgenerationcapacity.Asaresultofthis,electricityscarcitypricesoccur,seealsotenCateand

Lijesen(2004).Inthefossil-fuelinvestmentdecisions,wealsotakeimportandexportintoaccount.Electricityimporting

companiesaremodelledasprice-takers.LetqI

yhbethetotalelectricityimport.FollowingMulderetal.(2015),thesupplyof

theimportersisapproximatedbyalinearsupplyfunction,

qIcyh=ıpcyh, (15)

andtheexportamountbyfirmiisqiE

cyh.Wehavethefollowingequationforscarcityprices,

QF cy+ıpcyh+



˛cyh+ˇpcyh





i qiE cyh=ah−bhpcyh. (16)

NotethatthefirsttermQF

cydenotesthefossil-fuelgenerationcapacity,thesecondterm



ıpcyh



ontheleft-handsideofEq.

(16)denotestheimportamount,12thethirdterm



˛

cyh+ˇpcyh



denotestheproductionamountbyfringesuppliersand

thefourthterm



iqiE

cyh



denotestheelectricityexportamountwhichismodelledexogenously.Theright-handsideofEq.

(16)denotestheaggregatedemandatacertainelectricitypricelevel.

Thefossil-fuelplantsinvestmentsQF

cyareconsideredinacompetitivesettinginwhichfirmscannotbehavestrategically

andexercisemarketpower.Assumingperfectforesight,expectedlong-runmarginalrevenuesshouldbeequaltolong-run

marginalcosts.FollowingtenCateandLijesen(2004),wehavethefollowing:thepriceperMWhwhichisrequiredtokeep

demanddowntocapacity(Eq.(16)),minusmarginalrunningcostsperMWh,accumulatedoverthehoursduringwhich

capacityisabindingconstraint,equalstheincrementalannualizedcostofbuildinganextraMW.Supposetheannualized

fossilfuelinvestmentcostsarecFandalinearfunctionalformofinvestmentcosts,

E



h∈{qF cyh=Q F cy+QcyF}



pcyh−mc



|wh

=cF, (17)

wheremcdenotestheconstantfossilfuelproductioncosts.Theexpression{qFcyh=QcyF +QcyF}denotesthesetofhourswhen

thecapacityconstraintisbinding.Hence,theinvestmentinfossil-fuelplantsQF

cyshouldbesetatalevelthatequalizes

expectedmarginalbenefits(LHSofEq.(17))andmarginalcosts(RHSofEq.(17)).

AppendixB. RESinvestment

WeassumethattheinvestmentsinRESdependongovernmentsubsidies.SupposetheRESsubsidybudgetforwind

parksisBW

cyandthebudgetforsolarcellsisBScy.Moreover,weassumethatthebudgetisfinancedbyataxonelectricity

consumption.TheinvestmentcostsforwindparksandsolarcellsaredenotedbycW

y andcSy,respectively.Thenewlyinstalled

capacitiesforcentralizedpowerproducers(QW

cy)arecalculatedasfollows:

QcyW= B W cy cW y .

Similarly,thenewlyinstalledcapacitiesfordecentralizedpowerproducers(QS

cy)arecalculatedasfollows:

QS cy= BS cy cyS .

AppendixC. Optimalproductionamountbycentralizedpowerproducers

Theelectricitymarketismodelledasamarketwithimperfectcompetitionwherethesupplyisdeterminedbyalimited

numberofstrategicsuppliersandafringesupplyconsistingofweatherdependentwindandsolarproductionaswellasCHP

productionwhichactsasapricetaker.Thestrategicsuppliers,whicharesupposedtohavebothfossil-fuelplantsandwind

turbines,competeinquantities(Cournotcompetition).Thesuppliersselltheirproductioninbothforwardandspotmarkets.

Eachfirmhasanincentivetomaximizerevenuesinforwardmarketsasthisreducesthemarketpowerofotherfirmsinthe

(20)

spotmarket(AllazandVila,1993).Inordertodeterminetheoptimalproductionquantitybythestrategicplayersusingtheir

fossil-fuelplants,weneedtoestimatetheamountsoldintheforwardmarkets.Firstwedeterminetheoptimalproduction

giventhestrategicgameinthespotmarketandthendeterminehowthisdependsontheforwardsales.Afterdetermining

themarginalimpactofforwardsalesontheoptimumproductionamount,weareabletodeterminetheoptimalproduction

level.

Theproductiongameforfirmi∈Ncinthespotmarketisgivenby,13

max qiF cyh pcyh(qicyh−q if cyh)−mcq iF cyh, s.t. qi

cyh=qiFcyh+qiWcyh.

wheremcistheconstantvariablecostsforfirmiincountryctousetheconventionalresourcestogenerateelectricityand

pcyh=ah−˛cyh−q

i cyh−q

−i cyh

bh+ˇ .Thefirstorderconditionsforfirmiread,

ah−˛cyh−



q−iFcyh+q−iWcyh



−2



qiF cyh+qiWcyh



bh+ˇ + qifcyh bh+ˇ− mc=0, (18)

Eq.(18)holdsforeveryfirmiandwecanwritethesystemofequationsforthefirstorderconditionsofeachproducerinto

matrixformasfollows:

2 1 ··· 1 1 2 ··· 1 1 1 ··· 1 ··· ··· ··· ··· 1 1 ··· 2

q1F cyh q2F cyh ··· ··· qncF cyh

=

ah−˛cyh+q1fcyh−qcyh−1W−2q1Wcyh+mc(bh+ˇ)

ah−˛cyh+q2fcyh−q−2Wcyh −2q

2W

cyh−mc(bh+ˇ)

···

···

ah−˛cyh+qncyhcf−qcyh−ncW−2qncyhcW−mc(bh+ˇ)

.

TheabovematrixsolveqiF

cyh,i∈Ncasafunctionofq 1f cyh,q 2f cyh,...,q ncf

cyh.Notethatwealsohaveq iW cyh=q

jW

cyh,i,j∈Nc,i.e.,the

windpowergenerationisalsosymmetricamongallproducers.Wesolvetheabovematrixandobtainthefollowingsolution

fortheoptimalgenerationbyfossil-fuelplantsofi,i∈Nc,

qiFcyh=

ah−˛cyh+qifcyh−q−iWcyh −2qiWcyh



j∈Nc,j=/i



qjfcyh−qifcyh



−mc(bh+ˇ) n+1 , i,j∈Nc. (19)

Hence,themarginalimpactofforwardsalesontheproductionquantityisdeterminedby:

qiF cyh

qifcyh = n n+1, (20)

qjFcyh

qifcyh =− 1 n+1, (21) wherei,j∈Ncandj=/ i.

Nowwemovetothestageoffirmschoosingtheoptimalforwardpositions.AccordingtoAllazandVila(1993),wehave

thefollowingmaximizationproblem,

max

qifcyh

pfcyhqifcyh+pcyh(qicyh−q

if cyh)−mcq iF cyh, s.t. qi cyh=q iF cyh+q iW cyh.

Accordingtothearbitragecondition,itshouldholdthatpfcyh=pcyh.Hence,theabovemaximizationproblemcanbesimplified

as, max qifcyh pcyhqicyh−mcq iF cyh, s.t. qi

cyh=qiFcyh+qiWcyh.

13Fornotationalconvenience,wesuppresstheexpectationsignforqiW

(21)

wherepcyh=

ah−q−icyh−q i cyh−˛cyh

bh+ˇ .Takingfirstorderconditionswithrespecttoq

if

cyh,weobtainthefollowingequationforfirmi,



ah−˛cyh−mc



bh+ˇ



−qiF

cyh−q−iFcyh−q iW cyh−q−iWcyh



qiF cyh

qifcyh



qiFcyh+qiWcyh



qiFcyh qifcyh+



j∈Nc,j= i/

qjFcyh

qifcyh

=0, (22) where ∂q iF cyh ∂qifcyh and ∂qjFcyh

∂qifcyh aregivenby(20)and(21),respectively.Duetothefactthatfirmsaresymmetricintermsoftheir

constantvariablecosts,theirfinalproductionamountsintheequilibriumshouldbethesameaswell.PluggingEqs.(19)–(21)

into(22),weobtainthefollowingresultfortheoptimumproductionlevelperfirm,

qiFcyh=nc



ah−˛yh−mc(bh+ˇ)



−qiW

cyh−nc(qiWcyh+q−iWcyh )

n2

c+1

, (23)

AppendixD. Calculationoftheaggregatedemandfunction

Supposewewanttocalculatetheaggregatehourlydependentdemandfunction,

qcyh=ah−bhpcyh,

andtheobjectiveistocalculateparametersahandbh.Giventhepriceelasticitiesεhintheliteratureandobservedquantity

˜pcyhandoutput ˜Qcyhinaloadprofile,weusethefollowingformulatocalculateahandbh,

εh=− dQ/Q dP/P =− dQ dP × P Q ⇒bh=εh ˜ Qcyh ˜pcyh , ah= ˜Qcyh+bh˜pcyh.

Notethattheaboveformulaisimplementedtocalculatetheaggregatedemandfunctioninthesmallcountryandthe

aggregatedemandfunctionforthelargecountryisobtainedbyscalingupthedemandfunctionofthesmallcountry.

References

Aldy,J.,Krupnick,A.,Newell,R.,Parry,I.,Pizer,W.,2010.Designingclimatemitigationpolicy.J.Econ.Lit.48(4),903–934.

Allaz,B.,Vila,J.-L.,1993.Cournotcompetition,forwardmarketsandefficiency.J.Econ.Theory59,1–16.

Benavente,J.M.G.,2016.ImpactofacarbontaxontheChileaneconomy:acomputablegeneralequilibriumanalysis.EnergyEcon.57,106–127.

Böhringer,C.,2014.TwodecadesofEuropeanclimatepolicy:acriticalappraisal.Rev.Environ.Econ.Policy8(1),1–17.

Böhringer,C.,Keller,A.,Bortolamedi,M.,Seyffarth,A.,2016.Goodthingsdonotalwayscomeinthrees:ontheexcesscostofoverlappingregulationinEU

climatepolicy.EnergyPolicy94,502–508.

Böhringer,C.,Rosendahl,K.E.,2011.Greeningelectricitymorethannecessary:onthecostimplicationsofoverlappingregulationinEUclimatepolicy.

SchmollersJahrbuch131(3),469–492.

Calderón,S.,Alvarez,A.C.,Loboguerrero,A.M.,Arango,S.,Calvin,K.,Kober,T.,Daenzer,K.,Fisher-Vanden,K.,2016.AchievingCO2reductionsinColombia:

effectsofcarbontaxesandabatementtargets.EnergyEcon.56,575–586.

Caron,J.,Rausch,S.,Winchester,N.,2015.Leakagefromsub-nationalclimatepolicy:thecaseofCalifornia’scap-and-tradeprogram.EnergyJ.36(2),

167–189.

DelRio,P.,Mir-Artigues,P.,2014.CombinationsofsupportinstrumentsforrenewableelectricityinEurope:areview.Renew.Sustain.EnergyRev.40,

287–295.

EIA,2014.PlannedCoal-FiredPowerPlantRetirementsContinuetoIncrease.USEnergyInformationAdministration.

Ellerton,J.,Fullteron,D.,2014.Canaunilateralcarbontaxreduceemissionselsewhere?Resour.EnergyEcon.36,6–21.

Elliott,J.,Foster,I.,Kortum,S.,Munson,T.,Cervantes,F.P.,Weisbach,D.,2010.Tradeandcarbontaxes.Am.Econ.Rev.100(2),465–469.

EuropeanCommission,2012.StateoftheEuropeanCarbonMarketin2012.EuropeanCommission,Brussels,14.11.2012,COM(2012)652final.

EZ,2015.KamerbriefoverhetuitfaserenvandekolencentralesinNederland.

https://www.rijksoverheid.nl/documenten/kamerstukken/2015/12/18/kamerbrief-overhet-uitfaseren-van-de-kolencentrales-in-nederland.

Goulder,L.,2013.Climatechangepolicy’sinteractionswiththetaxsystem.EnergyEcon.40,S3–S11.

Haas,R.,Resch,G.,Panzer,C.,Held,A.,2010.Efficiencyandeffectivenessofpromotionsystemsforelectricitygenerationformrenewableenergysources–

lessonsfromEUcountries.Energy36(4),2186–2193.

Hughes,L.,Urpelainen,J.,2015.Interests,institutions,andclimatepolicy:explainingthechoiceofpolicyinstrumentsfortheenergysector.Environ.Sci.

Policy54,52–63.

Kautto,N.,Arasto,A.,Sijm,J.,Peck,P.,2012.InteractionoftheEUETSandnationalclimatepolicyinstruments–impactonbiomassuse.Biomass

Bioenergy38,117–127.

Keay,M.,2013.TheEUTargetModelforElectricityMarket:FitforPurpose?OxfordEnergyComment.

Lijesen,M.G.,2007.Thereal-timepriceelasticityofelectricity.EnergyEcon.29,249–258.

McKibbin,W.,Morris,A.,Wilcoxen,P.,2014.PricingcarbonintheU.S.:amodel-basedanalysisofpower-sector-onlyapproaches.Resour.EnergyEcon.36,

130–150.

Mulder,M.,Petrikaite,V.,Scholtens,B.,2015.Distributedenergygenerationtechniquesandthecompetitivefringeeffectinelectricitymarkets.Resour.

EnergyEcon.42,125–140.

Saguan,M.,Meeus,L.,2014.ImpactofregulatoryframeworkfortransmissioninvestmentsonthecostofrenewableenergyintheEU.EnergyEcon.43,

185–194.

(22)

Sijm,J.,2005.TheinteractionbetweentheEUemissionstradingschemeandnationalenergypolicies.Clim.Policy5(1),79–96.

Sorrell,S.,Sijm,J.,2003.Carbontradinginthepolicymix.OxfordRev.Econ.Policy19(3),420–437.

tenCate,A.,Lijesen,M.,2004.TheElmarModel:OutputandCapacityinImperfectlyCompetitionElectricityMarkets.CPBdocument94.

Tietenberg,T.H.,2006.EmissionsTrading:PrinciplesandPractice,2nded.ResourcesfortheFuture,Washington,DC,USA.

vandenBergh,K.,Delarue,E.,D’heaseleer,W.,2013.ImpactofrenewablesdeploymentontheCO2pricesandtheCO2emissionsintheEuropean

electricitysector.EnergyPolicy63,1021–1031.

Referenties

GERELATEERDE DOCUMENTEN

This thesis investigates whether partisan effects and spatial interaction effects can be found in the social expenditure policy of municipalities in the Netherlands After

A complication with the variant that does not include a ban on the use of chemical flame retardants is that it proved impossible in the current analyses to attach a value to

The point of this case was to establish a duty of care for the Dutch state to protect its citizens against the dangerous effects of climate change, and consequently order the state

The projects that are developed according to the CeHRes roadmap undergo formative evaluation after each of these phases, namely contextual inquiry, value specification, design

The main question we tried to answer in the current research was: Do adults without dyslexia identify steps from an audio-visually presented continuum similar in a modulated

development process , in order to create social resources and engender a sens e of common purpose in fi ndin g local solutions for sustainability. The constitutional

Although other publications have emanated from this study, highlighting successful project outcomes and contributing to the knowledge of how to work with teachers

Met behulp van deze socialmediazoekmachine, is er met verschillende trefwoordcombinaties gezocht naar Facebook-discussies in het jaar 2015 waarin gebruikers hun eigen privacy (of