• No results found

Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films

N/A
N/A
Protected

Academic year: 2021

Share "Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full

Length

Article

Time-resolved

imaging

of

flyer

dynamics

for

femtosecond

laser-induced

backward

transfer

of

solid

polymer

thin

films

M.

Feinaeugle

a,∗

,

P.

Gregorˇciˇc

b

,

D.J.

Heath

a

,

B.

Mills

a

,

R.W.

Eason

a aOptoelectronicsResearchCentre,UniversityofSouthampton,Southampton,SO171BJ,UK

bFacultyofMechanicalEngineering,UniversityofLjubljana,Aˇskerˇceva6,1000,Ljubljana,Slovenia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15July2016

Receivedinrevisedform27October2016 Accepted15November2016

Availableonline19November2016 Keywords:

Laser-inducedbackwardtransfer Time-resolvedshadowgraphy Femtosecondlaser-induced micro-processing Polymerthinfilms Additivemanufacturing SU-8

a

b

s

t

r

a

c

t

Wehavestudiedthetransferregimesanddynamicsofpolymerflyersfromlaser-inducedbackward transfer(LIBT)viatime-resolvedshadowgraphy.ImagingoftheflyerejectionphaseofLIBTof3.8␮m and6.4␮mthickSU-8polymerfilmsongermaniumandsiliconcarriersubstrateswasperformedover atimedelayrangeof1.4–16.4␮safterarrivalofthelaserpulse.Theexperimentswerecarriedoutwith 150fs,800nmpulsesspatiallyshapedusingadigitalmicromirrordevice,andlaserfluencesofupto 3.5J/cm2whileimageswererecordedviaaCCDcameraandasparkdischargelamp.Velocitiesofflyers

foundintherangeof6–20m/s,andtheintactandfragmentedejectionregimes,wereafunctionofdonor thickness,carrierandlaserfluence.Thecraterprofileofthedonoraftertransferandtheresultingflyer profileindicateddifferentflyerejectionmodesforSicarriersandhighfluences.Theresultscontributeto betterunderstandingoftheLIBTprocess,andhelptodetermineexperimentalparametersforsuccessful LIBTofintactdeposits.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Additive methods for the microfabrication of devices have

recentlygainedinterestoverconventionaltechniquesduetotheir

versatility,simplicityandresultinghighspeedoffabrication[1–3].

Amongthese,laser-basedtechniquesareapromisingwaytoenable

deviceprintinginacontactlessfashionwithdemonstrated

micron-scaleresolution.Auniqueadvantageisthatthesemethodsallow

thedepositionofmaterialsthatnotonlyhaveaspecificstructural

role,butalsohaveelectronic,photonicorevenbiomedical

func-tionality.

Inparticular,laser-inducedforwardtransfer(LIFT)hasproven

itscapabilitytoallowmanufacturingofawiderangeof

materi-als,suchasmetals[4],ceramics,semiconductors,superconductors

[5],2D materialsand structures for e.g.MEMS [6],waveguides

[7],biomedicalsensors[8]orthermoelectricgenerators[9].More

recently,thetransferofsilverpastes[10,11],3-dimensional

micro-objects[12,13]andmetalvias[14]hasshownthepotentialofLIFT

formicrofabrication.DuringLIFT(e.g.withatransparentdonor),

∗ Correspondingauthor.Currentaddress:ChairofAppliedLaserTechnology, LaboratoryofMechanicalAutomationandMechatronics,FacultyofEngineering Technology,UniversityofTwente,Enschede,TheNetherlands.

E-mailaddresses:m.feinaeugle@utwente.nl(M.Feinaeugle), bm602@orc.soton.ac.uk(B.Mills).

shownschematicallyinFig.1a,apulsedlaserbeamisfocussedor

imagedattheinterfacebetweenatransparentcarriersubstrateand

asandwichofthinfilms,consistingofanabsorbingmaterialand

thedonor.Asaconsequenceoftheabsorbedlaserenergy,asmall

volumeofthedonorisejectedandtransferredontoareceiver

sub-stratewhichislocatedparalleltothedonorsurface.Insomecases,

thedonoritselfactsasanabsorberandnoadditionalinterfacial

layerisrequired.Thespacingbetweenthedonorandreceiveris

typicallyinthefewtotensofmicrometresrange.

The minimum featuresizesof structures fabricatedvia LIFT

ismainlylimitedtoopticalresolutionsforcongruenttransferof

devices[15,16].However,formoltentransfer,structuresthatare

smallerthanthediffraction-limitedsizeoftheincidentlaserpulse

havebeendemonstrated[17,18].Specificallyforthefabricationof

thosestructures,laser-inducedbackwardtransfer(LIBT)[19]has

producedsubmicron-structureswithhighrepeatabilitywhichmay

provetobeanadvantageousalternativetoLIFTforspecific

appli-cations[20,21].DuringLIBT,shownschematicallyinFig.1b,the

receiverwhoseabsorptionislowincomparisonwiththecarrier

issituatedinthepathofthelaser,whilethedonoriscoatedon

a(bulk)carriersubstrate.Theincidentlaserpulseenergythatis

eitherabsorbedinthedonoror-forpartiallytransparent

donors-thecarrier leadsto thetransfer ofa volume of thedonor in a

directionoppositetothatofthelaserbeampath,hencetheterm

‘backward’.

http://dx.doi.org/10.1016/j.apsusc.2016.11.120

(2)

Fig.1.Schematicside-viewof(a)laser-inducedforwardtransfer(LIFT)and(b) laser-inducedbackwardtransfer(LIBT)foratransparentdonor.

IncomparisonwithLIFT,LIBThasdifferentrequirementsand

restrictionsconcerningthetransparencyofthereceiverandthe

donor,butthepossibilitytouseabulkcarriersubstratemightprove

advantageousforcertainapplications.Theseadvantagescanalso

beusedfortransferofothermaterialsasdemonstratedinprevious

work,wheremetals[22–25],oxides[25,26],CrSi2[27],TiN[24]

andcorrodedsurfaces[28]havebeenthesubjectofstudiesofLIBT

methods.

Recently,we havedemonstrated thattheuseofa bulk

sub-strate facilitatesthe imprint-based laser-induced fabrication of

sub-micron-sizestructuresviaLIBTofsolidpolymers[29].

WhileLIFThasbeentheobjectofmanystudiestodate,much

lessefforthasbeenputintofullyunderstandingandexploitingthe

processofLIBT.Tohelpinpredictingtheoutcomeofanexperiment

viaLIBTe.g.withanewmaterial,imaging[24]andsimulation[30]

oftheprocesscanbeusefultools.Also,asLIBTiscloselyrelatedto

theprocessesoflaserlift-off[31],lasercleaning,laserscribing,or

evenablation[32],studyingLIBTcouldalsoaidinunderstanding

theseprocesses.Themaindifferencewithrespecttopreviouswork

isthatforourexperiments,weareinterestedintheejectedmaterial

beinginanintactstate,andthatitsshapeisgeometricallysimilar

totheincomingspatialshapeofthelaserpulse.

ToimprovetheeffectivenessofLIBT,factorssuchaslowflyer

velocityandreducedshockgenerationplayamajorrolein

trans-ferringaflyerinanintactstate[33].Anexperimentaltime-resolved

imagingstudycouldthereforesupportfutureeffortstomodelthe

LIBTprocesstooptimiseexperimentalconditions,andto

under-standtheadvantagesandlimitationsofthistechnique.Previously,

thefemtosecondlaserablationofsilicagrownontopofsiliconwas

investigatedinthefirst∼10nsafterthearrivalofthelaserpulse

[34].Inadifferentstudy,asimplemodelofsilicaonaAgsubstrate

wassimulatedonapicosecondtimescale[30].

Whilethefocusofthosestudieswasontheobservationofshock

andfilmdynamicsinthefirstnanosecondsafterthearrivalofthe

laserpulse,here,wehaveexaminedthedynamicsoftheemerging

flyerandfragmentsonamicrosecondscaletoobtainexperimental

parametersforLIBTofintactdeposits.

Inthisstudy,wehaveimagedtheLIBTprocessfroman

epoxy-basedSU-8polymerdonorfilmfromplanarsiliconandgermanium

carriersviaafemtosecondpulsedlasersource.SU-8isanexample

ofatransparentdonormaterialthatcanbeusedfore.g.photonicor

microfluidicdevices.Thispolymer,oncedeveloped,hasarelatively

highchemicalresistance,andhasbeenpreviouslyusedin

micro-opto-electro-mechanicalsystems(MOEMS).Itisroutinelyusedfor

lithographicpatterningonthemicro- andnanoscale,andhence

beneficialforthecreationofsmallstructures.Siliconand

Germa-niumcarrierswereusedasreadilyavailablebulksubstratesthatare

widelyusedinmicrofabricationofelectronicandphotonicdevices,

thusforwhichalargenumberofmicrofabricationprocessesare

known.

Whenusingpolymersasdonormaterial,photophysicaleffects

asdamagemechanismsneedtobeconsideredduringtransfer,and

thesemechanismsincludephotochemicaldecomposition,thermal

Fig.2. Setupfortime-resolvedimagingofLIBT.ThelaserpulseswithGaussianbeam profilearehomogenisedtoatophatprofileviaarefractivebeamshaper(BS).Laser triggering,time-resolvedimaging,DMDmaskdisplayandbeamattenuationare controlledbyacomputer.

ablation,spallationandphotopolymerisationofmonomerchains

[35,36].Theuseofshortpulsesandinfraredwavelengthdecrease

thelikelihoodofdamageviathermaleffectsordirectruptureof

polymericbonds respectively, while multiphoton effects would

onlybeexpectedforthehighestfluencesused.Atthesametime,

thermaleffectstothesemiconductorcarriersareexpectedtobe

reducedwithshortlaserpulseswhencomparedtolongerpulsed

lasersources,andthishasfurthermotivatedourchoiceoflaser

sourcefortheseexperiments[37].

Withthehelpofatime-resolvedshadowgraphysetup,wehave

recordedthepositionoftheemergingflyerasafunctionofpulse

energy,donor thickness,carrier material,delay time afterlaser

pulsearrival,andbeamintensitydistribution.Shadowgraphycan

beusedtodeterminetheexistenceandpositionofparticlesand

flyerejectedfromthedonorsurfaceandisalsosensitivetochanges

intherefractiveindexofthesurroundingatmosphere,e.g.through

gradientsinpressureorgaseouselements.Generally,

shadowgra-phycanbemostreadilyperformedwiththepresenceofareceiver

tostudyimpactandlandingoftheflyer,andthereceiver’s

inter-actionwithpressurewaves.Insteadwehavechosentostudythe

dynamicsoftheflyerejectionwithoutreceiverwhichisacase

rel-evanttotheLIBTprocessasthevelocity,integrityandorientation

oftheflyer,andthepossiblecreationofdebrisorshockcanbe

observedoveralargerrangethanpossiblewithareceiverinplace.

Inthefollowingwereferto‘transfer’forthedynamicsofflyer

ejec-tionandpropagationfortargetsin aLIBTconfigurationasused

here.Toallowamore directcomparisonwiththeLIBTprocess,

wehavebrieflycontrastedtheresultsfromshadowgraphywith

thoseofstandardtransferexperiments,wherewehavemeasured

theratioofintactflyersfoundonareceivertoflyersimagedinan

intactstate.

Wewillfirstintroducetheexperimentaldetailsandmethods

ofthetime-resolvedstudiesofLIBT.Thenwepresent

experimen-talresultsfromvaryingtimedelay,laserfluence,donorthickness

andcarrier.Further,wewilldiscussthedifferentobserved

trans-ferregimesandtheeffectsofexperimentalparametersonLIBTof

SU-8.

2. Experimental

The imaging of the LIBT process was carried out using the

setupshowninFig.2.Itconsistedofthreedifferentopticalbeam

lines,onefor liveimaging ofthesample surface,onefor

laser-inducedtransferandthethirdonefortime-resolvedshadowgraph

imaging.TransferwasinducedviapulsesfromaTi:sapphirelaser

oscillator-amplifiersystem(Mira/Legend,Coherent)withacentral

wavelengthof800nm,andpulselengthsof150fs.Themaximum

(3)

neutraldensityfilter.TheGaussianintensityprofilefromthelaser

wastransformedintoa top-hatintensityprofileviaarefractive

beamshaper(Pi-Shaper,AdlOptica).Theselaserpulseswith

top-hatprofilethenilluminated thesurfaceof a608×684element

digitalmicromirrordevice(DLP3000, TexasInstruments)whose

mirrorswereactuatedtoformadynamicintensitymask.Todo

so,mirrorsinthe‘on’positiondirectedlightintothebeampath

showninFig.2,while mirrorsin‘off’positionsteeredthelaser

pulsesintoa beamstop(notshown).Thesurfaceof thedigital

micromirrordevice(DMD)displayingauser-specifiedmaskwas

imagedandde-magnifiedattheinterfacebetweenthedonorand

carrierintheLIBTtargetwitha50×de-magnificationmicroscope

objective(Mitutoyo).

Forsamplepositioningandfocussing,thesample,illuminated

withawhitelightsource,isimagedcontinuouslyonaCMOS

cam-era,whoseimagepathiscollineartothelaserbeampath.More

detailsonthesetupandontheconfigurationoftheDMDforimage

projectioncanbefoundinpreviouswork[38].

The laser-induced events above the sample surface were

recordedviailluminationfromawhitelightsparkdischargeflash

lamp (Nanolite KL-K, HSPS) witha pulse duration of 8ns [39].

TheflashlampwasplacedatthefocusofmicroscopeobjectiveL1

(10×magnification,LeitzWetzlar)usedasacollimator.Asecond

microscopeobjectiveL2(50×magnification,Nikon)wasusedto

concentratetheilluminatinglightattheinteractionarea.The

inter-actionoftheilluminatingbeamsandthelaser-inducedobjectsor

differencesinrefractiveindiceswerethenobservedasintensity

gradients[40]onaCCDcamera(scA1400–17fm,1.4Mpx,Basler

AG)equippedwithamicroscopeobjectiveL3.Dependingonthe

resolutionrequiredandthefieldofview,weusedoneoftwo

dif-ferent(20×and100×magnification,Nikon)microscopeobjectives

L3.Oursetupthereforeprovidedthefollowingtheoretical

reso-lutions:90nm/pixeland420nm/pixel,whilethefieldofviewin

thedirectionofflyermovementequalledapproximately120␮m

and400␮mrespectively.The excitationlaser,flash lamp,

shut-terandtheCCDcameraweresynchronisedbyasignalgenerator

(Tektronix,AFG3102)whilethedisplayoftheDMDimagemask,

lasertriggeringandattenuationlevelwerecontrolledbya

com-puter.

Followinglasertriggering,thesignalgeneratorcausedtheCCD

cameratobeactivefor∼20msandatthesametimeactuatedthe

flashlampatachosendelaytimewithaminimumvalueof1.4␮s.A

snapshotwasthereforetakenafterthechosendelaywithan

expo-suretimeof∼8ns.Wevariedthisdelayduringexperimentsover

therange between1.4␮sand16.4␮swithanestimated

uncer-taintyof100ns.Foreachdelayanewareaofthedonorwasselected,

sothedatapresentedbelowconsistsofsequentialflyersimagedat

differentdelaysbutotherwisesimilarconditions.Toreduceerrors

duetonaturalfluctuationsinflyerbehaviour,eachsetofsimilar

conditionswasrepeatedatleastfivetimes.Thedelaywaschosen

toshowflyerstravellingthefullextentoftheimageframevisible

tothecamera.

Fig.3ashowsaschematicoftheimagingsetupandtheimage

showninFig.3bisatypicalshadowgramrecordedwiththeCCD

Fig.3.(a)Schematicside-viewofshadowgraphyimagingsetupand(b)imageframe asrecordedbyCCDcameraanda100×microscopeobjective.

camerawhere flyerand donor surfaceorientationappear atan

anglerelativetoeachotherasaresultofcameraperspective.The

contrast,brightnessandgammavaluesofthecapturedimageswere

modifiedtooptimisevisibilityofthelaser-inducedevents.

TheLIBTtargets(i.e.thedonor-coatedcarrier)werefabricated

viaspin-coatingofSU-8photoresist(Microchem)ontosiliconand

germaniumcarriersubstrates(300–600␮mthick).Thegermanium

carriersconsistedofa3␮mthicklayerofGegrownonaSisubstrate.

Before spin-coating, the carriers were ultrasonically cleaned in

sequentialbathsofacetone,isopropanolandwaterfor30minand

subsequentlydriedbypressurisednitrogen.Aftercoating,theLIBT

targetswerebakedonahotplatefor3minrampingfrom60to90◦C,

andthesamplewasheldat90◦Cforafurtherminutetosolidifythe

polymerandtoremoveanyresidualgamma-butyrolactonesolvent

[41].Finaldonorthicknesseswere3.8␮m(referredtolateras‘thin’)

and6.4␮m(referredtoas‘thick’),measuredwithamechanical

profiler.Thevariationofdonorthicknessmeasurementwasinthe

rangeof±100nmwhilethemeasurementerrorbythe

mechani-calprofilerusedwasestimatedtobesmallerthanthisvariation.

Thefilmswerecoatedatspinspeedsof2000rpmand4000rpmfor

maximumaccelerationsof300rpm/sandaspindurationof30s.

Thefilmthicknessofafewmicronswasatypicalthicknessusedin

SU-8basedMEOMSandaroundthestandardthicknessforSU-85

usedinlithography.

Thetargetswerethen cleavedinthecentreforbetter

imag-ingofthecentralpartofthedonortoavoidshadingbythethick

donorbeadfoundattheperimeterofaspin-coatedsampleand

experimentswereperformedatleast100␮mawayfromthe

sam-ple(donor)edgestoavoidvariationofmaterialproperties,suchas

areduceddonor-carrieradhesion.

3. Resultsanddiscussion

3.1. Velocityoftheflyer

Inthefirstexperimentswevariedthedelaybetweenvaluesof

1.4–10␮sbetweenincidenceofthelaserpulseandrecordingof

thepositionoftheflyerabovethesubstrate.Asequenceofimages

(4)

Fig.5.Distancetravelledbyflyersforvaryingdelaytimesfrom(a)Siand(b)Ge carrierswiththickandthinSU-8donors.Theerrorbaristhestandarddeviationat acertaindelaytime.

takenfordifferentdelaysatafluenceof1.39J/cm2forflyersfrom

athickSU-8onsilicontargetareshowninFig.4.

Aflyeremergesfromthesurfacenotasacylindricaldiscwhich

couldbethecircularshapewithtop-hatspatialintensityprojected

attheinterface,butisslightlytaperedandadditionallyfeaturesa

thinperipheralrimrippedoutofthedonortoresultina

‘saucer-like’structure.Mostoftheshadowgraphimagesshowtwobright

areas,oneinthecentreoftheimageandasecondoneinthecrater

onthedonor.Thefirstspotoriginatesfromdirectimagingofthe

sparkgapillumination,andwhilethepresenceofthisbrightspot

intheimagewasundesired,thisgeometrywasusedtomaximise

flyerillumination.Thesecondspotisaconsequenceofscattering

ofthelaserpulsevisibleduetothelongexposuretimeoftheCCD

camera.

Theimagealsorevealsthatthebottomsideofthetiltedflyer

carriessomedamageappearinginthecentralregionoftheflyer.

Thisdamage,seenasdarkspotswithinaflyer,occurredtosomeof

theflyersandwasmostlikelycausedbyimperfectionsofthedonor

orfluctuationsofthelaserpulseintensityduetoimperfectoptics

orlaseroutput.Asflyerswerenotcollected,furtherevaluationof

thisdamagewasnotpossible.TheparticlesshowninFig.4b–dis

debriswhichlikelyhasitsorigininthecentraldamagedspotofthe

flyer.

Experiments were carried out just above flyer removal

flu-encethresholdsforthe3.8␮mand6.4␮mthickfilms.Fordonors

onsiliconthesethresholdfluenceswerebetween0.80J/cm2 and

1.35J/cm2 asafunctionofdonorthickness.Germaniumcarriers

hadthresholdfluencesbetween0.55J/cm2and0.60J/cm2.The

dif-ferencesinthresholdfluencesobservedbetweenexperimentswith

thedifferentcarriersubstratescouldbereducedtoboththe

differ-entphysicalpropertiesofthecarrierortothedifferentadhesionof

donoroncarrier,andfurthermeasurementsofadhesionwouldbe

requiredtodeterminetheeffectoftheseproperties.

Thedistanced travelledbytheresulting intactflyersfor an

imagetakenafteraspecificdelayisshowninFig.5.

ExperimentsforthinSU-8onsiliconwereperformedatfluences

justaboveandat20%higherthanthresholdforcomparisontosee

ifthereisameasurableinfluenceoffluenceonvelocity.Thehigher

valuewaschosentobebetweenthethresholdandthefluenceat

whichthelikelihoodofbreakingupwouldincreasedramatically.

Thevelocityv(t)ofaflyerasafunctionofdelaytasshowninTable1

andFig.6wasdefinedas:

v

(t) =d (t) −d (t1)

t−t1

(1)

witht1theminimumdelay(1.4␮s).Frompreviousexperiments,it

isexpectedthatflyerejection(occurringattimet0)isinitiatedon

thetimescaleofhundredsofnanosecondsafterlaserpulsearrival

andisafunctionoffluence[42,43].Generally,usingshortpulses

Table1

Intactflyervelocitiesfordifferentcarrier/donorcombinationsextractedfrom dis-tancevs.delaydata.ThefluencevaluesforthesamplesareshowninFig.5.The temporalmeanofthevelocityisshownfordifferentfluencesandcombinationsof donorandcarrier.

Carrier/Donor(Fluence) Meanvelocity[m/s]

Si/ThinSU-8(0.84J/cm2) 18.1±2.1

Si/ThinSU-8(1J/cm2) 19.8±2.3

Si/ThickSU-8 9.3±2.8

Ge/ThinSU-8 13.5±1.5

Ge/ThickSU-8 9.1±5.4

Fig.6.Velocityasafunctionofdelaytimefor(a)siliconand(b)germaniumcarriers withthin(3.8␮m)andthick(6.4␮m)SU-8donors.

and higher fluencescan decrease t0. However,theinfluence of

dynamicreleaselayers(DRL)suchasAu[44]isinconclusive,while

foraTriazeneDRL[45],athickerfilmcandecreaset0significantlyas

comparedtoathinDRL[43].Whilethepressureofthe

surround-ingatmospheredoeshavealargeeffectonpropagationvelocity,

nomajorinfluenceonejectiontimecouldbeobservedinliterature

[33].

Resulting mean velocities for flyers were in the range of

9–20m/s,andthelowestvelocityrecordedwas6m/s.Forboth

car-riers,thethickerflyershadalowervelocitythanthethinflyers.The

comparisonofathinflyerfromaSicarrierinTable1showsslightly

highervelocitiesforaflyerejectedat20%higherfluencebut

oth-erwisesimilarconditionsforthemeanvelocity.Fig.5alsoshows

thatflyersejectedathigherfluencehavealwaystravelledfurther

atcomparabledelaytimes,hintingatasmallerflyerreleasetimet0

forhigherfluences.Thevelocitiesasafunctionofdelayareplotted

inFig.6.

Noindicationofanydeceleration,e.g.bydrag,couldbeseen

inthevelocityoverthetimedelaysstudied.Theflyerpropagation

wasassumedtobeinfluencedbythedecelerationthroughthe

sur-roundingatmosphereaswellasbytheflyerrotationinducedduring

flyerejection.Gravityactingintheoppositedirectionoftravelwas

neglectedbeingseveralordersofmagnitudesmallerthandragfrom

thesurroundingair atatmospheric pressure.Thedifferentflyer

velocitiesobservedarecrucialtoestimatetheoutcomeofaLIBT

experimentasahighervelocityincreasestheimpactwhenlanding

onareceiver.

3.2. Influenceoflaserfluenceonflyerpropagation

AsobservedinFig.5forthethindonorfilms,distancetravelled

inaspecifictimeperiodincreasedforhigherlaserpulseenergies

incidentonthetargetsasseenearlier[46].Thisrelationwas

inves-tigatedinmoredetailbyrecordingflyerpropagationfora fixed

delaytimebutvaryinglaserfluenceforGeandSicarriers.Fig.7

showstheresultingbehaviourforflyersfromathickSU-8donor

(5)

Fig.7. Distancetravelledbyflyerfortwodelaytimeswhenvaryingincidentpulse fluenceforaGe carrierandathickSU-8donor film.Thefirst datapointsat ∼400mJ/cm2showthatnoflyerhademergedfromthedonor.

Fig.8.Distancetravelledasafunctionofincidentlaserfluenceforaflyerfroma thickSU-8donoronSicarrier.

Duringthisexperimentonlyflyersuptoafluenceof0.9J/cm2

and2.3J/cm2forGeandSicarriersrespectivelywereobservedtobe

inanintactstate.Forhigherfluences,morethan90%offlyerswere

foundtohavefragmented.Thedistancesplottedatlargerfluences

showthedistancetravelledbythemainfragmentsejectedfrom

thedonorsurface.Beforebreakup,themeasuredaverage

veloci-tiesofthefastestflyerswere12.2±7.7m/s.Theerrorfoundfor

thesefastestflyerswasrelativelylargeandweassumedthatthe

tiltofsomeoftherecordedflyersmayhavecontributedtotheir

deceleration.Foragermaniumcarrier,allflyersejectedatahigh

fluencetravelfurther,thusatahigheraveragevelocity,thanflyers

ejectedatalowerfluenceclosetothreshold.Theresultinglinear

increaseofvelocityasafunctionoffluencewasintherangeof

0.023±0.01m/smJ−1cm2forflyersinanintactstate.

Asimilarplotofdistanceoverdelaytimefromanexperiment

withsiliconcarriersisshowninFig.8.Here,thedistancecurves

aresplitatafluencevalueof∼1.8J/cm2intoa‘sawtooth’function

withpositivegradients.Thefirstpartofthefittedsawtooth

func-tion(1.25–1.8J/cm2),showingthedistancesofintactflyers,hasa

gradientofvelocityof0.014±0.01m/smJ−1cm2.Thevelocityof

thefastestflyersherewas16.8±4.6m/s.

Inthefirstpartofthecurve,distanceincreasesmonotonically.

However,around2.0–2.5J/cm2,propagationismuchlowerthan

expected.Onlyforvaluesof3.5J/cm2ispropagationagainlarger

Fig.9. CraterdiameterforvaryingfluencemeasuredontwoSiandGedonorsafter LIBTexperimentsforathickSU-8donor.Theinsetsshowsmicroscopeimagesof cratersinthedonoraftertransfer(forSicarrier).Thescalebaroftheinsetsis25␮m.

thanforflyersejected at1.8J/cm2.Suchbehaviourwouldseem

toindicateadecelerationorachangeoftransferregimeforthose

higherfluences.Tofurtherinvestigatethisbehaviour,wehave

mea-suredthediameteroftheablationcratersinthedonorfilmsleft

behindbytheejectedflyerasshowninFig.9.

Forafixedimagemaskasusedthroughoutthisexperiment,it

wasexpectedthatcratersizewouldremainconstantorincrease

onlyslightlyforincreasingfluenceduetoareasintheperimeter

oftheimagedmaskfeature,whereintensity,decayinginan

expo-nentialfashionduetoimperfectimaging,exceededthetransfer

threshold,resultinginalargerflyerbeingejected.However,Fig.9

showsalocalminimumincratersizeforSU-8/Sitargetsataround

2.5J/cm2confirmingthatcraters,andasaconsequenceflyers,do

nothaveaconstantorlinearincreasingdiameter.

Thebeamdiameteratthedonor-carrierinterfacewas∼20␮m,

estimatedfrommicroscopeimagesofthedonordamageatlow

flu-ences.FromFig.9andpreviousexperimentswecanseethatthe

flyershapeismuchlarger.Duringflyerrelease,theflyershearsoff

additionalneighbouringdonorareasandthusresultsinanincrease

inflyerdiameter.Althoughanexactcauseoftheobservedvariation

inflyerdiameterisdifficulttoconfirm,weassumedthatdifferent

factorscouldcontributetotheobservedflyersshapedistribution.

Ithadbeenobservedearlierinpolymersthathigherimpact

veloci-tiesonpolymercanleadtodifferentfailuremodes[47].Slowdonor

loadingwouldinducebrittlefracture(tensilefailuremode)while

fastloadswouldinduceatransitiontoaductile(failure)regime

whereshearcrackgrowthispreferred.Thusafast‘push’couldlead

toadifferenttransferregimepreferringstraightedgesincraterand

resultingflyer.Thisdifferentfailuremechanismwouldthencausea

differentamountofkineticenergytobedeliveredtotheflyerduring

flyerejectionorontheotherhandthedonoracceleratedat

dif-ferentrateswouldsufferfromthesedifferentfailureregimes.The

effectofvaryingcratersizeandvelocitywasnotseeninthe

exper-imentswithGecarrierandhencecouldbeaconsequenceofthe

relativelyhighfluencesrequiredfortheSicarriers.Ingeneral,the

failuremodedeterminestheresultingflyeredgequalityandshape.

Additionally,theincreasedfluencecouldincreasethelikelihood

ofnon-linearmultiphotonabsorption,shock-inducedchanges[48]

orevenheatingoftheflyerandhenceitschangeinglobalorlocal

mechanicalpropertiesexplainingtheobservedchangesinflyerand

cratershape.

Fromour experimentshere,we canalso estimatethe

influ-enceofthereceiver bydeterminingthefluencewindowFW,in

(6)

Fig.10.ShadowgraphimageofflyersejectedfromathickSU-8filmonasiliconcarrierejectedat(a)1.39J/cm2,(b)1.69J/cm2,and(c)2.05J/cm2respectively.Delaytimes were3.4␮s.Imagesweretakenviaa100×objective.Thescalebaris20␮minallfigures.

Fig.11.ShadowgraphimagesfromLIBTeventsofathickSU-8donoronsiliconcarrier.Fluenceswere(a)1.39J/cm2,(b)2.05J/cm2,and(c)3.46J/cm2.Imagesweretaken withaCCDmounted20xobjectiveanddelaywas2.4␮s.Thescalebaris50␮minallfigures.

orintactforLIBTexperimentsprintingontoareceiver.Thisresults

inatransferwindowdefinedas:

FW= Fu−Fth

Fth

(2)

withFu and Fththerespectivemaximumandminimumfluence

forwhich flyersare ejectedor depositedinintactstate.FW for

thickflyersonGeand Siwasapproximately60%. For

compari-son,inanexperimentusingapolydimethylsiloxane-coatedglass

receiverandathinSU-8donorfromaSicarrier(flyersintransfer

werenotimaged),FWwas∼16%,comparedto∼38%for

shadowg-raphyexperiments,forflyersejectedfromthedonor.Thisindicates

thattheinfluenceofthereceivercontributestoareductionofthis

transferwindowbyapproximatelyafactoroftwo(≈38%/16%).As

shownpreviouslyforLIFT,thereductionoftransferwindowcanbe

explainedbyshockwavesreflectingoffthesurfaceofthereceiver

[33]ordestructionduetoimpactonthereceiver[49].Further,it

mayaswellbepossiblethatthereceivermightcauseaberrations

leadingtoimperfectimagingoftheobjectattheimageplanewhich

inturnwouldincreasethelikelihoodoffracturedflyerejection.

3.3. Transferregimesofflyers

Theinfluenceoflaserpulseenergy,andthusfluencedeliveredto

theLIBTtarget,onthevelocityandshapeofaflyer,isfurthershown

inimagesof flyerejectionevents. Fig.10 shows shadowgraphs

takenwitha100×objectivefromathinSU-8onsilicontargetat

delaysof3.4␮s.Fortheselectedfluencesof1.39J/cm2,1.69J/cm2

and2.05J/cm2propagationdistanceisdescribedapproximatelyby

thedatapresentedinFig.8.

Theflyerswiththesameconditionsasfortheoneshownin

Fig.10chaveadifferentprofilecomparedtotheotherflyers

con-firmingthedataofcraterdiametershowninFig.9.Theyhavea

smallerdiameterandappeartomissthethinrimseenintheother

flyersofFig.10.However,theyonlypropagatetoadistancesimilar

toaflyerejectedatafluenceof1.69J/cm2,hencenotalltheexcess

energydepositedintothetargetisusedforaccelerationoftheflyer

inadirectionawayfromthedonor.

Whenusinganobjectivewith20×magnificationwithathick

SU-8/Sitarget,debrisdistributionandfastparticlescanbebetter

detectedduetothelargerfieldofview.Fig.11showstransferevents

for low (1.39J/cm2), medium(2.05J/cm2) and high(3.46J/cm2)

fluences.Notethatforthesemediumfluences,intactflyersonly

occurredin∼50%oftransfereventsandwereneverseenforhigh

(7)

Fig.12.DistanceversusdelayforthickSU-8/Sianddifferenttransferregimes.Note thatforthetwohigherfluences,distancevaluesareshownforthemainfragments, whileforthelowestfluence,onlyintactflyersareshown.

Forlowfluencesinmorethan90%ofthecases,theflyerwas

intact.AsshowninFig.11,smallamountsofdebrispresumably

fromtheperimeter oftheshearedflyerarevisible.Astheflyer

appearstobeslightlysmallerthanshowninFig.9,weassumed

thatoneofthesourcesofsuchdebrisistheperimeteroftheflyer.

FormediumfluencesasfortheflyerinFig.11b,disintegrationof

themainflyerisapparentatadistanceofaround50␮m,the

num-berofsmallparticlesordebrishasincreased,andatthecentreof

theimage,anadditionalcompactandrelativelylargefeaturecanbe

seenwhichisconnectedwithalongstringofmaterialtothelower,

mainflyer.Suchastringorjetisanindicatorofmoltenmaterial

andcouldexplainthesaturationofthemainflyervelocitycaused

byachangeindonormaterialphaseandhencedifferent

mechan-icalproperties[50].Also,meltingofthecarrierattheserelatively

largefluencesislikelytooccur.

Forhighfluences, themoltenfeatures arestillvisible inthe

upperpartoftheimagetogetherwithalargequantityofsmall

par-ticles.Themainflyerisseentohavebrokenupinseveralpiecesina

typicalfashionfornon-intacttransfer.Forthetwohigherfluences,

seennearthecrater,residuallightemissionisvisible,originating

fromtheincidentlaserpulseastherelativelylongcameraexposure

timeincludesbothlaserpulseandflashlamppulseevents.

Fig.12 emphasises furtherthe differenttransfer regimesby

showingpropagationdistancesofintactflyersandlargefragments

ofthemainflyer.Thelargestextractedvelocitiesforfragmentsseen

athighfluenceswas∼40m/s.

4. Conclusions

Wehavedemonstratedthetime-resolvedshadowgraph

imag-ing of thin transparent epoxy-based polymer SU-8 films via

femtosecond laser-induced backward transfer. Flyer velocity,

transfer regimes and intact transfer window were determined

for different thicknesses (3.4␮m and 6.8␮m), delay times

(1.4–16.4␮s)andcarriersubstratesofsiliconandgermaniumfor

fluencesof 0.5–3.5J/cm2.Observedvelocities wereintherange

of 6–20m/s for different donor thicknesses, carriers and laser

fluences.We haveseen thatflyer velocityis afunctionof laser

fluencewitha gradientof 0.023±0.01m/smJ−1cm2 forGe and

0.014±0.01m/smJ−1cm2forSicarriersinintactstateandflyers

removedaroundthresholdfluence.However,forSicarriers and

largefluences,thecraterfoundinthedonor,theflyershapeand

reducedflyerpropagationvelocityindicateadifferentflyerfailure

regimethanforlowfluences.Also,wehavenotdetectedanyshock

waveswhichareknowntocompromiseflyerintegrityduringLIFT

experiments.Thereceiverhasshowntoberesponsiblefora

reduc-tionofthefluencetransferwindowbyapproximatelyafactorof

two.Amongthetestedcarriers,duetotheirrelativelylow

ejec-tionthresholdagermaniumcarrieris preferredover thesilicon

one.ThesefindingsarehelpfulforbetterunderstandingoftheLIBT

process,fore.g.futuremodelling,andtodetermineexperimental

parametersforLIBTprintingintactdeposits.

Acknowledgements

ThisworkwasfundedundertheUKEngineeringandPhysical

SciencesResearchCouncil(EPSRC)GrantsNos.EP/L022230/1and

EP/J008052/1.Theauthorsalsowouldliketoacknowledgefinancial

supportfromthestatebudgetbytheSlovenianResearchAgency

[ProgrammeNo.P2-0392].GoranMashanovichiskindly

acknowl-edgedforprovidinggermaniumsamples.Thedataforthiswork

areaccessiblethroughtheUniversityofSouthamptonInstitutional

ResearchRepository(DOI:10.5258/SOTON/398008).

References

[1]M.Vaezi,H.Seitz,S.Yang,Areviewon3Dmicro-additivemanufacturing technologies,Int.J.Adv.Manuf.Technol.67(2013)1721–1754,http://dx.doi. org/10.1007/s00170-012-4605-2.

[2]Y.Zhang,C.Liu,D.Whalley,Direct-writetechniquesformasklessproduction ofmicroelectronics:Areviewofcurrentstate-of-the-arttechnologies,in: 2009Int.Conf.Electron.Packag.Technol.HighDensityPackag.,IEEE,2009,pp. 497–503,http://dx.doi.org/10.1109/ICEPT.2009.5270702.

[3]A.delCampo,E.Arzt,Fabricationapproachesforgeneratingcomplex micro-andnanopatternsonpolymericsurfaces,Chem.Rev.108(2008)911–945, http://dx.doi.org/10.1021/cr050018y.

[4]J.A.Grant-Jacob,B.Mills,M.Feinaeugle,C.L.Sones,G.Oosterhuis,M.B. Hoppenbrouwers,R.W.Eason,Micron-scalecopperwiresprintedusing femtosecondlaser-inducedforwardtransferwithautomateddonor replenishment,Opt.Mater.Express3(2013)747,http://dx.doi.org/10.1364/ OME.3.000747.

[5]C.B.Arnold,P.Serra,A.Piqué,Laserdirect-writetechniquesforprintingof complexmaterials,MRSBull.32(2007)23–32,http://dx.doi.org/10.1557/ mrs2007.11.

[6]A.J.Birnbaum,H.Kim,N.A.Charipar,A.Pique,Laserprintingofmulti-layered polymer/metalheterostructuresforelectronicandMEMSdevices,Appl.Phys. A:Mater.Sci.Process.99(2010)711–716, http://dx.doi.org/10.1007/s00339-010-5743-8.

[7]C.L.Sones,K.S.Kaur,P.Ganguly,D.P.Banks,Y.J.Ying,R.W.Eason,S.Mailis, Laser-induced-forward-transfer:arapidprototypingtoolforfabricationof photonicdevices,Appl.Phys.A101(2010)333–338,http://dx.doi.org/10. 1007/s00339-010-5827-5.

[8]P.Serra,M.Colina,J.M.Fernandez-Pradas,L.Sevilla,J.L.Morenza,Preparation offunctionalDNAmicroarraysthroughlaser-inducedforwardtransfer,Appl. Phys.Lett.85(2004)1639–1641,http://dx.doi.org/10.1063/1.1787614. [9]M.Feinaeugle,C.L.Sones,E.Koukharenko,B.Gholipour,D.W.Hewak,R.W.

Eason,Laser-inducedforwardtransferofintactchalcogenidethinfilms: resultantmorphologyandthermoelectricproperties,Appl.Phys.A112(2013) 1073–1079,http://dx.doi.org/10.1007/s00339-012-7491-4.

[10]D.Munoz-Martin,C.F.Brasz,Y.Chen,M.Morales,C.B.Arnold,C.Molpeceres, Laser-inducedforwardtransferofhigh-viscositysilverpastes,Appl.Surf.Sci. 366(2016)389–396,http://dx.doi.org/10.1016/j.apsusc.2016.01.029. [11]E.Breckenfeld,H.Kim,R.C.Y.Auyeung,N.Charipar,P.Serra,A.Pique,

Laser-inducedforwardtransferofsilvernanopasteformicrowave

interconnects,Appl.Surf.Sci.331(2015)254–261,http://dx.doi.org/10.1016/ j.apsusc.2015.01.079.

[12]M.Zenou,Z.Kotler,Printingofmetallic3Dmicro-objectsbylaserinduced forwardtransfer,Opt.Express24(2016)1431,http://dx.doi.org/10.1364/OE. 24.001431.

[13]C.W.Visser,R.Pohl,C.Sun,G.-W.Römer,B.Huisin‘tVeld,D.Lohse,Toward 3Dprintingofpuremetalsbylaser-inducedforwardtransfer,Adv.Mater.27 (2015)4087–4092,http://dx.doi.org/10.1002/adma.201501058.

[14]BertHuisin’tVeld,L.Overmeyer,M.Schmidt,K.Wegener,A.Malshe,P. Bartolo,Microadditivemanufacturingusingultrashortlaserpulses,CIRP Ann.–Manuf.Technol.64(2015)701–724,http://dx.doi.org/10.1016/j.cirp. 2015.05.007.

[15]D.J.Heath,M.Feinaeugle,J.A.Grant-Jacob,B.Mills,R.W.Eason,Dynamic spatialpulseshapingviaadigitalmicromirrordeviceforpatterned laser-inducedforwardtransferofsolidpolymerfilms,Opt.Mater.Express5 (2015)1129,http://dx.doi.org/10.1364/OME.5.001129.

[16]J.Ihlemann,R.Weichenhain-Schriever,Patterneddepositionofthin SiOX-filmsbylaserinducedforwardtransfer,ThinSolidFilms550(2014) 521–524,http://dx.doi.org/10.1016/j.tsf.2013.10.128.

(8)

[17]A.I.Kuznetsov,A.B.Evlyukhin,C.Reinhardt,A.Seidel,R.Kiyan,W.Cheng,A. Ovsianikov,B.N.Chichkov,Laser-inducedtransferofmetallicnanodropletsfor plasmonicsandmetamaterialapplications,J.Opt.Soc.Am.B26(2009)B130, http://dx.doi.org/10.1364/josab.26.00b130.

[18]D.P.Banks,C.Grivas,J.D.Mills,R.W.Eason,I.Zergioti,Nanodropletsdeposited inmicroarraysbyfemtosecondTi:sapphirelaser-inducedforwardtransfer, ApplPhys.Lett.89(2006)193107,http://dx.doi.org/10.1063/1.2386921. [19]M.L.Levene,R.D.Scott,B.W.Siryj,Materialtransferrecording,Appl.Opt.9

(1970)2260,http://dx.doi.org/10.1364/AO.9.002260.

[20]U.Zywietz,A.B.Evlyukhin,C.Reinhardt,B.N.Chichkov,Laserprintingof siliconnanoparticleswithresonantopticalelectricandmagneticresponses, Nat.Commun.5(2014)3402,http://dx.doi.org/10.1038/ncomms4402. [21]A.I.Kuznetsov,J.Koch,B.N.Chichkov,Laser-inducedbackwardtransferof

goldnanodroplets,Opt.Express17(2009)18820,http://dx.doi.org/10.1364/ OE.17.018820.

[22]A.I.Kuznetsov,C.Unger,J.Koch,B.N.Chichkov,Laser-inducedjetformation anddropletejectionfromthinmetalfilms,Appl.Phys.A106(2012)479–487, http://dx.doi.org/10.1007/s00339-011-6747-8.

[23]B.Liu,Z.Hu,Y.Che,Ultrafastpulsedlasermicro-depositionprintingon transparentmedia,in:Micromach,MicromachiningandMicrofabrication ProcessTechnologyXV(2010)759002–759006,http://dx.doi.org/10.1117/12. 842806.

[24]S.G.Koulikov,D.D.Dlott,Ultrafastmicroscopyoflaserablationofrefractory materials:ultralowthresholdstress-inducedablation,J.Photochem. Photobiol.AChem.145(2001)183–194, http://dx.doi.org/10.1016/S1010-6030(01)00581-0.

[25]P.Papakonstantinou,N.A.Vainos,C.Fotakis,MicrofabricationbyUV femtosecondlaserablationofPt,Crandindiumoxidethinfilms,Appl.Surf. Sci.151(1999)159–170,http://dx.doi.org/10.1016/S0169-4332(99)00299-8. [26]H.Sakata,S.Chakraborty,M.Wakaki,PatterningofBi2O3filmsusing

laser-inducedforwardandbackwardtransfertechniques,Microelectron.Eng. 96(2012)56–60,http://dx.doi.org/10.1016/j.mee.2012.02.002.

[27]A.Luches,S.A.Mulenko,V.P.Veiko,A.P.Caricato,V.Chuiko,Y.V.Kudryavtsev, A.V.Lopato,A.A.Petrov,F.Romano,D.Valerini,Laser-assistedsynthesisof semiconductorchromiumdisilicidefilms,Appl.Surf.Sci.253(2007) 6512–6516,http://dx.doi.org/10.1016/j.apsusc.2007.01.023.

[28]V.P.Veiko,E.a.Shakhno,V.N.Smirnov,G.D.Nikishin,S.P.Rho,Laserablation andlocaldeposition:physicalmechanismsandapplicationfor

decontaminationofradioactivesurfaces,J.KoreanPhys.Soc.51(2007)345, http://dx.doi.org/10.3938/jkps.51.345.

[29]M.Feinaeugle,D.J.Heath,B.Mills,J.A.Grant-Jacob,G.Z.Mashanovich,R.W. Eason,Laser-inducedbackwardtransferofnanoimprintedpolymerelements, Appl.Phys.A.122(2016)398,http://dx.doi.org/10.1007/s00339-016-9953-6. [30]E.T.Karim,M.Shugaev,C.Wu,Z.Lin,R.F.Hainsey,L.V.Zhigilei,Atomistic

simulationstudyofshortpulselaserinteractionswithametaltargetunder conditionsofspatialconfinementbyatransparentoverlayer,J.Appl.Phys. 115(2014)183501,http://dx.doi.org/10.1063/1.4872245.

[31]D.A.Zayarnyi,A.A.Ionin,S.I.Kudryashov,S.V.Makarov,A.A.Rudenko,E.A. Drozdova,S.B.Odinokov,Specificfeaturesofsingle-pulsefemtosecondlaser micronandsubmicronablationofathinsilverfilmcoatedwitha micron-thickphotoresistlayer,Quantum.Electron.45(2015)462–466, http://dx.doi.org/10.1070/QE2015v045n05ABEH015788.

[32]C.Zhang,J.Yao,S.Lan,V.A.Trofimov,T.M.Lysak,Effectsofplasma confinementonthefemtosecondlaserablationofsilicon,Opt.Commun.308 (2013)54–63,http://dx.doi.org/10.1016/j.optcom.2013.06.052.

[33]R.Fardel,M.Nagel,F.Nuesch,T.Lippert,A.Wokaun,Laser-inducedforward transferoforganicLEDbuildingblocksstudiedbytime-resolved

shadowgraphy,J.Phys.Chem.C.114(2010)5617–5636,http://dx.doi.org/10. 1021/jp907387q.

[34]J.P.McDonald,J.A.Nees,S.M.Yalisove,Pump-probeimagingoffemtosecond pulsedlaserablationofsiliconwiththermallygrownoxidefilms,J.Appl. Phys.102(2007),http://dx.doi.org/10.1063/1.2778740.

[35]P.E.Dyer,Excimerlaserpolymerablation:twentyyearson,Appl.Phys.A: Mater.Sci.Process.77(2003)167–173, http://dx.doi.org/10.1007/s00339-003-2137-1.

[36]M.Malinauskas,M.Farsari,A.Piskarskas,S.Juodkazis,Ultrafastlaser nanostructuringofphotopolymers:adecadeofadvances,Phys.Rep.533 (2013)1–31,http://dx.doi.org/10.1016/j.physrep.2013.07.005. [37]B.N.Chichkov,C.Momma,S.Nolte,F.vonAlvensleben,A.Tunnermann,

Femtosecond,picosecondandnanosecondlaserablationofsolids,Appl.Phys. A:Materi.Sci.Process.63(1996)109–115.

[38]B.Mills,M.Feinaeugle,C.L.Sones,N.Rizvi,R.W.Eason,Sub-micron-scale femtosecondlaserablationusingadigitalmicromirrordevice,J.Micromech. Microeng.23(2013)35005,http://dx.doi.org/10.1088/0960-1317/23/3/ 035005.

[39]M.S.Rabasovi ´c,D. ˇSevi ´c,N.Luka ´c,M.Jezerˇsek,J.Moˇzina,P.Gregorˇci ´c, Evaluationoflaser-inducedthin-layerremovalbyusingshadowgraphyand laser-inducedbreakdownspectroscopy,Appl.Phys.A122(2016)186,http:// dx.doi.org/10.1007/s00339-016-9697-3.

[40]G.S.Settles,SchlierenandShadowgraphTechniques:VisualizingPhenomena inTransparentMedia,Springer-Verlag,Berlin,2006.

[41]Microchem,SU-8DataSheets,2016http://www.microchem.com/Prod-SU8. htm.

[42]M.Feinaeugle,A.P.Alloncle,P.Delaporte,C.L.Sones,R.W.Eason,

Time-resolvedshadowgraphimagingoffemtosecondlaser-inducedforward transferofsolidmaterials,Appl.Surf.Sci.258(2012)8475–8483,http://dx. doi.org/10.1016/j.apsusc.2012.04.101.

[43]K.S.Kaur,R.Fardel,T.C.May-Smith,M.Nagel,D.P.Banks,C.Grivas,T.Lippert, R.W.Eason,Shadowgraphicstudiesoftriazeneassistedlaser-inducedforward transferofceramicthinfilms,J.Appl.Phys.105(2009)113118–113119 http://link.aip.org/link/?JAP/105/113119/1.

[44]L.Rapp,C.Cibert,A.P.Alloncle,P.Delaporte,S.Nenon,C.Videlot-Ackermann, F.Fages,Comparativetimeresolvedshadowgraphicimagingstudiesof nanosecondandpicosecondlasertransferoforganicmaterials,XviiIntSymp. GasFlow,Chem.Lasers,High-PowerLasers7131(2009)71311L,http://dx.doi. org/10.1117/12.817481.

[45]R.Fardel,M.Nagel,F.Nuesch,T.Lippert,A.Wokaun,Shadowgraphy investigationoflaser-inducedforwardtransfer:frontsideandbackside ablationofthetriazenepolymersacrificiallayer,Appl.Surf.Sci.255(2009) 5430–5434http://www.sciencedirect.com/science/article/pii/

S0169433208018035.

[46]T.Mattle,J.Shaw-Stewart,A.Hintennach,C.W.Schneider,T.Lippert,A. Wokaun,Shadowgraphicinvestigationsintothelaser-inducedforward transferofdifferentSnO2precursorfilms,in:Appl.Surf.Sci.ElsevierB.V., 2013pp.77–8110.1016/j.apsusc.2012.11.146.

[47]K.Ravi-Chandar,J.Lu,B.Yang,Z.Zhu,Failuremodetransitionsinpolymers underhighstrainrateloading,Int.J.Fract.101(2000)33–72,http://dx.doi. org/10.1023/A:1007581101315.

[48]K.Brown,R.Conner,Y.Fu,H.Fujiwara,D.Dlott,Microscopicstatesofshocked polymers,AIPConfProc.(2012)1593–1596,http://dx.doi.org/10.1063/1. 3686589.

[49]M.Feinaeugle,P.Horak,C.L.Sones,T.Lippert,R.W.Eason,Polymer-coated compliantreceiversforintactlaser-inducedforwardtransferofthinfilms: experimentalresultsandmodelling,Appl.Phys.A116(2014)1939–1950, http://dx.doi.org/10.1007/s00339-014-8360-0.

[50]T.Kumada,H.Akagi,R.Itakura,T.Otobe,M.Nishikino,A.Yokoyama, Non-thermaleffectsonfemtosecondlaserablationofpolymersextracted fromtheoscillationoftime-resolvedreflectivity,ApplPhys.Lett.106(2015) 221605,http://dx.doi.org/10.1063/1.4921854.

Referenties

GERELATEERDE DOCUMENTEN

Therefore, if rather than crossing the spinodal, the temperature jump is carried out within the one phase region, causing a transition of the structure into a new state with higher

The phase diagram with two critical points is a rule for mixtures of low molar mass components, whereas the polymer blends usually show either LCST (most) or UCST.. Figure 4.1

The thermic blob exists as a compromise between entropically driven miscibility at large scales and enthalpically driven phase separation at

Feit is ook, dat als de velden verdwijnen er heel veel groen verloren gaat in Essendael en het veel drukker gaat worden voor onze 55 plussers!. ben ik aanwezig geweest bij

3 Soms heeft een hoofdstad van een provincie dezelfde naam als de

4 700 jaar geleden waren Kampen, Zwolle, Deventer en Zutphen heel belangrijke steden?. De steden handelden veel

[r]

Chinese schepen met handelswaar varen daarom vaak naar de