• No results found

What is the effect of cloudiness on the daily market index returns in the Netherlands?

N/A
N/A
Protected

Academic year: 2021

Share "What is the effect of cloudiness on the daily market index returns in the Netherlands?"

Copied!
35
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

--- --- UNIVERSITY OF AMSTERDAM

 

 

 

 

 

 

 

 

 

 

WHAT  IS  THE  EFFECT  OF  CLOUDINESS  ON  THE  DAILY  MARKET  INDEX  RETURNS  IN  

THE  NETHERLANDS?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author:  Sophie  van  Oostenbrugge  

Student  number:  10380612  

BSc  Economics  and  Business  Economics,  Finance  track  

Thesis  Supervisor:  Dr.  J.  J.  G.  Lemmen    

(2)

 

STATEMENT  OF  ORIGINALITY    

 

I  hereby  certify,  that  to  the  best  of  my  knowledge,  the  content  of  this  thesis  is  my  own  work.  No   part  of  this  thesis  has  been  submitted  for  any  degree,  publication  or  other  purposes.  I  declare   that  the  intellectual  content  of  this  thesis  is  the  product  of  my  own  work.  All  sources,  techniques   or  other  material  from  the  work  of  other  people  have  been  acknowledged.  

 

 

(3)

 

TABLE  OF  CONTENTS  

 

List  of  Tables   iv  

 

Glossary   v  

 

Acknowledgments   vi  

 

Abstract   vii  

 

Chapter  1:  Introduction   9  

 

Chapter  2:  Literature  Review   11

 

2.1  Weather  and  Mood   11

 

2.2  Mood  and  Risk  Aversion   12

 

2.3  Risk  Aversion  and  the  Daily  Market  Index  Returns   12

 

2.4  Prior  research   13

 

2.5  Control  Variables   15  

 

Chapter  3:  Data   18  

 

Chapter  4:  Methodology   20  

 

Chapter  5:  Results   22

 

5.1  OLS  with  robust  standard  errors   22  

5.2  OLS  with  robust  standard  errors,  including  a  cross-­‐product  term                  25  

 

Chapter  6:  Conclusions                              28     References                                  30     Appendices                                  32  

 

 

(4)

 

 

iv  

LIST  OF  TABLES

                                                                                                                                                                                                                                                                                                                   

Table  1.  Summary  findings  of  prior  research               17   Table  2.  Return  data  general  description               18   Table  3.  Results  for  autocorrelation  and  unit  root  test           22   Table  4.  OLS  with  robust  standard  errors  results             24   Table  5.  OLS  with  robust  standard  errors  result,  including  cross-­‐product  term     27    

(5)

GLOSSARY  

    AEX:  Amsterdam  Exchange  Index  

HMACL-­‐3:  Howarth  Multiple  Adjective  Check  List     NY:  New  York  

NYC:  New  York  City    

(6)

 

 

vi  

 

ACKNOWLEDGMENTS  

   

I  express  special  thanks  to  Dr.  J.  J.  G.  Lemmen,  for  the  time  and  effort  in  checking  my  work  and   providing  feedback.  His  guidance  throughout  this  thesis  writing  helped  me  a  lot.  Also  I  would   like  to  thank  Dr.  Ir.  M.  J.  Boumans,  because  his  class  about  economical  writing  inspired  me  to   start  writing  this  thesis.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7)

 

ABSTRACT  

   

What  is  the  effect  of  cloudiness   on  the  daily  market  index  returns  

in  the  Netherlands?    

by  Sophie  van  Oostenbrugge    

This  paper  tests  whether  a  relationship  between  cloudiness  and  the  daily  market  index  returns   exists,  while  controlling  for  other  weather  variables  and  anomalies.  Weather  can  influence   people’s  mood,  making  it  worse  when  it’s  cloudy  outside.  A  bad  mood  will  affect  the  decisions  of   investors,  making  them  more  pessimistic  about  the  market  prospects  and  more  likely  to  sell   stock,  which  results  in  a  drop  of  stock  prices.  While  some  significant  effects  are  found,  there  is   little  evidence  of  a  systematic  effect  of  cloudiness  on  the  daily  market  index  returns  in  the   Netherlands.  This  means  that  you  cannot  predict  the  stock  returns  looking  at  the  weather   forecasts.  

   

 

Keywords:  Cloudiness,  Risk  aversion,  Stock  returns   JEL  Classification:  G10,  G14                          

(8)

 

                                                                       

(9)

  Chapter  1  

INTRODUCTION  

 

 

It  is  1970  when  Fama  introduces  the  Efficient  Market  Hypothesis  (EMH  hereafter),  which  claims   that   prices   will   reflect   all   of   the   available   information   when   a   market   is   efficient.   Given   that   markets   are   driven   by   the   rational   behavior   of   investors,   stock   prices   reflect   relevant   information  and  the  prices  will  adjust  whenever  new  important  information  is  available  (Fama,   1970).   But   Hirschleifer   and   Shumway   (2001)   contradict   this   by   stating   that   investors   do   not   behave  in  a  rational  way  and  that  their  decisions  are  influenced  by  different  subjective  factors   e.g.  mood  and  feelings.  

 

The  weather  can  influence  people’s  mood  in  a  positive  way  when  it  is  sunny  outside,  and  it  can   create   a   negative   perception   of   the   world   when   it   is   cloudy   or   rainy   (Howarth   and   Hofmann,   1984).    Zadorozhna  (2009)  explains  that  this  is  mainly  due  to  the  fact  that  sunny  weather  makes   colors  seem  more  vibrant  and  this  creates  a  positive  feeling,  while  dark  and  grey  colors  do  the   opposite.    Hence,  weather  can  influence  people’s  mood  and  therefore  the  decision  they  make.    

Research  from  Harding  and  He  (2014)  shows  that  a  negative  mood  causes  investors  to  be  more   risk  averse  and  this  will  result  in  a  fall  in  the  stock  prices.  The  connection  between  weather  and   stock   prices   is   interesting   because   if   stock   prices   are   driven   by   investors’   actions   based   upon   subjective   factors   instead   of   rational   decision   making,   it   suggests   that   mood   can   potentially   influence  the  investor  setting  prices.  

 

In   1993,   Saunders   concluded   that   cloudiness   could   indeed   affect   stock   prices.   He   was   able   to   show  that  a  relation  between  cloudiness  and  the  New  York  stock  returns  exists.  And  in  support   of  this  research,  Hirschleifer  and  Shumway  (2003)  present  further  evidence  for  the  relationship   between   weather   and   26   international   stock   markets.   However,   Jacobsen   and   Marquering   (2009)   concluded   that   the   relation   between   cloudiness   and   stock   prices   could   just   be   data-­‐ driven   inference   that   depends   on   artificial   correlation.   And   when   Krämer   and   Ründe   (1997)   replicated   Saunders’   research   for   Germany,   they   were   unable   to   establish   any   type   of   relationship.  

(10)

 

10  

Due  to  this  contradicting  evidence,  this  research  will  verify  whether  cloudiness  has  an  effect  on   the  daily  market  index  returns  in  the  Netherlands.  To  avoid  that  the  conclusion  is  data-­‐driven,   the   data   will   be   corrected   for   different   anomalies,   heterogeneity,   autocorrelation   and   heteroscedasticity.    

 

This  paper  consists  of  six  chapters.  Chapter  2  reviews  the  academic  literature  to  establish  the   effect  the  weather  has  on  the  daily  market  index  returns.  Chapter  3  introduces  the  data  sets.  This   is   followed   by   an   explanation   of   the   methodology   in   Chapter   4.   The   fifth   chapter   consists   of   a   regression  analysis  and  a  discussion  of  the  results.  In  this  chapter  the  significance  of  the  effect  of   cloudiness  is  also  verified.  Finally,  the  last  chapter  concludes  this  research,  including  limitations   and  suggestions  for  further  evidence.  

                                                 

(11)

  Chapter  2  

LITERATURE  REVIEW  

 

 

2.1  Weather  and  Mood    

 

In  the  academic  literature  there  are  numerous  researches  done  to  establish  the  effect  of  weather   on  people’s  mood.  Some  of  these  researches  found  a  significant  relationship  between  different   weather   variables   and   how   they   influence   people’s   mood   (Sanders   &   Brizzolara,   1982;   Persinger,  1975).    

 

Howarth  and  Hofmann  (1984)  were  able  to  find  a  significant  relationship  between  weather  and   mood  by  letting  twenty-­‐four  male  university  students,  aged  17  to  25,  participate  in  their  study.   The   students   had   to   fill   in   an   HMACL-­‐3   for   11   consecutive   days   to   assess   their   mood,   while   Howarth  and  Hofmann  kept  track  of  the  different  weather  variables.  Their  conclusion  after  this   research  was  that  good  weather,  like  high  temperature  and  a  lot  of  sunshine,  brings  out  positive   mood  states  while  bad  weather,  for  example  cloudiness  and  rain,  brings  out  more  negative  mood   states  (Howarth  and  Hofmann,  1984).    

 

Bad  weather  can  even  make  people  more  pessimistic  (Eagles,  1994;  Goetzmann  et  al.,  2015).  It   can  also  cause  a  heavier  degree  of  depression  (Molin  et  al.,1996),  or  a  seasonal  affective  disorder   (SAD)   which   is   a   condition   that   affects   people   during   seasons   when   there   are   relatively   fewer   hours  of  daylight  (Kamstra  et  al.,  2003).    

 

When  people  rely  on  their  mood  as  information  when  they  make  judgments  about  how  happy   and   satisfied   they   are,   they   would   make   a   more   positive   judgment   when   the   weather   is   good   instead   of   bad   (Schwarz   &   Clore,   1983).   The   reason   that   good   weather   creates   more   positive   judgments   is   because   the   perception   of   bright   colors   that   occurs   when   there   is   a   lot   of   sun   evokes  positive  feelings,  making  people’s  mood  better.  The  opposite  holds  for  bad  weather,  the   darker  colors  evoke  negative  feelings  and  this  gets  people  in  a  bad  mood  (Zadorozhna,  2009).      

(12)

 

12  

Research   from   Wang   et   al.   (2012)   implies   that   there   are   statistical   results   that   show   that   investors  can  benefit  from  considering  the  weather  and  the  effect  the  weather  has  on  their  mood   when   making   important   decisions   about   buying   or   selling   stocks.   Dowling   and   Lucey   (2005)   conclude  that  mood  influences  decision-­‐making  in  general,  even  when  the  mood  has  nothing  to   do  with  the  decision  that  is  being  made.    

 

2.2  Mood  and  Risk  Aversion    

 

There  is  different  literature  available  about  how  mood   can  influence  the  level  of  risk  aversion   that  individuals  have.  Harding  and  He  (2014)  employed  a  laboratory  behavioral  experiment  to   examine  the  relationships  between  investor  mood  and  risk  aversion.  They  found  that  negative   and  positive  mood  affects  investors’  risk  aversion  in  an  opposite  way.  When  there  is  a  positive   change  in  people’s  mood  they  become  less  risk  averse,  while  the  opposite  is  true  for  a  negative   change   in   their   mood.   This   means   that   subjective   factors   e.g.   feelings   and   mood   that   are   experienced   at   the   time   of   decision   making   can   change   the   decision   in   a   way   that   is   different   from  when  rational  investors  would  behave  in  the  same  situation  (Loewenstein,  2000).      

   

2.3  Risk  Aversion  and  the  Daily  Market  Index  Returns  

   

Mood  has  an  effect  on  the  level  of  risk  aversion  individuals  have,  and  if  a  change  in  risk  aversion   has   an   effect   on   the   stock   returns,   one   could   conclude   that   mood   can   influence   stock   returns   through  the  channel  of  risk  aversion.    

   

According  to  Zadorozhna  (2009)  this  is  indeed  the  case.  Because  weather  may  have  an  impact   on   stock   returns   due   to   the   fact   that   investors   are   more   willing   to   buy   stocks   during   sunny   weather   and   they   are   more   predisposed   to   sell   stocks   if   there   are   bad   weather   conditions.   He   states  that  this  is  known  as  the  deficient  market  hypothesis  theory  that  predicts  movements  of   the  stock  market  based  on  psychological  factors  (Zadorozhna,  2009).  Investors  that  are  in  a  good   mood  are  more  confident  and  therefore  invest  in  riskier  projects,  as  they  believe  in  a  successful   outcome   (Arkes   et   al.,   1988).   Harding   and   He   (2014)   say   that   there’s   a   causal   relationship   between  investors  mood  and  stock  returns.  A  negative  mood  causes  investors  to  be  more  risk   averse,  and  when  investors  are  more  risk  averse  the  stock  prices  will  fall  (Harding  &  He,  2014).    

(13)

Lee  et  al.  (2015)  explain  in  more  detail  how  a  change  in  risk  aversion  can  cause  a  change  in  the   stock  prices.  They  state  that  the  level  of  risk  aversion  is  affected  by  how  pessimistic  individuals   are,  and  the  level  of  risk  aversion  influences  their  perception  when  forming  stock  market   returns  expectations.  In  their  research,  they  used  data  from  the  Dutch  National  Bank  Household   Survey  from  2004  until  2006,  and  found  that  there  is  a  negative  and  significant  relationship   between  the  level  of  risk  aversion  and  the  stock  market  expectations.  This  means  that  when  you   have  a  high  level  of  risk  aversion,  you  have  a  lower  expectation  of  the  stock  market.  Investors   that  are  highly  risk  averse  will  demand  a  high  equity  premium,  because  their  expectations  of  the   stock  market  returns  are  negatively  influenced  by  their  risk  aversion,  and  thus  preventing  them   from  participating  in  the  stock  market.  This  would  imply  that,  given  that  the  amount  of  stocks   outstanding  remains  the  same,  the  demand  of  stocks  will  be  lower  and  therefore  the  prices  will   fall  (Lee,  B,  Rosenthal,  L,  Veld,  C,  Merkoulova,  Y.  :2015).  

Investors   tend   to   be   more   optimistic   when   the   level   of   cloudiness   is   low,   and   investors’   optimism  increases  the  propensity  of  them  to  buy  stocks  (Goetzmann  et  al.,  2015;  Hirschleifer  &   Schumway,   2003).   Investors’   stock   market   expectations   are   biased   through   different   weather   conditions,   sunshine   is   positively   correlated   with   stock   returns   (Hirschleifer   &   Schumway,   2003).   But,   according   to   Schneider   (2014),   short-­‐term   optimism   cannot   explain   higher   stock   returns   on   more   sunny   days.   Only   long-­‐term   induced   optimism   is   responsible   for   a   change   in   returns   (Schneider,   2014).   This   means   that   changes   of   risk   aversion   are   a   direct   channel   by   which  weather  influences  stock  prices  (Bassi  et  al.,  2013).  

   

2.4  Prior  research    

 

There  are  a  few  different  weather  variables  that  showed  to  have  a  significant  effect  on  the  stock   returns.  In  order  to  look  into  the  effect  of  cloudiness  on  the  returns,  it  is  important  to  take  the   other   weather   variables   into   account   to   get   the   most   accurate   result.   Important   weather   variables  are:  sunshine  (Hirschleifer  &  Shumway,  2001)  and  temperature  (Cao  and  Wei,  2001).   More  variables  and  their  significance  are  shown  in  table  1.    

   

Saunders   published   his   research   in   1993.   He   paired   data   on   cloud   cover   with   data   on   stock   prices   on   a   daily   basis.   The   cloud-­‐cover   measure   was   grouped   into   three   categories   (0-­‐30%   cloud  cover,  40-­‐70%  and  80-­‐100%).  He  performed  a  regression  including  different  variables  to  

(14)

 

14  

control   for   anomalies.   The   factors   Saunders   included   were:   daily   index   capital   gain   or   loss,   month  dummy,  day  dummy,  cloud  cover  variable,  a  lagged  return  variable  and  an  error  term.  He   came  to  the  conclusion  that  the  weather  in  NYC  has  a  long  history  of  significant  correlation  with   the  stock  index.  More  particularly,  when  it’s  cloudy  in  New  York,  the  New  York  Stock  Exchange   index   returns   tends   to   be   negative.   This   effect   appears   to   be   robust   with   respect   to   different   anomalies  (Saunders,  1993).      

 

After   Saunders   published   his   work,   there   were   other   researchers   that   tried   to   determine   the   effect   of   cloudiness   on   the   stock   returns.   Frühwirth   and   Sögner   (2015)   examined   the   effect   of   cloudiness  on  New  York  stock  returns,  and  they  found  that  cloudiness  has  a  significant  effect  on   the  S&P  500  returns.  They  were  not  able  to  establish  any  other  significant  relationships  between   weather   variables   and   the   stock   returns   (Frühwirth,   M.,   Sögner,   L.,   2015).   Cheng   et   al.   (2008)   also   confirmed   the   significant   influence   of   cloudiness   on   the   market   returns.   They   found   that   returns  are  generally  lower  on  cloudier  days,  but  this  is  only  the  case  at  the  market  open  (Cheng   et  al.,  2008).    

 

Krämer  and  Ründe  (1993)  tried  to  replicate  the  findings  in  Saunders  (1993)  using  German  data,   but  they  were  not  able  to  confirm  any  significant  influence  of  cloudiness  on  the  returns.  In  2009   Jacobsen  and  Marquering  looked  into  this  contradiction  and  found  that  results  that  try  to  explain   stock   returns   by   looking   at   mood   shifts   that   are   caused   by   weather   conditions,   could   just   be   data-­‐driven   inference   based   on   spurious   correlation.   They   also   state   that   the   conclusion   that   weather   affects   stock   returns   through   mood   changes   of   investors   is   premature   (Jacobsen   &   Marquering,  2009).  

 

Cao   and   Wei   (2001)   examined   more   than   twenty   markets   in   general,   and   eight   international   markets  in  dept.  They  found  that  there  is  a  negative  correlation  between  temperature  and  stock   market  returns.  This  correlation  is  statistically  significant,  even  after  controlling  for  the  Monday   effect,  the  tax-­‐loss  effect,  cloudiness  and  SAD.  They  didn’t  find  a  significant  effect  for  cloudiness   on  the  returns  (Cao  &  Wei,  2001).    Lu  and  Chou  (2012)  were  also  not  able  to  find  a  significant   effect  for  cloudiness.  

 

Zadorozhna   (2009)   examined   the   effect   of   wind,   cloudiness,   pressure,   precipitation,   humidity,   temperature  and  visibility  on  the  stock  returns  across  emerging  markets  of  Central  and  Eastern   Europe  and  Commonwealth  of  Independent  States.  He  controlled  for  different  anomalies,  such  as   the  seasons  and  the  holiday  effect.  The  results  that  he  found  are  that  the  weather  variable  with   the  highest  significant  effect  overall  is  temperature,  and  that  cloudiness  has  a  negative  effect  on  

(15)

effects,  there  is  not  enough  evidence  to  conclude  that  weather  has  an  effect  on  the  stock  markets   in  Eastern  Europe  (Zadorozhna,  2009).    

 

2.5  Control  Variables  

   

There   are   a   number   of   variables   that   are   included   in   prior   research   to   control   for   different   anomalies.  The  variables  that  are  shown  to  have  a  significant  effect  on  returns,  and  therefore  are   important  to  include,  are:  a  lagged  return  variable  (Saunders,  1993;  Cao  &  Wei,  2005;  Kamstra  et   al.,  2003),  NBER  recession  dummy  (Jacobsen  &  Marquering,  2009),  seasonal  dummy  (Jacobsen  &   Marquering,  2009;  Kamstra  et  al.,  2003;  Zadorozhna,  2009),  temperature  variable  (Jacobsen  &   Marquering,   2009;   Cao   &   Wei,   2005;   Kamstra   et   al.,   2003;   Zadorozhna,   2009),   SAD   dummy   variable  (Jacobsen  &  Marquering,  2009;  Cao  &  Wei,  2005;  Dowling  &  Lucey,  2005;  Kamstra  et  al.,   2003),   holiday   effect   dummy   (Jacobsen   &   Marquering,   2009;   Zadorozhna,   2009),   Monday   variable  (Cao  &  Wei,  2005;  Kamstra  et  al.,  2003),  tax-­‐loss  selling  effect  dummy  (Cao  &  Wei,  2005;   Kamstra   et   al.,   2003)   and   a   rain   variable   (Hirschleifer   &   Shumway,   2003;   Dowling   &   Lucey,   2005;  Kamstra  et  al.,  2003;  Zadorozhna,  2009).    

 

A  lagged  return  variable,  𝑅!!!,  is  important  to  include  in  the  regression  because  it  corrects  for  

first   order   auto-­‐correlation   in   returns.   Prior   research   showed   that   weather   variables   like   temperature  and  rain  have  a  significant  effect  on  the  returns  and  therefore  they’re  important  to   consider.  

 

The   NBER   dummy   is   a   recession   dummy.   It   gets   the   value   of   1   when   there   is   a   period   of   recession  according  to  the  NBER.  The  holiday  effect  is  a  dummy  variable  that  gets  the  value  of  1   in   the   December   and   January   months.   These   months   are   included   because   the   activity   of   the   investors   increases   due   to   the   holiday   rush.   A   Monday   dummy   is   included   because   the   stock   market   has   a   tendency   to   drop   on   Mondays,   because   of   the   bad   news   that   might   have   been   released  over  the  weekend  or  due  to  the  fact  that  the  investors  are  in  a  gloomy  mood  because   the  workweek  started  again.  The  seasonal  dummy  is  included  because  the  markets  tend  to  have   strong  returns  during  the  summer  months,  while  September  is  traditionally  a  down  month    

The  dummy  variable  that  controls  for  the  tax-­‐loss  selling  effect  has  a  value  of  1  for  the  first  10  

days  of  the  taxation  year  and  0  otherwise.  The  taxation  year  starts  January  1st  in  the  Northern  

(16)

 

16  

for  trading  days  in  the  fall  and  winter  

otherwise  

returns   just   before   year-­‐ends   tend   to   be   negative.   This   is   the   case   because   investors   sell   securities   in   which   they   have   losses   just   before   year-­‐ends   to   lower   their   taxes   on   net   capital   gains,   resulting   in   lower   returns   in   December.   The   prices   rebound   in   January,   making   the   returns  in  January  positive  (Sikes,  2014).    

 

Kamstra   et   al.   (2003)   were   the   first   to   show   the   significance   of   the   SAD   effect   on   the   stock   returns.   SAD   measures   fluctuations   in   hours   of   sunlight   per   day   for   the   period   between   the  

Autumn  Equinox  (September  21st)  and  the  Spring  Equinox  (March  20th).  The  SAD  variable  can  be  

calculated  following  the  formula  constructed  by  Kamstra  et  al.  (2003):    

𝑆𝐴𝐷! =        𝐻0  !− 12      

The  formula  for  Ht  equals:  

𝐻!= 24 − 7.72  ×   −  𝑡𝑎𝑛

2𝜋𝛿

360 𝑡𝑎𝑛 𝜆  

 

where   δ   represents   the   latitude   north   of   the   location   from   the   equator   (Amsterdam   is   52.37°   north),  and  λ  is  the  angle  between  the  sun’s  rays  and  earth’s  surface  and  calculated  as  follows:  

𝜆 = 0.4102  × sin 2𝜋

365 𝑗𝑢𝑙𝑖𝑎𝑛 − 80.25  

 

Julian  stands  for  the  number  of  the  day  in  the  year,  where  January  1st  would  get  a  value  of  1  and   January  2nd  a  value  of  2  and  so  on.    

                           

(17)

Author   Time  period   Geographical   boundary1  

Method   Variables   Coefficients   Kamstra,  

Kramer  and   Levi  (2003)  

1928-­‐2000   New  York   Regression   Monday  effect   -­‐0.209***   Tax-­‐loss     selling  effect   0.065   SAD  measure   0.038***   Fall   -­‐0.058**   Cloudiness   0.115   Precipitation   -­‐0.002   Temperature   0.003**   Jacobsen  &   Marquering     (2009)  

1970-­‐2004   Netherlands   Regression   Temperature   -­‐0.12***   Halloween   1.53***  

SAD   0.18  

Cao  &  Wei  

(2005)   1962-­‐2001   US   Regression   Monday  effect  Tax-­‐loss  selling  effect     -­‐0.3054***  0.1798***   Temperature   -­‐0.0031**   Cloudiness   -­‐0.0035   SAD     -­‐0.0144**   Hirschleifer  &   Shumway   (2003)  

1982-­‐1997   Amsterdam   Regression   Cloudiness   -­‐0.005   Raininess   -­‐0.064   Snowiness   -­‐0.075   Krämer  &  

Ründe  (1997)  

1960-­‐1990   Germany   Regression     Cloudiness   Not  significant   Saunders  

(1993)    

1927-­‐1989   New  York   Regression   January  effect   -­‐0.0009****   Monday  effect   -­‐0.0017****   Cloudiness   0.00049**   Chang  et  al.  

(2008)   1994-­‐2004   New  York   Regression   Cloud  cover  Wind  speed   -­‐0.0316***  0.0007   Snowiness   0.1351   Raininess   0.0720   Temperature   Monday  effect   Friday  effect   January  effect   0.0023   -­‐0.0149   0.0105   -­‐0.0572   December  effect   0.1032**   Dowling  &   Lucey  (2005)    

1988-­‐2000   Ireland   Regression   Cloud  cover   -­‐0.000112   Raininess   -­‐0.000797**   Humidity   0.002381  

        Geomagnetic  storms   -­‐0.000077  

Lunar  phases   0.000030  

        SAD   -­‐0.000048  

Daylight  savings  time  

changes   -­‐0.004294*   Halloween   -­‐0.001667   Holiday  effect   -­‐0.000103           Monday  effect   -­‐0.000714    

 

 

                                                                                                               

Notes:

* Significant at the 10-percent level, one-sided.   ** Significant at the 5-percent level, one-sided.   *** Significant at the 1-percent level, one-sided. **** Significant at the 0.1-percent level, one-sided.  

1  Some  researches  had  a  wider  range  of  geographical  boundaries,  but  only  the  ones  with  the  most  added  values  to  this  research  are  shown  here.  For  

(18)

 

18  

    Chapter  3  

DATA  

   

The  present  research  considers  the  AEX  index  to  represent  the  daily  market  index  returns  in  the   Netherlands   from   October   1992   until   June   2015.   The   reason   why   this   time   frame   is   chosen   is   because   the   KNMI   keeps   record   of   the   weather   data   since   1992,   and   therefore   we   cannot   perform  a  regression  of  the  stock  returns  and  the  weather  variables  before  this  time  period.      

The   AEX   is   a   stock   market   index   that   is   composed   of   a   maximum   of   25   of   the   most   actively   traded  securities  on  the  exchange.    The  level  of  the  AEX  price  index  is  considered,  this  reflects   only  the  change  in  the  level  of  stock  prices  and  it  does  not  include  any  return  from  reinvested   dividends.  This  data  is  available  from  the  Yahoo!  Finance  database.    

 

The   weather   data   is   available   at   the   KNMI   historical   archive   that   contains   data   for   different   weather   variables,   such   as   cloudiness   and   temperature.   There   are   37   weather   stations   in   the   Netherlands,  but  not  all  of  them  were  active  during  the  chosen  timeframe.  The  weather  stations   that   are   used   to   get   the   most   accurate   average   are   stationed   across   the   Netherlands.   The   following   stations   were   used:   Eelde,   Twenthe,   Berkhout,   De   Bilt,   Rotterdam,   Gilze-­‐Rijen,   Eindhoven,   Voorschoten,   IJmuiden   and   Schiphol.   The   reason   that   it   is   important   to   consider   multiple  weather  stations  that  are  positioned  across  the  Netherlands  is  because  investors  from   all   over   the   country   can   buy   and   sell   stocks   that   affect   the   AEX   and   therefore   looking   at   the   average  weather  in  the  Netherlands  will  give  a  more  accurate  result.  

 

Table  2.  Return  data  general  description  

Variable   Obs   St  dev   Min   Max   Skewness   Kurtosis   AEX  

returns   5772   0.013761   -­‐0.0954148   0.1006526   0.3242854   9.461612  

Note:  a  more  detailed  description  can  be  found  in  Appendix  A      

 

Returns  are  calculated  as  follows:  𝑅! =   !"#$%  !"#$%!!!"#  !"#$%!

!!! − 1  

 

Table  2  shows  that  the  statistic  on  skewness  is  higher  than  zero,  and  this  means  that  there  are   frequent  small  negative  outcomes  and  large  outliers  are  not  very  likely.  The  distribution  is  right  

(19)

values  to  the  right.      

When  the  data  follows  a  normal  distribution,  the  value  for  kurtosis  is  3.  The  value  that  is  found   in   this   dataset   is   higher   than   3,   which   indicates   a   leptokurtic   distribution.   This   distribution   is   more  peaked  than  a  normal  distribution,  with  values  that  are  concentrated  around  the  mean  and   it  has  thicker  tails.  This  means  that  there  is  a  high  probability  for  extreme  values  in  this  dataset.   Data  on  stock  returns  exhibit  non-­‐normality.    

 

Weather  data  includes  the  following  variables:  temperature,  cloud  cover,  precipitation  and  SAD.   Cloud   cover   ranges   from   0   to   8,   0   is   clear   skies   and   8   is   when   the   whole   sky   is   covered   with   clouds.  Precipitation  shows  the  amount  of  rain  that  has  fallen  that  day  in  mm.  When  the  amount   of  rain  that  has  fallen  is  between  0  –  0.5  mm,  the  KNMI  recognizes  this  with  a  value  of  -­‐0.1.  SAD   is  measured  0  when  it  is  summer  or  spring,  and  a  small  negative  value  when  it’s  fall  or  winter.   Descriptive  statistics  of  weather  variables  can  be  found  in  Appendix  B.    

 

Other   variables   to   control   for   anomalies   are:   lagged   return   to   correct   for   first   order   auto-­‐ correlation  in  returns,  NBER  recession  dummy,  seasonal  dummy,  holiday  effect  dummy,  Monday   and  Friday  dummy  and  a  tax-­‐loss  selling  effect  dummy.  

                                   

(20)

 

20  

    Chapter  4  

METHODOLOGY  

   

In  statistics,  ordinary  least  squares  (OLS  hereafter)  is  a  method  of  linear  regression.  It  estimates   variables   while   minimizing   the   sum   of   squared   residuals.   OLS   can   be   used   to   test   the   relationship  between  stock  returns  and  weather  variables.  This  method  makes  the  assumption   that  the  variance  of  the  error  term  is  constant.  It  assumes  homoscedasticity.  But  stock  market   data   exhibit   heteroscedasticity   (result   of   heteroscedasticity   test   can   be   found   in   Appendix   C),   which   means   that   the   OLS   estimates   are   no   longer   BLUE.   That   means   that,   among   all   the   unbiased  estimators,  OLS  does  not  provide  the  estimate  with  the  smallest  variance.  Significance   tests  can  be  either  too  high  or  too  low.    

 

To   avoid   this   problem,   the   OLS   with   robust   standard   errors   is   used.   This   method   has   the   advantage  that  it  does  not  assume  homoscedasticity.  There  will  be  no  difference  in  the  estimated   coefficients  provided  by   a   simple   OLS  regression,  but  the  standard  errors  and  the  significance   tests  will  change.    

 

Seasonal   dummies,   like   winter,   spring,   autumn   and   summer,   are   added   into   the   regression   to   control   for   seasonality   (Jacobsen   &   Marquering,   2008;   Zadorozhna,   2009).   And   following   Saunders   (1993)   and   Jacobsen   and   Marquering   (2008),   January   and   December   dummies   are   included   into   the   regression   to   control   for   the   ‘holidays   effect’   when   the   investors’   activity   increases,  and  therefore  the  stock  market  shows  upward  movements  in  stock  prices.      

 

Welfare   et   al.   2012   researched   the   effect   of   a   recession   on   people’s   mood.   Their   overall   conclusion   was   that   a   recession   has   a   negative   effect   on   people’s   mood,   while   Christmas   and   Halloween  have  a  positive  effect  on  people’s  mood.  A  more  detailed  conclusion  that  they  make  is   that   a   few   days   before   the   government   announces   a   cut,   due   to   the   recession,   and   numerous   days  after  this  announcement,  people’s  mood  is  worse  (Welfare  et  al.,  2012).    This  means  that   people’s   mood   is   worse   in   times   of   a   regression.   According   to   the   literature   review,   also   cloudiness  has  a  negative  effect  on  people’s  mood.  It  could  be  the  case  that  these  two  variables   amplify  each  other.  To  test  whether  this  is  the  true,  a  second  regression  analysis  is  performed  

(21)

NBER.      

All  weather  variables  represent  exogenous  influence  on  the  stock  returns,  which  means  that  the   model   avoids   endogeneity   problems   because   the   daily   market   index   returns   cannot   influence   the  weather  variables.  Omitted  variable  bias  is  not  an  issue,  because  it  is  assumed  that  weather   variables  are  not  correlated  with  other  possible  factors  that  affect  stock  returns.    

 

If   the   regression   analysis   shows   that   there   is   a   relationship   between   cloudiness   and   the   daily   index  market  returns  in  the  Netherlands,  it  means  that  investors  are  influenced  by  cloudiness.   Their  mood  depends  on  the  weather,  and  this  can  change  the  decisions  that  they  make.  Asset-­‐ pricing  models  should  account  for  this  impact.  It  is  expected  that  cloudiness  affects  the  market   index  returns  in  a  negative  way.  This  is  also  the  case  in  studies  conducted  by  Saunders  (1993),   Hirschleifer  and  Shumway  (2003)  and  Zadorozhna  (2009).    

 

Finally,  a  low  R-­‐squared  value  is  expected,  as  variation  in  cloudiness  cannot  count  for  all  of  the   variation  in  stock  returns.    

                                       

(22)

 

22  

    Chapter  5  

RESULTS  

 

Following  Zadorozhna  (2009),  first  a  Portmanteau  and  a  Durbin-­‐Watson  test  will  be  performed  

to  detect  the  presence  of  autocorrelation  in  the  residuals.2  After  this,  an  augmented  Dickey-­‐

Fuller  test  and  a  Phillips-­‐Perron  test  are  performed  to  see  whether  a  unit  root  is  present  in  the   time  series  sample.    

 

Table  3.  Results  for  autocorrelation  and  unit  root  test  

  Portmanteau   p-­‐value   Durbin-­‐Watson   d-­‐statistic   Augmented   Dickey-­‐Fuller  test   Phillips-­‐ Perron   AEX  returns   0.000   1.500**     -­‐24.709***   -­‐60.581***  

Notes:  *  significant  at  10%;  **  significant  at  5%;  ***significant  at  1%.      

 

The   conclusion   that   can   be   made   when   considering   the   Portmanteau   and   the   Durbin-­‐Watson   values  is  that  the  null  hypothesis,  that  the  residuals  from  an  ordinary  least-­‐squares  regression   are   not   autocorrelated,   can   be   rejected.   This   means   there   is   autocorrelation   in   the   residuals.   Therefore   it   is   important   to   include   a   lagged   variable   in   the   regression   to   correct   for   the   autocorrelation  (Kamstra  et  al.,  2003;  Jacobsen  &  Marquering,  2008).  

 

The   values   from   the   Phillips-­‐Perron   and   the   augmented   Dickey-­‐Fuller   tests   show   that   the   hypothesis  that  there  is  unit  root  can  be  rejected.  Therefore  no  correction  needs  to  be  made.    

5.1  OLS  with  robust  standard  errors    

 

Because  of  the  heteroscedastic  data  set,  the  standard  regression  method  that  is  used  is  the  OLS   with  robust  standard  errors.  The  first  regression  includes  all  variables  (4.1).    

 

𝑟! =   𝛼!+   𝛼!𝑟!!!+   𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!+ 𝛼!𝑇𝑒𝑚𝑝!+ 𝛼!𝑅𝑎𝑖𝑛!+ 𝛼!𝑆𝑢𝑛ℎ𝑜𝑢𝑟𝑠!+ 𝛼!𝑆𝐴𝐷!  

+𝛼!𝐷!!"#$+ 𝛼!𝐷!!"#+ 𝛼!"𝐷!!"#+ 𝛼!!𝐷!!"#+ 𝛼!"𝐷!!"#$%&+ 𝛼!"𝐷!!"#+   𝛼!"𝐷!!"#+ 𝜀!  

 (4.1)  

                                                                                                               

(23)

where  𝑟!  is  the  daily  market  index  returns  and  𝑟!!!  is  the  lagged  returns  variable  to  correct  for  

the   first-­‐order   auto-­‐correlation   in   returns.  𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!,  𝑇𝑒𝑚𝑝!  and  𝑆𝑢𝑛ℎ𝑜𝑢𝑟𝑠!  represent   the  

daily  levels  of  the  weather  variables  and  𝑆𝐴𝐷!  stands  for  the  seasonal  affective  disorder.  𝐷!!"#$   and  𝐷!!"#  are   dummy   variables   for   recession   or   taxation   periods,  𝐷!!"#  and  𝐷!!"#  are   dummy   variables   for   specific   days   of   the   week.  𝐷!!"#$%&  stands   for   the   seasonal   dummy3.   The   dummy   variables  for  January  and  December  are  𝐷!!"#  and  𝐷!!"#.  

 

The   weather   variables   that   are   statistically   significant,   according   to   the   first   regression,   are   𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!  and  𝑇𝑒𝑚𝑝!.  Other  significant  variables  are  𝑆𝐴𝐷!  ,  𝐷!!"#$  and  𝐷!!"#.  The  coefficient  of   𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!  is   0.0003812,   which   means   that   it   is   slightly   positive.   And   this   is   not   what   was   expected  according  to  the  literature  review.  The  same  counts  for  𝐷!!"#$.  The  signs  of  the  other   coefficients  are  as  expected.  The  results  are  shown  in  table  4.  

 

After  the  first  regression,  a  VIF  test  is  performed  to  check  for  multicollinearity.  The  results  can   be   found   in   Appendix   D.   Variables   that   can   be   problematic   have   a   value   of   4   or   higher.   These   variables   will   be   dropped.   According   to   the   VIF   test,   the   value   for   sun   hours   is   larger   than   4,   which  indicates  that  the  number  of  sun  hours  is  multicollineair.  This  makes  sense,  because  the   number  of  sun  hours  is  included  in  the  calculation  of  the  𝑆𝐴𝐷!  variable.  After  the  number  of  sun   hours  variable  is  removed  from  the  regression,  no  multicollinearity  exists.    

 

The  second  regression  includes  all  variables,  except  for  sun  hours  (4.2).      

𝑟! =   𝛼!+   𝛼!𝑟!!!+   𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!+ 𝛼!𝑇𝑒𝑚𝑝!+ 𝛼!𝑅𝑎𝑖𝑛!+ 𝛼!𝑆𝐴𝐷!+ 𝛼!𝑁𝐵𝐸𝑅!  

+  𝛼!𝐷!!"#+ 𝛼!𝐷!!"#+ 𝛼!"𝐷!!"#+ 𝛼!!𝐷!!"#$%&+ 𝛼!"𝐷!!"#+   𝛼!"𝐷!!"#+ 𝜀!  

(4.2)  

When  𝑆𝑢𝑛ℎ𝑜𝑢𝑟𝑠!  is  dropped  as  a  variable,  the  coefficients  of  the  remaining  variables  are  slightly  

changed,  but  the  same  variables  remain  significant.  The  signs  also  stay  the  same.      

The   third   regression   consists   of   the   variables   that   were   statistically   significant   in   the   second   regression.   The   reason   that   this   regression   is   being   performed,   is   to   see   what   the   effect   is   of   removing  all  non-­‐significant  variables.  (4.3).    

 

𝑟! =   𝛼!+   𝛼!𝑟!!!+   𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!+ 𝛼!𝑇𝑒𝑚𝑝!+ 𝛼!𝑆𝐴𝐷!+ 𝛼!𝑁𝐵𝐸𝑅!+   𝛼!𝐷!!"#+ 𝜀!    (4.3)  

                                                                                                               

3  When  performing  the  regression  there  is  a  dummy  variable  for  every  season,  except  for  fall.  Fall  is  omitted  because  

(24)

 

24  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(25)

the  conclusion  that  the  variables  that  show  significant  effect  on  the  daily  market  index  returns   are  𝑇𝑒𝑚𝑝!,  𝑁𝐵𝐸𝑅!  and  𝐷!!"#.    The  coefficient  of  𝑇𝑒𝑚𝑝

!  is  0.000061.  This  means  that  temperature  

has  a  positive  effect  on  the  returns  of  the  AEX.  This  is  in  line  with  the  expectations,  because  good   weather  will  lead  to  a  better  mood  and  less  risk  aversion  what  will  result  in  higher  returns.  The  

coefficient  of  𝑁𝐵𝐸𝑅!  is  0.0020169,  meaning  that  during  periods  of  regression  the  index  returns  

are  higher.  This  is  not  what  was  expected  according  to  the  literature.  The  coefficient  for  𝐷!!"#  is     -­‐0.0017521  what  implies  that    the  month  December  has  lower  returns  on  average.    

 

5.2  OLS  with  robust  standard  errors,  including  a  cross-­‐product  term    

 

The   same   regression   procedure   is   followed;   the   standard   method   that   is   used   is   the   OLS   with   robust   standard   errors.   The   first   regression   consists   of   all   the   variables,   including   the   cross-­‐ product  term  𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!𝐷!!"#$  (5.1):     𝑟! =   𝛼!+   𝛼!𝑟!!!+   𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!+ 𝛼!𝑇𝑒𝑚𝑝!+ 𝛼!𝑅𝑎𝑖𝑛!+ 𝛼!𝑆𝑢𝑛ℎ𝑜𝑢𝑟𝑠!+ 𝛼!𝑆𝐴𝐷!   +𝛼!𝐷!!"#$+ 𝛼!𝐷!!"#+ 𝛼!"𝐷!!"#+ 𝛼!!𝐷!!"#+ 𝛼!"𝐷!!"#$%&+ 𝛼!"𝐷!!"#   +  𝛼!"𝐷!!!"+ 𝛼!"𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!𝐷!!"#$+ 𝜀!                             (5.1)    

The  results  are  shown  in  table  5.  The  only  weather  variables  that  has  a  statistically  significant   effect   is  𝑇𝑒𝑚𝑝!.   It   has   a   positive   sign,   meaning   that   a   higher   temperature   leads   to   a   higher  

returns.   Other   significant   variables   are  𝑆𝐴𝐷!  and  𝐷!!"#.  𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠

!  is   not   significant,   the   same  

counts  for  𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!𝐷!!"#$.  But  because  a  cross-­‐product  term  is  included,  multicollinearity  is  

expected   and   therefore   correction   is   needed.   This   is   examined   by   performing   a   VIF   test4.  

Variables  that  correlate  with  other  predictor  variables  are  removed.      

The  second  OLS  regression  is  performed  with  the  variables  that  do  not  exhibit  multicollinearity   (5.2):     𝑟! =   𝛼!+   𝛼!𝑟!!!+   𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!+ 𝛼!𝑇𝑒𝑚𝑝!+ 𝛼!𝑅𝑎𝑖𝑛!+ 𝛼!𝑆𝐴𝐷!   +𝛼!𝐷!!"#+ 𝛼 !𝐷!!"#+ 𝛼!𝐷!!"#+ 𝛼!"𝐷!!"##$%+ 𝛼!!𝐷!!"#   +  𝛼!"𝐷!!!!+ 𝛼 !"𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!𝐷!!"#$+ 𝜀!  

(5.2)

                                                                                                               

(26)

 

26  

Variables   that   needed   to   be   removed   due   to   multicollinearity   are:  𝑆𝑢𝑛ℎ𝑜𝑢𝑟𝑠!,  𝐷!!"#$,  𝐷!!"##,  

𝐷!!"#$%&  and  𝐷!!"#$%&.  It  is  expected  that  𝑆𝑢𝑛ℎ𝑜𝑢𝑟𝑠

!  needs  to  be  removed,  because  that  was  also   the  case  in  regression  (4.2).  The  cross-­‐product  term  is  highly  correlated  with  the  NBER  dummy   variable,  and  therefore  this  dummy  variable  needs  to  be  removed  from  the  regression.  

When  performing  the  third  OLS  regression,  the  non-­‐significance  variables  –  except  cloudiness  -­‐   and  the  variables  that  correlate  with  each  other  are  removed  (5.3):      

𝑟! =   𝛼!+ 𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!+ 𝛼!𝑇𝑒𝑚𝑝!+   𝛼!𝐷!!"#+ 𝛼!𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!𝐷!!"#$+ 𝜀!    

(5.3)   The   results   can   be   found   in   table   4.   According   to   this   final   regression,  𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠!  is   the   only   variable  that  is  not  significant.  𝑇𝑒𝑚𝑝!  has  a  positive  effect  on  the  returns.  The  coefficient  of  the   December  month  dummy  is  negative,  and  the  coefficient  of  the  cross-­‐product  term  is  0.0004769.   This  means  that  the  results  are  not  in  line  with  Welfare  et  al.  (2012),  because  according  to  them   and   according   to   the   literatue   review   about   the   effect   of   cloudiness,   a   negative   sign   was   expected.    

The  signs  of  some  of  the  variables  are  not  what  would  be  expected  according  to  the  academic   literature.   A   thing   to   note   is   that   the   R-­‐squared   value   in   the   regression   is   not   very   high.   This   means   that   the   model   that   is   used   is   not   very   good   at   explaining   the   variation   in   the   stock   returns.  When  more  variables  would  have  been  added,  and  R-­‐squared  would  be  higher,  the  signs   might   be   different.   This   analysis   tries   to   reveal   whether   investors   behave   in   accord   with   the   EMH   where   they   weight   costs   and   benefits   and   make   rational   decisions,   or   that   they   are   influences  by  the  weather  through  the  channels  of  mood  and  risk  aversion.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(27)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(28)

 

28  

Chapter  6  

CONCLUSIONS  

 

 

This  paper  tests  the  relationship  between  the  daily  market  index  returns  in  the  Netherlands  and   cloudiness  while  controlling  for  other  weather  variables  and  other  common  anomalies.  Weather   is  considered  to  be  a  proxy  for  the  mood  that  affects  decisions  of  investors.  It  is  hypothesized   that  people’s  mood  tends  to  be  better  if  the  weather  is  warm  and  sunny,  and  due  to  the  positive   change   of   mood   the   investors   might   be   more   optimistic   about   the   market   prospects.   When   people’s  mood  is  negatively  influenced  by  bad  weather,  they  become  more  pessimistic  about  the   weather   prospects.   This   means   that   investors   would   be   more   willing   to   buy   stocks   when   the   weather  is  good  and  they  will  be  more  likely  to  sell  them  when  the  weather  is  bad.  

 

To  test  this  relationship,  an  OLS  regression  with  standard  robust  errors  is  performed  to  test  the   significance  of  all  of  the  weather  variables  and  different  anomalies.  After  this  regression,  a  VIF   test  is  performed  to  check  for  multicollinearity.  The  second  regression  excludes  variables  that   correlate  with  other  predictor  variables  according  to  the  VIF  test.  The  last  regression  includes  all   variables   that   were   statistically   significant   in   the   second   regression   to   see   whether   this   influences  the  conclusion.  The  second  regression  analysis  is  performed  following  the  same  steps,   only  now  a  cross-­‐product  term  is  added  to  check  whether  cloudiness  and  the  recession  period   amplify  each  other’s  negative  effect.    

 

Results  from  the  first  OLS  regressions  show  that  the  variables  that  have  a  significant  effect  on   the   daily   market   index   returns   are   temperature,   NBER   and   December.   The   second   OLS   regressions  show  that  temperature,  December  and  the  cross-­‐product  are  significant.  Cloudiness   showed  a  significant  effect  in  the  first  regression  of  the  first  analysis,  but  because  it  is  no  longer   significant  in  the  second  and  third  regression  there  is  little  evidence  to  conclude  that  cloudiness   has  a  systematic  effect  on  the  daily  market  index  returns.    

 

When  future  research  is  done  to  the  effect  of  cloudiness  on  the  daily  market  index  returns,  it  is   important   to   include   more   independent   variables   that   have   a   statistically   large   effect   on   the   returns.   The   R-­‐squared   during   this   regression   analysis   was   very   low,   and   when   this   value   is   higher  you  can  conclude  with  more  certainty  whether  variables  have  a  statistical  effect  on  the   dependent  variable  or  not.  A  second  remark  is  that  there  are  some  weather  variables  that  were   not  included,  for  example  humidity  or  snow.  These  variables  can  also  affect  people’s  mood,  risk  

Referenties

GERELATEERDE DOCUMENTEN

Subject to section 86(9) and (10), a credit provider who receives notice of court pro- ceedings contemplated in section 83 or 85, or notice in terms of section 86(4)(b)(i), may

Experiment 2: Brute-force classification and feature selection Experiments de- scribed here all use dataset 2 (see Section 4.2 and Table 2(a) for details) and test the time it takes

First, the attraction towards the good causes of SMOs can be related to women’s global dominant role in social movements, and second, the attraction towards the working environment

Thus, we expected the capacity of 3D stimulus class to be lower compared to high-contrast (HC) and isoluminant (ISO) stimuli, since afterimages could not benefit the capacity of IM

In Section 4 we improve the running time of Theorem 1 for cactus graphs and outerplanar graphs: we show how to find sparsest cuts for unweighted cactus graphs and weighted

In the case of the  - oxido-bridged diiron(III) porphyrin complexes, visible irradiation resulted in reduction of both Fe III centers to the Fe II redox state via an intermediate

Figure 25: Moisture content of maize plot, Smulders farm, according to the planner (v-planner) and soil samples (v-gemeten). Figure 26: Moisture content of grassland plot W4,

Ik denk dat leraren geschiedenis in de bovenbouw minder bang moeten zijn dat ze niet genoeg tijd besteden aan de eindexamen training en dat ze meer tijd investeren in