• No results found

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs

N/A
N/A
Protected

Academic year: 2021

Share "Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs"

Copied!
18
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Theoretical

Computer

Science

www.elsevier.com/locate/tcs

Induced

Subgraph

Isomorphism

on

proper

interval

and

bipartite

permutation

graphs

Pinar Heggernes

a

,

Pim van ’t Hof

a

,

Daniel Meister

b

,

,

Yngve Villanger

a

aDepartmentofInformatics,UniversityofBergen,P.O.Box7803,5020Bergen,Norway bTheoreticalComputerScience,UniversityofTrier,Germany

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received26January2012

Receivedinrevisedform6February2014 Accepted1October2014

Availableonline7October2014 CommunicatedbyG.Ausiello Keywords: Isomorphism Inducedsubgraphs Polynomial-time Fixed-parametertractable

Given twographs G and H asinput,the InducedSubgraphIsomorphism (ISI) problem istodecidewhetherG hasaninducedsubgraph thatisisomorphicto H.Thisproblem is NP-complete already when G and H are restricted to disjoint unions ofpaths, and consequentlyalso NP-complete onproper interval graphs and on bipartitepermutation graphs.We show that ISI can be solved in polynomial time onproper interval graphs andonbipartitepermutationgraphs,providedthat H isconnected.Asaconsequence,we obtainthatISIisfixed-parametertractableonthesetwographclasses,whenparametrised bythenumberofconnectedcomponentsof H.Ourresultscontrastandcomplementthe followingknown results:W[1]-hardnessofISI onintervalgraphs whenparametrisedby thenumber ofverticesof H, NP-completeness ofISI on connectedinterval graphs and on connected permutation graphs, and NP-completeness of SubgraphIsomorphism on connectedproperintervalgraphsandconnectedbipartitepermutationgraphs.

©2014ElsevierB.V.All rights reserved.

1. Introduction

Westudythefollowingclassicaldecisionproblemforundirectedgraphs,whichhasapplicationsinavarietyofpractical areas[8,9].

InducedSubgraphIsomorphism(ISI) Input: Twographs G andH .

Question: DoesG haveaninducedsubgraphisomorphictoH ?

Equivalently,thequestioniswhetherwecandeleteverticesandtheir incidentedgesfromG toobtainagraphisomorphic to H .ISIisageneralisationofseveralwell-knownproblemslike Clique, IndependentSet, LongestInducedPath,and Graph Isomorphism.As a consequenceofknownhardness results onsome oftheseproblems,ISIis NP-complete[9]aswell as W

[

1

]

-hardwhenparametrisedbythenumberofverticesinH [7].

ThisworkissupportedbytheResearchCouncilofNorway(NFRFRITEKgrant197548/V30).Apreliminaryversionoftheresultonproperinterval graphswaspresentedatISAAC2010[11].

*

Correspondingauthor.

E-mailaddresses:pinar.heggernes@ii.uib.no(P. Heggernes),pim.vanthof@ii.uib.no(P. van ’t Hof),daniel.meister@uni-trier.de(D. Meister), yngve.villanger@ii.uib.no(Y. Villanger).

http://dx.doi.org/10.1016/j.tcs.2014.10.002 0304-3975/©2014ElsevierB.V.All rights reserved.

(2)

Fig. 1. AnoverviewofthegraphclassesmentionedinthispaperandthecomplexitystatusofISIonthem.Here,“C→ D”istobeunderstoodas“Cisa subclassofD”.Bytheresultsofthispaper,ISIissolvableinpolynomialtimeonthegraphclasseswithlightgreyframes,whenH isconnected.Onthe graphclasseswithdarkgreyframes,itisknownfrompreviousworkthatISIisNP-completeevenwhenbothG andH areconnected.

Duetoitsimportance,ISIhasbeenstudiedonalargenumberofgraphclassesinpursuitofpolynomial-timesolvability; asummaryofsuchresultsisgiveninFig. 1.Unfortunately,theproblemturnsouttobenotoriouslydifficult,andonlyvery fewnon-trivialpolynomial-timecasesareknown:ISIcanbe solvedinpolynomialtimewhenG isaforestandH isatree

[17],whenG and H are2-connectedouterplanargraphs[19],andwhenG isatriviallyperfectgraphandH isathreshold graph[1].Onthenegative side,ISIremainsNP-completewhen G isatreeandH isaforest[9],when G isacubicplanar graphandH isapath[9],andwhen G and H arebothconnectedcographs[5]orevenconnectedtrivially perfectgraphs

[1].Infact,ISIisNP-complete alreadywhen G and H aredisjointunions ofpaths [9,5].Thislast NP-completeness result directlyappliestoall hereditarygraphclassesthatcontainarbitrarily longinducedpaths.Inparticular,ISIisNP-complete whenG andH areproperintervalgraphsorwhenG and H arebipartitepermutationgraphs.

Inthispaper,weshowthatISIcanbesolvedinpolynomialtimewhentheinputgraphsareproperintervalgraphsand whenthey are bipartite permutationgraphs,provided that thesecond inputgraph H is connected.Incontrast,note that thesameisnottrueforintervalgraphsorforpermutationgraphs.Inparticular,evenifbothinputgraphsareconnected,ISI remainsNP-completeonintervalgraphs[16] andonpermutationgraphs[5].Anothercontrastisgivenbythefactthatthe relatedproblem SubgraphIsomorphism,whereoneasksfora subgraphratherthanan inducedsubgraph,isNP-complete whenthetwoinputgraphsarebothconnectedproperintervalgraphsorbothconnectedbipartitepermutationgraphs[14]. Toobtain ourpolynomial-timealgorithms, we first solvethe followingproblem. Giventwo graphs G and H ,a vertex ordering

σ

G and a colouring fG for G,and avertex ordering

σ

H anda colouring fH for H , decidewhether thereis an isomorphismbetweenH andaninducedsubgraphofG thatpreservesthegivenvertexorderingsandmapstheverticesof H toverticesofG ofthesamecolour.Inthiscontext,preservingtheorderingsmeansthat theorderoftwoverticesofH accordingto

σ

H isthesameastheorderoftheir imagesinG accordingto

σ

G.We showthat if

σ

G and fG satisfy some specificconditions,thenwecandecideinpolynomialtimewhethersuchanisomorphismexists.Ourmainresultsarethen obtainedby showingthatproperintervalgraphsandbipartitepermutationgraphshavevertexorderingsthatsatisfy these conditions.

OurresultsextendtoshowingthatISIisfixed-parametertractableonproperintervalgraphsandonbipartitepermutation graphs,whentheparameteristhenumberofconnectedcomponentsofthesecond inputgraph H .Thiscomplementsthe resultsof[16],whereit isshownthatISIis W

[

1

]

-hard oninterval graphswhentheparameteris thenumberofvertices of H ,butitisfixed-parametertractableon intervalgraphswhentheparameteristhedifferencebetweenthenumbersof verticesofthetwoinputgraphs.TocompletethelistofknownparametrisedresultsonISI,let usmentionthatwhenthe parameteristhe numberofverticesof H ,ISIis fixed-parametertractable whenbothinput graphsare planar[8]ortheir maximumvertexdegreeisboundedbyaconstant[3].

Ourpaperis organisedasfollows.Basic graph-theoretic definitionsandnotation are givenin Section 2.We solvethe above-mentionedproblemongraphswithcolouringsandvertexorderingsinSection3.Themainresultsonproperinterval graphs and bipartite permutation graphs are given in Sections 4 and 5, respectively. We end with the fixed-parameter algorithmsinSection6andconcludingremarks.

(3)

2. Definitionsandnotation

We considersimplefiniteundirectedgraphs.Agraph G isan orderedpair

(

V

,

E

)

,andV

=

V

(

G

)

isthevertexset ofG andE

=

E

(

G

)

istheedgeset ofG.EdgesofG aredenotedasuv,whereu andv areverticesofG.Ifuv isanedgeofG then u andv areadjacent andu isaneighbour ofv andv isaneighbour ofu inG.Otherwise,ifuv isnotanedgeofG,u and v arenon-adjacent inG.The(open)neighbourhood ofavertex u inG isthesetoftheneighboursofu inG,anditisdenoted as NG

(

u

)

.Theclosedneighbourhood ofu is NG[u

]

=

defNG

(

u

)

∪ {

u

}

.For X

V

(

G

)

,thesubgraphofG inducedby X , denoted asG

[

X

]

,isthegraphonvertexset X ,andforeveryvertexpair u

,

v from X ,uv isanedgeofG

[

X

]

ifandonlyifuv isan edgeofG.Agraph Gisaninducedsubgraph ofG ifthereexistsaset X

V

(

G

)

suchthat G

=

G

[

X

]

.Foravertex u ofG, we writeG

u to denotetheinducedsubgraph G

[

V

(

G

)

\ {

u

}]

ofG,thatis,G

u isthegraphobtainedfromG bydeleting vertex u.Aset X ofverticesofG isanindependentset of G iftheverticesin X arepairwisenon-adjacentinG.

Let G be a graph.Let k bean integer withk

0 and let u

,

v be a vertex pairof G. A u

,

v-pathofG oflength k is a sequence

(

x0

,

. . . ,

xk

)

ofpairwisedifferentverticesofG suchthat x0

=

u andxk

=

v andxixi+1

E

(

G

)

forevery 0

i

<

k. Graph G isconnected if G hasau

,

v-pathforeveryvertexpair u

,

v ofG;otherwise,ifthereisavertexpair u

,

v ofG such that G hasnou

,

v-path,G iscalleddisconnected.Aconnectedcomponent of G isamaximalconnectedsubgraphofG.

Let G and H betwo graphs. We saythat H is isomorphicto G if thereis a bijective mapping

ϕ

from V

(

H

)

to V

(

G

)

such that foreveryvertexpair u

,

v of H ,uv

E

(

H

)

ifandonlyif

ϕ

(

u

)

ϕ

(

v

)

E

(

G

)

.Inthiscase, mapping

ϕ

is calledan isomorphism from H to G.In Section 3,we will decide the existence ofisomorphisms that satisfy additional conditions, namelythat are requiredtorespectvertexorderings andvertexcolours.Letk bean integerwithk

1.Ak-colouring for G is amapping f that assigns a colourfrom theset

{

1

,

2

,

. . . ,

k

}

toeach vertexof G.Acolouring for G isa k-colouring for G forsome k.Acolouring f forG isproper ifforeveryedge uv ofG, f

(

u

)

=

f

(

v

)

.Avertexordering forG isalinear arrangement

σ

=

u1

,

. . . ,

un oftheverticesofG.Thereverse of

σ

isthevertexordering

un

,

. . . ,

u1

.Foravertexpair x

,

y ofG,wewritex



σ y ifx

=

uiandy

=

ujforsomeindices i

,

j andi

j.If x

=

y andthusi

<

j,wewritex

σ y.If x

σ y, thenwesaythat x appearstotheleftof y intheordering

σ

,and y appearstotherightof x in

σ

.

Agraphclassishereditary ifitisclosedundertakinginduced subgraphs.Allgraphclassesmentionedinthispaperare hereditary[2,10].Furthermore,allgraphclassesinthispaperadmitwell-knowncharacterisationsthroughvertexorderings, andwe willoftendefine graphclassesusingthesecharacterisations. Agraph G is acomparabilitygraph ifit hasavertex ordering

σ

such that for every vertextriple u

,

v

,

w of G with u

σ v

σ w , uv

E

(

G

)

and v w

E

(

G

)

implies u w

E

(

G

)

[10].Suchvertexorderingsarecalledcomparabilityorderings.Agraphisacocomparabilitygraph ifitscomplementisa comparabilitygraph.Equivalently,agraph G isacocomparabilitygraphifandonlyifithasavertexordering

σ

suchthatfor everyvertextriple u

,

v

,

w ofG withu

σ v

σ w ,u w

E

(

G

)

impliesuv

E

(

G

)

orv w

E

(

G

)

[13].Suchvertexorderings arecalledcocomparabilityorderings.Agraphisbipartite ifithasaproper2-colouring,i.e.,ifitsvertexsetcanbepartitioned into two independent sets. Bipartite graphs are comparability graphs. Proper interval graphs andbipartite permutation graphs are both subclassesof cocomparabilitygraphs [2,10]; seealso Fig. 1. The definitionsor characterisations, through vertexorderings, andnecessarypropertiesof properinterval graphsandofbipartite permutation graphswillbe givenat thebeginnings ofSections4and5.Comprehensivesurveysonpropertiesoftheconsidered graphclassescanbe foundin monographssuchas[2]and[10].

Finally, forabriefbackgroundon parametrisedcomplexity, aparametrisedproblem hasapartofits input, typicallyan integer,identifiedastheparameter.Aparametrisedproblemisfixed-parametertractable ifthereisanalgorithmforsolvingit intime f

(

k

)

·

nO(1),wheren isthetotalinputsize,k istheparameter,and f isafunctionthatdependsonlyonk andthat doesnot involven.There isahierarchyofintractableparametrised problemclasses[7].Fortheresultsmentionedinthis paper,itissufficienttonoticethataparametrisedproblemisunlikelytobefixed-parametertractableifitisW

[

1

]

-hard.

3. ISIongraphswithcolouringsandvertexorderings

LetG and H bearbitrarygraphsandlet

σ

beavertexorderingforG.AssumethatG hasaninducedsubgraph Gsuch that H isisomorphictoG.Then,thereareavertexordering

τ

forH andatotalinjectivemapping

ϕ

:

V

(

H

)

V

(

G

)

such thatthefollowingtwoconditionsaresatisfiedforeveryorderedvertexpair u

,

v of H :

1) uv

E

(

H

)

ifandonlyif

ϕ

(

u

)

ϕ

(

v

)

E

(

G

)

2) u

τ v ifandonlyif

ϕ

(

u

)

σ

ϕ

(

v

)

.

The firstcondition isthe isomorphismconditionfor H and G.Forthesecond condition, observethat

τ

can beobtained from

σ

byrestrictiontotheverticesofGandapplying

ϕ

−1.Inthissection,wewillconsiderthistype ofanisomorphism problem.

Themainresultofthissectionisanefficientalgorithmthatdecidestheexistenceofanisomorphismthatrespectsgiven colouringsandvertexorderings.LetG and H be twographs,andlet

σ

and

τ

bevertexorderings forrespectivelyG and H .Let

ϕ

:

V

(

H

)

V

(

G

)

beatotalmapping.Ifforevery orderedvertexpair u

,

v of H ,u

τ v implies

ϕ

(

u

)

σ

ϕ

(

v

)

then wesaythat

ϕ

is

(

σ

,

τ

)

-monotone.Observethata

(

σ

,

τ

)

-monotonemappingisinjective.Assumethat H isisomorphictoG, andlet

ϕ

:

V

(

H

)

V

(

G

)

beanisomorphismfromH toG.If

ϕ

is

(

σ

,

τ

)

-monotone,wesaythat

ϕ

isa

(

σ

,

τ

)

-isomorphism andthat H is

(

σ

,

τ

)

-isomorphic to G.Wesaythat H is

(

σ

,

τ

)

-isomorphictoaninducedsubgraph ofG ifthereisaninduced

(4)

Fig. 2. Depictedisavertexorderingforagraph.Theverticesofthegrapharecolouredwiththecolours “triangle”and“circle”.Weiterativelyapplythe predecessorfunction pred,startingattherightmostvertexofcolour “triangle”,anditlistsallverticeswithcolour “triangle”,intheorderofappearancein thevertexordering,fromrighttoleft.

subgraph G of G such that H is

(

σ



,

τ

)

-isomorphic to G, where

σ

 is the restriction of

σ

to the vertices of G. Our algorithmic resultofthissection aimsatdecidingforgivengraphs G and H andvertexorderings

σ

and

τ

whetherH is

(

σ

,

τ

)

-isomorphictoaninducedsubgraphofG.

In additionto the vertexordering monotonicity ofthe desiredisomorphism, we alsoask for isomorphisms that map betweenequalclassesofvertices.Weformalisethisclassnotionbycolours.LetG and H betwographsandlet fG and fH becolouringsforrespectivelyG andH .Let

ϕ

:

V

(

H

)

V

(

G

)

beanarbitrarytotalmapping.Wecall

ϕ

colour-preserving for

(

G

,

fG

)

and

(

H

,

fH

)

,if fH

(

x

)

=

fG

(

ϕ

(

x

))

foreveryvertex x ofH .Ouralgorithmwilldecidetheexistenceofcolour-preserving isomorphisms.

Beforeweformallypresentouralgorithm,wegiveaninformaldescription.Thealgorithmreceivesasinputtwographs G and H , as well as two colourings fG and fH and two vertex orderings

σ

and

τ

for respectively G and H . The algo-rithmdecideswhetherH iscolour-preserving

(

σ

,

τ

)

-isomorphictoaninducedsubgraphofG,whichmeansthatthereisa

(

σ

,

τ

)

-isomorphismfromH toan inducedsubgraph ofG thatisalsocolour-preserving.Fortheinitialstep,thealgorithm mapstheverticesofH totherightmostpossibleverticesofG,onlyrespectingthecolouringsandvertexorderings.Wecan saythat the algorithmbegins withthe rightmostcolour-preserving

(

σ

,

τ

)

-monotonemapping. Now,inrounds, the algo-rithmcheckswhetherthecurrentcolour-preserving

(

σ

,

τ

)

-monotonemappingisalsoanisomorphism.Ifyes,thealgorithm hasfound acolour-preserving

(

σ

,

τ

)

-monotoneisomorphismfrom H to an induced subgraphof G.Otherwise,there isa “conflicting” vertexpair u

,

v of H that violatesthe isomorphismcondition,which meansthat u andv are adjacentin H whiletheirimagesarenon-adjacentinG,orvice-versa.Basedonthesetwopossiblecases,thealgorithmcomputesanew colour-preserving

(

σ

,

τ

)

-monotonemappingbypushingu orv furtherleft,andentersanewround.

Thecrucialauxiliary operationis thepushoperationfora vertex.Intuitively,thepushoperation appliedtoa vertex u findstheclosestvertextotheleftofu ofaspecifiedcolour,ifavertexofthatcolourexists.Webasethepushoperationon the“predecessor”function.LetG beagraph,let f beacolouringforG andlet

σ

=

x1

,

. . . ,

xn beavertexorderingforG. Leta beavertexpositionindexwith1

a

n andletc beacolour.Then,

pred(σ,f)

(

a

,

c

)

=

defmax



a

:

1

a

<

a and f

(

xa

)

=

c



∪ {

0

}



.

Inwords,whengivenasinputavertexposition a andacolour c,thepredecessorfunction pred(σ,f)considersallvertices

totheleftofxa invertexordering

σ

thathavecolour c anditoutputsthelargestsuchposition,unlessnovertextotheleft ofxain

σ

hascolour c,inwhichcaseitoutputs 0.Notethatxaitselfdoesnotneedtohavecolour c.Asanexampleforthe iteratedapplicationofpred toagraphwitha2-colouring,Fig. 2indicatesthepredecessorofeachtriangle-colouredvertex. We arenow readytopresentthealgorithm. Itis calledOrderedInducedSubgraph, andwe oftenuseOISforshort.It receivesasinputa6-tuple

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

ofthefollowingcomponents:

G isagraph, fG isacolouringforG,and

σ

isavertexorderingforG

H isagraph, fH isacolouringforH ,and

τ

isavertexorderingof H .

ThealgorithmdecideswhetherH iscolour-preserving

(

σ

,

τ

)

-isomorphictoaninducedsubgraphofG. Algorithm OrderedInducedSubgraph (OIS)

Input A graph G with colouring fG and vertex ordering

σ

=

x1

, . . . ,

xn ; a graph H with colouring fH and vertex ordering

τ

=

y1

, . . . ,

yr . begin

if fG

(

xi

)

=

fH

(

yr

)

for every 1

i

n then reject end if;

let arbe the largest vertex position index such that fG

(

xar

)

=

fH

(

yr

)

;

for i

=

r

1 downto 1 do let ai

=

pred(σ,fG)

(

ai+1

,

fH

(

yi

))

end for;

if a1

=

0 then reject end if;

while H is not

(

σ

,

τ

)

-isomorphic to G

[{

xa1

, . . . ,

xar

}]

do

let i,j be a vertex position index pair with 1

i

<

j

r such that yiyj

/

E

(

H

)

if and only if xaixaj

E

(

G

)

;

if yiyj

/

E

(

H

)

then push

(

i

)

(5)

push

(

j

)

end if end while;

return

(

a1

, . . . ,

ar

)

and accept

end. Subroutine push(b

)

begin set ab

=

pred(σ,fG)

(

ab

,

fH

(

yb

))

; while ( ab

ab−1 and b

2 ) do set ab−1

=

pred(σ,fG)

(

ab

,

fH

(

yb−1

))

; set b

=

b

1 end while;

if a1

=

0 then reject end if end.

The algorithm consists of a main procedure and a subroutine called push. The main procedure iteratively computes a sequence

a

0

,

. . . ,

a

h

ofvertexpositionindextuples,andeachsuch tupleisoftheform

(

a

1

,

. . . ,

ar

)

.Noteherethat input graph H hasr vertices.The for loopofthemainprocedurecomputestheinitialisingtuple

a

0,andthe while loopcomputes the rest of the tuples

a

1

,

. . . ,

a

h. Note that only tuple

a

h is output, andthis is done only if the algorithm accepts. An execution of the while loop body of the main procedure is called a round. For an integer e

0, the index tuple

a

e

=

(

ae1

,

. . . ,

aer

)

istheresultofround e,andthevaluesofae1

,

. . . ,

aer arethevaluesofrespectivelya1

,

. . . ,

ar ofthe algorithm attheendofround e,inparticular,aftertheapplicationofSubroutine push.Theexecutionofthe for loopisequivalentto round 0.Fortwo r-tuples

b

= (

b1

,

. . . ,

br

)

and

c

= (

c1

,

. . . ,

cr

)

,we write

b

≤ c

ifbi

ci forevery1

i

r, andwewrite

b

< c

if

b

≤ c

andbi

<

ciforsome1

i

r.

We now analysethecorrectness ofthealgorithm. Wedoour analysisintwo steps:first,we considerthe correctness ofan acceptdecision, andsecond, weconsiderthecorrectnessofarejectdecision. Wewillseethatan acceptdecisionis always correct(Lemma 3.1), andwe will see that a rejectdecision iscorrect incasethe input satisfiessome conditions (Lemma 3.3).

Lemma3.1.LetG beagraphwithcolouring fGandvertexordering

σ

=

x1

,

. . . ,

xn ,andletH beagraphwithcolouring fH and vertexordering

τ

=

y1

,

. . . ,

yr .WhenAlgorithm OIS isrunoninput

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

,thefollowingholds:

1) forevery0

e

h,where

a

e

= (

ae1

,

. . . ,

ae

r

)

: ifae1

1 thena e

1

<

· · · <

aer 2) forevery0

e

h,where

a

e

= (

ae1

,

. . . ,

aer

)

: ifae1

1 thenfH

(

yi

)

=

fG

(

xae

i

)

forevery1

i

r 3) forevery1

e

h:

a

e

< a

e−1

4) if OIS accepts on input

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

and outputs

(

a1

,

. . . ,

ar

)

, then H is colour-preserving

(

σ

,

τ

)

-isomorphic to G

[{

xa1

,

. . . ,

xar

}]

.

Proof. Let

a

0

,

. . . ,

a

h

bethecomputedvertexpositionindextuplesequence.

We prove statements 1 and2 simultaneously, by induction on e. Lete

=

0, andassume that a0

1

1.Then, fH

(

yr

)

=

fG

(

xa0

r

)

duetothechoice ofa

0

r,anda0i

<

a 0

i+1 and fG

(

xa0i

)

=

fH

(

yi

)

forevery 1

i

<

r, accordingtothedefinitionofthe predecessorfunction pred.Thus,

a

0 satisfiesthetwoconditions.

Now, let e

1, assume that ae1

1, and assume that

a

e−1 satisfies the two conditions. The new index tuple

a

e is computed during an executionof the while loop body, thus, it is the resultof an execution ofSubroutine push. Since ae1−1

<

· · · <

aer−1byassumption,theiteratedapplicationofthepredecessorfunctioninSubroutine push yieldsae1

<

· · · <

aer. Itiscrucialtorecallourassumptionaboutae1

1 here.Thesameassumptionalsoimplies fG

(

xae

i

)

=

fG

(

xaei−1

)

=

fH

(

yi

)

for every 1

i

r, whichis duetothedefinition ofpred andourassumption about

a

e−1.Thus,

a

e indeedsatisfiesthetwo conditions.

We prove statement 3.Let1

e

h, andweconsider

a

e−1 and

a

e. Since

a

e isobtainedfrom

a

e−1 by an application of Subroutine push,

a

e−1

≤ a

e is a directconsequence ofpush andthe propertiesof thepredecessor function pred, and

a

e−1

= a

e followsfromthefirstassignmentinpush.

Weprovestatement 4.AssumethatOISacceptsoninput

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

.Then,a0

1

1,andround h isthelastfully executed round,andah

1

1. So, H is

(

σ

,

τ

)

-isomorphic to G

[{

xah

1

,

. . . ,

xahr

}]

,andaccordingto the resultsof statements 1 and 2, H iscolour-preserving

(

σ

,

τ

)

-isomorphictoG

[{

xah

1

,

. . . ,

xahr

}]

.

2

(6)

Fig. 3. AnillustrationoftheleftandrightumbrellaconditionsofDefinition 3.2.Thevertices u,v,w satisfyuσvσw,andwehaveverticesoftwo

colours,namelyblackandwhite.

Forthesecondsteptowardacorrectnessproofforthealgorithm,weconsidertherejectionbehaviourofthealgorithm. Beforeweproceedwiththisstep,wemakesomegeneralobservations.LetG andH betwographs,andlet

σ

and

τ

be ver-texorderingsforrespectivelyG and H .ObservethatitcanbedecidedinpolynomialtimewhetherH is

(

σ

,

τ

)

-isomorphic to G,since only one mappingfrom V

(

H

)

to V

(

G

)

is possible.On theother hand,when generalisingthe problemto in-ducedsubgraphs,decidingwhetherH is

(

σ

,

τ

)

-isomorphictoaninducedsubgraphofG isNP-completeongeneralgraphs. A straightforward reduction canbe constructedfrom Clique. And to fullysatisfy the setting ofour specialisomorphism problem, we can additionally equip G and H with a 1-colouring.As a consequence, we cannot expect ouralgorithm to workcorrectlyonallpossibleinputs.Werestrictourinputsandrequirethemtosatisfytwospecialconditions.Thesetwo conditionsaredefinednext.

Definition3.2.LetG beagraph,let f beacolouringforG,andlet

σ

beavertexorderingfor G.

1)

(

G

,

f

,

σ

)

satisfiestheleftumbrellacondition ifforeveryvertextriple u

,

v

,

w ofG withu

σ v

σ w and f

(

v

)

=

f

(

w

)

, u w

E

(

G

)

impliesuv

E

(

G

)

.

2)

(

G

,

f

,

σ

)

satisfiestherightumbrellacondition ifforeveryvertextripleu

,

v

,

w ofG withu

σ v

σ w and f

(

u

)

=

f

(

v

)

, u w

E

(

G

)

impliesv w

E

(

G

)

.

Observethatthetwoumbrellaconditionsaresymmetric,whichmeansthat

(

G

,

f

,

σ

)

satisfiestheleftumbrellacondition ifandonlyif

(

G

,

f

,

σ

R

)

satisfiestherightumbrellacondition,where

σ

R isthereverseof

σ

.Anillustratingdescriptionof thetwoumbrellaconditionsisgiveninFig. 3.

Lemma3.3.LetG beagraphwithcolouring fG andvertexordering

σ

=

x1

,

. . . ,

xn suchthat

(

G

,

fG

,

σ

)

satisfiestheleftand rightumbrellaconditions,andlet H beagraphwithcolouring fH andvertexordering

τ

=

y1

,

. . . ,

yr .IfAlgorithm OIS rejects input

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

,thenH isnotcolour-preserving

(

σ

,

τ

)

-isomorphictoanyinducedsubgraphofG.

Proof. Recall thedefinitionsprecedingLemma 3.1 andthe technicalresultsfromLemma 3.1;we willmake heavyuse of these throughoutthe proof. Let

a

0

,

. . . ,

a

h

be the computedindex tuplesequence. We prove the contraposition ofthe statementofthelemma.Let

σ

=

x1

,

. . . ,

xn and

τ

=

y1

,

. . . ,

yr .

WeassumethatH iscolour-preserving

(

σ

,

τ

)

-isomorphictoaninducedsubgraphofG.Then,thereareindices d1

,

. . . ,

dr with1

d1

<

· · · <

dr

n suchthatH iscolour-preserving

(

σ

,

τ

)

-isomorphictoG

[{

xd1

,

. . . ,

xdr

}]

.Recallthatthisparticularly means fH

(

yi

)

=

fG

(

xdi

)

forevery1

i

r.Welet

d

=

def

(

d1

,

. . . ,

dr

)

.Itwillbeimportantlaterthat

di

pred(σ,fG)



di+1

,

fH

(

yi

)



istrueforevery1

i

<

r.We showthatOISacceptswithoutputtuple

a

h andthat

d

≤ a

h holds.Toprovethe result,we showbyinductionone that

d

≤ a

e holds.

Inductionbase

Recallthechoiceof

d

andthedefinitionof

a

0,andobservethatthefollowingholds:

fG

(

xdr

)

=

fG

(

xa0

r

)

and dr

a

0 r

.

Weconsidertheothercomponentsof

d

and

a

0.Let1

i

<

r.RecallfromtheinitialisingstepofOIS:

a0i

=

pred(σ,fG)



a0i+1

,

fH

(

yi

)



.

Itfollowsthata0i

<

ai0+1and fG

(

xj

)

=

fH

(

yi

)

,foreverya0i

<

j

<

a 0

i+1.Sincedi

<

di+1

a0i+1and fG

(

xdi

)

=

fH

(

yi

)

,itfollows thatdi

a0i isthecase.Weconclude

d

≤ a

0,whichprovestheinductionbase.

Inductionstep

We consideran arbitraryround e, for0

e

<

h.We assume

d

≤ a

e,andwe show

d

≤ a

e+1.Suppose fora contradiction that

d

≤ a

e+1.Then,thereexists anindex t with1

t

r suchthat aet+1

<

dt.Due totheassumption

d

≤ a

e,thismeans aet+1

<

dt

aet.

(7)

Wemakesomepreparations.Recallthat

a

e+1isobtainedfrom

a

e byanapplicationofSubroutine push.Letp

,

q bethe conflictingindexpairchosen atthebeginningofround e

+

1,andwecanassume p

<

q.Accordingtothechoiceofp and q,itholds: ypyq

/

E

(

H

)

ifandonlyif xae

pxaeq

E

(

G

)

.Recallthatpush isinvokedwith p or q.Letb bethenumberpush isinvokedwith.The followingisa simpleobservationfromthedefinitionofpush:ae+1

i

=

aei foreveryb

<

i

r. Asanas simpleasimportantconsequence:t

b.Furthermore,accordingtopush:

aei+11

=

pred(σ,fG)



aei+1

,

fH

(

yi−1

)



foreveryt

<

i

b.

We consider the valuesof dt

,

. . . ,

db and aet+1

,

. . . ,

a e+1

b . Let i be an indexwitht

<

i

b,andassume di

a e+1 i . The monotonicityofthepredecessorfunction pred(σ,fG)shows:

pred(σ,fG)



di

,

fH

(

yi−1

)



pred(σ,fG)



aei+1

,

fH

(

yi−1

)



,

whichimplies di−1

pred(σ,fG)



di

,

fH

(

yi−1

)



pred(σ,fG)



aei+1

,

fH

(

yi−1

)



=

aei+11

,

sothatdi

aei+1 impliesdi−1

aei−+11.Fromthis,weconcludethatdb

aeb+1 impliesdt

ate+1.Sinceate+1

<

dt accordingto ourassumptions,wecanconcludeaeb+1

<

db,andthus,aeb+1

<

db

aeb.Furthermore,since

fG

(

xae+1 b

)

=

fG

(

xdb

)

=

fG

(

xa e b

)

=

fH

(

yb

)

and a e+1 b

=

pred(σ,fG)



aeb

,

fH

(

yb

)



,

weconcludedb

=

aeb.Informally,thismeansthatxae

b isacorrectchoiceforyb.

Weemploydb

=

abe toconstructthedesiredcontradiction.Wedistinguishbetweenthetwo casesaboutthevalue ofb: eitherb

=

p orb

=

q.

Case1.pushisinvokedwithparametervalue b

=

p.

Proofofthecase. Wehavethefollowingsituation:

ypyq

/

E

(

H

)

;

xdpxdq

/

E

(

G

)

;

xaepxaeq

E

(

G

)

;

dp

=

a

e

p

;

p

=

b

<

q

.

Recallfromtheabovethatb

=

p anddb

=

aebimpliesdp

=

aep.Sinceaep

=

dp

<

dq

aeqandxdpxdq

/

E

(

G

)

andxdpxaeq

E

(

G

)

, itclearlyfollowsdq

=

aeq,sothataep

=

dp

<

dq

<

aeq musthold.

Weconstructthedesiredcontradiction.Observethat fG

(

xdq

)

=

fG

(

xaeq

)

.Sincexaepxaeq

E

(

G

)

andsince

(

G

,

fG

,

σ

)

satisfies theleftumbrellacondition,itfollowsthat xdpxdq

E

(

G

)

musthold,contradictingtheobservedsituation.

2

Case2.pushisinvokedwithparametervalue b

=

q.

Proofofthecase. Wehavethefollowingsituation:

ypyq

E

(

H

);

xdpxdq

E

(

G

);

xaepxaeq

/

E

(

G

);

dq

=

a

e

q

;

p

<

q

=

b

.

Recallfromtheabovethatb

=

q anddb

=

aebimpliesdq

=

a

e

q.Sincedp

aep

<

aeq

=

dqandxdpxdq

E

(

G

)

andxapexdq

/

E

(

G

)

, itclearlyfollowsdp

=

aep,sothatdp

<

aep

<

aqe

=

dqmusthold.

Since xaepxaeq

/

E

(

G

)

and fG

(

xdp

)

=

fG

(

xaep

)

and since

(

G

,

fG

,

σ

)

satisfies the rightumbrella condition, it followsthat

xdpxdq

/

E

(

G

)

,whichgivesthedesiredcontradiction.

2

Wesummarisetheshownresults.Wehaveproved

d

≤ a

h,and

a

h

<

· · · < a

0 isduetostatement 3ofLemma 3.1.So,OIS doesnotreject,whichmeansthatOISaccepts.

2

Corollary3.4.LetG beagraphwithcolouring fG andvertexordering

σ

=

x1

,

. . . ,

xn suchthat

(

G

,

fG

,

σ

)

satisfiestheleftand right umbrellaconditions,andlet H beagraph withcolouring fH andvertexordering

τ

=

y1

,

. . . ,

yr .Algorithm OIS on in-put

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

decidesinpolynomialtimewhetherH iscolour-preserving

(

σ

,

τ

)

-isomorphictoaninducedsubgraphof G.

Proof. Thecorrectnessofthealgorithmisthejoinedresultofstatement 4ofLemma 3.1andofLemma 3.3.

We consider therunning timeof thealgorithm. Eachround ofthealgorithm haspolynomial running time,andsince

a

h

<

· · · < a

1

< a

0forthecomputedsequence

a

0

,

. . . ,

a

h

ofvertexpositionindextuplesduetostatement 3ofLemma 3.1, itremainstoboundparameter h.Thevectorsumsaredecreasingwithincreasingindexanda0

1

+ · · · +

a0r

r

·

n,sothatwe concludeh

n2 asanupperboundonthenumberofexecutedrounds.

2

(8)

ondglance,suchrestrictionsareinavoidable,aswealreadydiscussedinthissection.WewillapplyOIStosolvetheinduced subgraph isomorphismproblemonproper intervalgraphs andbipartite permutationgraphs. Andfor thesegraphclasses, wecanchooseinputsthatinfactsatisfythetwoconditionsnaturally.

WeconsiderOISmoreclosely.IfOISacceptsthenitalsooutputsavertexpositionindextuple,namely

a

h,whichdefines a colour-preservingmonotone induced subgraphisomorphism,accordingtostatement 4ofLemma 3.1.Let

d

be an index tuplethatdefinesanarbitrarycolour-preservingmonotoneinducedsubgraphisomorphism.TheproofofLemma 3.3shows that

d

≤ a

hholds.Wecanthereforesaythattheoutputindextupledefinesthe“maximum”or“rightmost”colour-preserving monotoneinducedsubgraphisomorphism.Thisisausefulobservation,usefulwhenaskingforisomorphismsofveryspecial properties.

Another interesting observation about OIS concerns the chosen conflicting index pair i

,

j. The algorithm chooses an arbitrarysuchindexpairamongallpossibleconflictingindexpairs,andtheresultofthealgorithm,acceptanceorrejection as well as the output index tuple, is not influenced by the actual choice. This is noteworthy for theoretical as well as implementation aspects.

Finally, consider the related subgraph isomorphism problem: given two graphs G and H , decide whether H is iso-morphic to a (notnecessarily induced) subgraph G of G. We can modify OIS to decide this problem: conflicting index pairs are those i

,

j for which yiyj

E

(

H

)

and xaixaj

/

E

(

G

)

. It is an easy exercise to modify the proofs ofthis section to show thefollowing result:thereis apolynomial-time algorithmthat decides on input

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

whether H iscolour-preserving

(

σ

,

τ

)

-isomorphictoasubgraph ofG,assumingthat

(

G

,

fG

,

σ

)

satisfiestherightumbrellacondition. If G isan interval graph, fG is a 1-colouring forG and

σ

is an interval ordering for G,thisis the case. Neglectingthe

(

σ

,

τ

)

-monotonicity, the resulting SubgraphIsomorphismproblem is NP-complete already on connected proper interval graphs[14].

4. ISIonproperintervalgraphs

Properintervalgraphsarecocomparabilitygraphsofspecialproperties,andtheyhaveacharacterisationthroughvertex orderings.Let G beagraph.Avertexordering

σ

forG iscalledaproperintervalordering ifforeveryvertextriple u

,

v

,

w ofG with u

σ v

σ w , u w

E

(

G

)

impliesuv

E

(

G

)

and v w

E

(

G

)

.Agraphisaproperintervalgraph ifithasaproper interval ordering[15].We onlyconsiderproper interval graphsthrough thisvertexorderingcharacterisation. Observefor every vertexordering

σ

for G:

σ

is aproper interval orderingfor G if andonlyifthe reverse of

σ

is a properinterval orderingfor G.Alsoobservethat everyproper intervalorderingis acocomparabilityordering.Itcan bedecided inlinear time whether a given graphis a proper interval graph,and ifso, a proper interval ordering can be generated in linear time[15].

First,weprovethatproperinterval orderingsareuniqueuptoreversalanduptosetsofverticeswiththesame neigh-bourhoods.Tobe moreprecise,let G beaconnectedproper intervalgraphandlet

σ

and

τ

be properinterval orderings for G. Assume that

σ

=

x1

,

. . . ,

xn and

τ

=

y1

,

. . . ,

yn . We say that

σ

and

τ

are stronglyneighbourhood-equivalent if NG[xi]

=

NG[yi]forevery1

i

n.Wewillshowthat

σ

isstronglyneighbourhood-equivalentto

τ

ortothereverseof

τ

. InordertoprovethisstatementasProposition 4.2below,itsufficestoprovethenextlemma,whosetechnicalstatements willbereferred toseparately laterinthepaper.The firststatement ofLemma 4.1showsthat iftheleftmostverticesof

σ

and

τ

havethesameclosedneighbourhoodthen

σ

and

τ

arestronglyneighbourhood-equivalent.Thesecondstatementof thelemmashowsthattheclosedneighbourhoodsofthefirstverticesof

σ

and

τ

areequalortheclosedneighbourhoods ofthefirstvertexof

σ

andthelastvertexof

τ

areequal.AlthoughLemma 4.1hasbeenusedimplicitlyinseveralprevious works[4,6,12,15],ithasnotbeenstatedasaresultonitsownandprovedseparatelybefore.

Lemma4.1.LetG beaconnectedproperintervalgraph.Let

σ

=

x1

,

. . . ,

xn and

τ

=

y1

,

. . . ,

yn beproperintervalorderingsforG. 1) IfNG

[

x1

]

=

NG

[

y1

]

,then

σ

and

τ

arestronglyneighbourhood-equivalent.

2) Ifx1

τ xn,thenNG[x1

]

=

NG[y1

]

,and ifxn

τ x1,thenNG[x1

]

=

NG[yn

]

.

Proof. Since the two statements trivially hold for the casen

=

1, we assume n

2. The following properties ofproper interval orderings willbe importantfortheproof. Consider

σ

. Since G isconnected, xixi+1

E

(

G

)

forevery 1

i

<

n.It directly follows that

(

x1

,

. . . ,

xn

)

is an x1

,

xn-pathof G.Particularly note that x2

NG

[

x1

]

. Furthermore,for every vertex triple u

,

v

,

w ofG withu

=

x1 andu

σ v



σ w and w

NG

(

u

)

,itholdsthat NG

[

u

]

NG[v

]

NG[w

]

.Since

τ

isalsoa properintervalorderingforG,thesamepropertiesanalogouslyholdfor

τ

.

Proofof1)

Weassume NG[x1

]

=

NG[y1

]

.Ifx2

=

y2then NG[x2

]

=

NG[y2

]

,ifx2

=

y1then y1

τ y2



τ x1,andthus,NG[x1

]

NG[x2

]

=

NG[y1

]

NG[y2

]

NG

[

x1

]

,if y2

=

x1 then,analogously, NG[y2

]

=

NG[x2

]

, andif x1

=

y2 and x2

=

y2 andx2

=

y1 then x1

σ x2

σ y2 andy1

τ y2

τ x2 andNG[x2

]

NG[y2

]

andNG[y2

]

NG[x2

]

.Thus,NG

[

x2

]

=

NG

[

y2

]

inallcases.

(9)

Let j besuchthat yj

=

x1;notethat NG[y1

]

=

NG

[

x1

]

=

NG

[

yj].If j

=

1 thenx1

=

y1,and

x2

,

. . . ,

xn and

y2

,

. . . ,

yn are properinterval orderings for G

x1. If j

2 then

x2

,

. . . ,

xn and

y2

,

. . . ,

yj−1

,

y1

,

yj+1

,

. . . ,

yn are proper interval orderings for G

x1. In both cases, we conclude the claim by induction. Note that G

x1 is indeed a connected proper intervalgraph.

Proofof2)

Ifx1

=

y1 thentheclaimtriviallyholds,ifx1xn

E

(

G

)

thenG isacompletegraph,andtheclaimholds.So,astheremaining case, assume that x1

=

y1 and x1xn

/

E

(

G

)

. Assume x1

τ xn. Let p besuch that xp

=

y1. Recallthat

(

xp

,

. . . ,

xn

)

isan xp

,

xn-pathofG.Foracontradiction,supposethatx1y1

/

E

(

G

)

.Then,

(

xp

,

. . . ,

xn

)

doesnotcontainanyvertexfromNG[x1

]

, since NG

[

x1

]

⊆ {

x1

,

. . . ,

xp−1

}

. We consider

τ

. Let P

= (

u0

,

. . . ,

ur

)

be an arbitrary y1

,

xn-pathof G.Since y1

τ x1

τ xn and u0

=

y1 and ur

=

xn, thereis an index i with 0

i

<

r such that ui



τ x1

τ ui+1.Thus, x1 is avertex on P or P containsaneighbourofx1,whichfollowsfromthedefinitionofproperintervalorderings,sothat P containsavertexfrom NG

[

x1

]

.Bythe choice of P as an arbitrary y1

,

xn-path of G,it followsthat every such pathof G containsa vertexfrom NG

[

x1

]

,contradictingtheinitialassumption.Thus,x1y1

E

(

G

)

.Theresultsfromthebeginningoftheproofthenshowthat NG

[

x1

]

NG

[

y1

]

andNG

[

y1

]

NG

[

x1

]

,i.e.,NG[x1

]

=

NG[y1

]

.

Theremainingproofforthesituationofxn

τ x1 followsfromapplyingthefirstsituationto

σ

andthereverseof

τ

.

2

Lemma 4.1readilyimpliesthefollowing.

Proposition 4.2. Let G be a connected proper interval graph with proper interval orderings

σ

and

τ

. Then,

σ

is strongly neighbourhood-equivalentto

τ

ortothereverseof

τ

.

We now prove anotherimplication ofLemma 4.1,that will play acrucial role inthe proof ofthe main resultofthis section.

Lemma4.3.LetG andH beproperintervalgraphswhereH isconnected.Let

σ

and

τ

beproperintervalorderingsforrespectivelyG andH ,andlet

τ

Rbethereverseof

τ

.Then,H isisomorphictoaninducedsubgraphofG ifandonlyifthereis

ω

∈ {

τ

,

τ

R

}

suchthat H is

(

σ

,

ω

)

-isomorphictoaninducedsubgraphof G.

Proof. If H isa graphon asingle vertex,theclaim triviallyholds.We thereforeassumethat H hasatleasttwovertices. Clearly, if H is

(

σ

,

τ

)

- or

(

σ

,

τ

R

)

-isomorphictoan induced subgraphof G then H is isomorphictoan induced subgraph of G.

Fortheconverse,assumethatG hasaninducedsubgraph Gsuchthat H isisomorphictoG;let

ϕ

beanisomorphism from H toG.ObservethatGisconnected.Let

σ

betherestrictionof

σ

totheverticesofG.Observethat

σ

isaproper interval orderingforG.Assumethat

σ



=

x1

,

. . . ,

xr and

τ

=

y1

,

. . . ,

yr .Recall that

τ

R

=

yr

,

. . . ,

y1

andx1

σ

· · · ≺

σ xr.Let

ϕ



:

V

(

H

)

V

(

G

)

bethemappingwhere yi ismappedto xi andlet

ϕ



:

V

(

H

)

V

(

G

)

bethemappingwhere yi ismapped toxr+1i.Weshowthat oneofthetwomappingsisan isomorphismfrom H to G,whichprovestheclaimed result.

First, assumethat

ϕ

(

y1

)

σ

ϕ

(

yr

)

.We showthat

ϕ

 isan isomorphismfromH to G,byshowingforevery vertex y of H that NG

[

ϕ



(

y

)

]

=

NG

[

ϕ

(

y

)

]

. Let

σ

=

def

ϕ

(

y1

),

. . . ,

ϕ

(

yr

)

. Observe that

σ

∗ is a proper interval ordering for G, and

ϕ

(

y1

)

σ

ϕ

(

yr

)

. Recallthat

σ

 is alsoa proper interval ordering for G, andthat

ϕ

(

y1

)

σ

ϕ

(

yr

)

. Hence, we can apply Lemma 4.1to findthat

σ

∗ and

σ

 are stronglyneighbourhood-equivalent.Since xi

=

ϕ



(

yi

)

forevery i

∈ {

1

,

. . . ,

r

}

, we obtainthedesiredresult.If

ϕ

(

yr

)

σ

ϕ

(

y1

)

then ananalogousproofshowsthat

ϕ

 isan isomorphismfromH to G, whereLemma 4.1isappliedto

ϕ

(

yr

),

. . . ,

ϕ

(

y1

)

and

σ

.

2

Wearenowreadytogivethemainresultofthissection.

Theorem4.4.Givenaproperintervalgraph G andaconnectedgraph H ,itcanbedecidedinpolynomialtimewhetherG hasan inducedsubgraphthatisisomorphictoH .

Proof. We describesuch analgorithm.First, assumethat G and H are connectedproperinterval graphs.Let

σ

and

τ

be proper interval orderings forrespectively G and H . Let fG and fH be 1-colourings forrespectively G and H . Let

τ

R be the reverseof

τ

.We runAlgorithm OIS on

(

G

,

fG

,

σ

;

H

,

fH

,

τ

)

andon

(

G

,

fG

,

σ

;

H

,

fH

,

τ

R

)

andaccept ifandonlyifOIS acceptson(atleast)one ofthetwoinputs.IfH isnotaproperintervalgraph,reject,andifG isnotconnected,applythe aboveproceduretoeveryconnectedcomponentofG.

Letusprovethe correctnessofthealgorithm.As properinterval graphsare hereditary,wecan correctlyrejectif H is not a proper interval graph.ByLemma 4.3, H is isomorphicto an induced subgraph of G if andonlyif H is

(

σ

,

τ

)

- or

(

σ

,

τ

R

)

-isomorphictoan inducedsubgraphofG.Properintervalorderings togetherwithanycolouringsatisfytheleftand right umbrellaconditions,inparticular,forthe 1-colourings usedinthe algorithm.It followsfromCorollary 3.4that our algorithmwillacceptifandonlyifH isisomorphictoaninducedsubgraphofG.

Referenties

GERELATEERDE DOCUMENTEN

Wanneer het loonverschil wordt onderzocht tussen autochtonen en immigranten die hun voortgezet onderwijs af hebben gerond in Zweden, vinden Le Grand en Szulkin (2002) dat

This paper provides a new thought experiment with an active fall back role for the players to put into new light the concept of proper equilibrium, which has been crit- icised in

We note that the interval separator symbol is hidden inside the \interval macro and can be changed using an option. ∗ Email: daleif@math.au.dk,

relevant factors, such as episode structure and referential distance; and it offers a unified theoretical explanation for the influence of these factors in terms of referent

z Leverage items: high percentage of purchased cost, low level of dependence on supplier The consensus derived from the literature suggests the company should use different

Heat maps displaying the average depth of coverage of each nucleotide along the virus genome (X-axis), obtained through read-mapping (1000 replications) of different subset-sizes

Already since decades ago, medical scoring systems have been used to summarize medical knowledge and serve as decision support.. One example is Alvarado for

1) The data transformation in (2) is performed on the initial dataset X. Using the computed Z and the known labels, one can solve a standard Support Vector Machine