• No results found

Growing Cucumbers on Dishwater from the Eurest Canteen on Science Park; with the use of a Wastewater Plant System

N/A
N/A
Protected

Academic year: 2021

Share "Growing Cucumbers on Dishwater from the Eurest Canteen on Science Park; with the use of a Wastewater Plant System"

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

INTERDISCIPLINARY  PROJECT  

JANUARY  2015  

 

 

 

DISHWASHER  DINNER  

Growing  Cucumbers  on  Dishwater  from  the  Eurest  

Canteen  on  Science  Park;  with  the  use  of  a  Wastewater  

Plant  System.

 

 

 

Teuntje  Hollaar  

 

 

10167617  

Toon  Maassen  

 

 

10279261  

Laura  van  Veller  

 

 

10419306  

Yorick  Vink  

 

 

 

10164103  

Lucas  van  der  Zee  

 

 

10295461  

     

     Supervisor:  Mw.  dr.  M.F.  Hamers  

     2

nd  

supervisor:  Dhr.  dr.  K.F.  Rijsdijk  

 

 

 

 

 

 

Institute  for  Interdisciplinary  Studies  (IIS)  

University  of  Amsterdam  

Track:  BSc  Future  Planet  Studies,  major  in  Earth  Science,  Physics,  Political  

Science,  Human  Geography  and  Chemistry  respectively

 

(2)

 

Content  

Abstract                                                                       3  

Introduction                 4  

Metabolic  Rift                 4  

Gaps  of  knowledge  &  Research  Question           5   Justification  for  an  interdisciplinary  approach         6  

Theoretical  background               7  

Green  Urbanism               7  

Wastewater  Treatment               7        

Social  acceptance  theory             8  

Liebig’s  Law                 9  

Methodology                 10  

Experimental  Methodology             10  

Experiment  set-­‐up               10  

Water  collection               11  

Determining  the  water  flow             11  

Chemical  water  analyses             12  

Composition  of  control  group           12  

Adjustment  of  dishwater             13  

Removal  of  nutrients  from  dishwater           13  

Social  methodology               14  

Consumer  Acceptance             14  

Producer  acceptance             14  

Results                   15  

Potential  consumer  interview           15  

Consumer  interview  part  one             15  

Consumer  interview  part  two             15  

Consumer  interview  part  three           16  

Producer  interview               17   Plant  analysis               17   Nutrient  removal               18   Discussion                 19     Technical  discussion             19     Conclusion                 20   Social  conclusion               20   Technical  conclusion             20   Integrated  conclusion             21   Literature                 22   Appendix                 24  

Components  of  detergent             24  

  Stakeholder  interview  Eurest           24  

  Matlab  script  Statistics             27  

(3)

Abstract

 

 

Expansion  of  the  capitalists  modes  of  the  production,  industrialization,  urbanization  and  the  displacement  of   small  scale  agriculture  has  led  to  the  metabolic  rift.  Urban  agriculture,  as  element  of  Green  Urbanism,   represents  the  main  method  used  to  overcome  this  separation  of  humans  from  the  ‘fruits  of  their  labor’.   This  research  explores  a  hydroponic  system,  which  reuses  wastewater  and  thereby  recycles  the  macronutrients   Nitrogen  and  Phosphorus.  The  specie  Cucumis  Sativus  is  produced  within  this  system.  Three  hydroponic   systems  are  constructed:  one  containing  wastewater,  the  second  containing  the  Hoagland  solution  and  the   third  system  containing  the  Hoagland  solution  with  adjusted  N  and  P  levels.  

To  ascertain  implementation  of  the  waste  water  plant  system  (WWPS)  on  the  Science  Park  Amsterdam   Campus,  an  interview  has  been  carried  out  to  investigate  the  acceptance  by  the  producer  and  a  questionnaire   was  answered  by  potential  consumers  to  investigate  their  acceptance.    

The  results  show  that  the  plants  cannot  grow  using  dishwater  as  sole  source  of  water  and  nutrients,    although   not  due  to  a  lack  of  macronutrients.  This  shows  that  if  these  nutrients  could  be  recycled  in  a  manner  less   harmful  the  plants,  cucumbers  could  be  grown  on  dishwater.  The  acceptance  towards  the  WWPS  is  high,  from   both  producer  and  consumer  in  the  Science  Park  community.  

The  WWPS  does  not  closes  the  metabolic  rift,  due  to  the  interposition  of  the  producer.  An  interconnect  of  the   consumers  and  the  producer  is  needed  to  overcome  this  social  rift.  Nevertheless,  the  actual  willingness  on  both   ends  is  present,  so  when  the  technical  implications  are  resolved,  the  WWPS  can  be  embedded  in  society  and   the  environmental  rift  on  Science  Park  could  be  closed.  

 

Metabolic  rift   recycling              grey  water                  waste  water  plant  system  (WWPS)     Science  Park  Amsterdam    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)

Introduction

 

 

In  this  report  a  small  step  will  be  taken  in  the  larger  journey  towards  a  sustainable  society.  A  socially  embedded   system  to  recycle  nutrients  from  wastewater  for  food  production  will  be  investigated.  

We   believe   that   the   unsustainable   elements   in   society   are   rooted   in   a   metabolic   rift.   This   concept   will   be   explained  to  elucidate  the  relevance  of  ‘urban  agriculture’  styled  solutions.    

Second,  the  need  for  this  research  will  be  explained  by  giving  an  insight  into  previous  research  on  this  topic,   showing   which   gaps   of   knowledge   are   yet   to   be   filled.   This   will   end   in   the   research   question   with   its   sub-­‐ questions.   These   are   partially   disciplinary,   but   all   lead   to   an   interdisciplinary   conclusion,   which   is   further   explained  in  the  ‘justification  for  the  interdisciplinary  approach’.  In  the  following  chapters,  the  methodology  of   the  empirical  research  and  social  research  will  be  specified  ending  with  results  and  their  discussion.  

Metabolic  Rift

 

Due   to   the   expansion   of   the   capitalist   modes   of   production,   industrialisation,   urbanization   and   the   displacement  of  small  scale  agriculture,  a  divide  between  human  and  nature  has  occurred  (Marx,  1976).  This   divide  is  noticeable  within  the  natural  as  well  as  the  social  and  individual  sphere  and  is  sometimes  referred  to   as  metabolic  rift  (McClinock,  2010).        

With  the  commodification  and  thereby  consolidation  of  land  and  the  emergence  of  new  farming  technologies,   an   environmental   rift   occurred   (McClinock,   2010).   Because   the   demand   for   agricultural   labour   decreased,   farmers  were  displaced  from  their  land  into  the  city  for  industrial  work.  Also,  the  production  of  food  got  more   in  the  hands  of  capitalists  and  less  in  the  hands  of  families.  Thereby  the  production  and  consumption  of  food   got  separated.  (Magdoff  &  Forster,  2000).    In  this  search  for  ongoing  accumulation,  the  previous  sustainable   biophysical  relationships  got  disrupted.    Crops  and  livestock  were  separated,  causing  exhaustion  of  the  soil  and   therefore  a  dependence  on  synthetic  fertilizers.  In  order  to  fertilize  the  soil  and  to  optimize  production,  finite   resources  are  mined  and  natural  gas  and  petroleum  are  used  to  produce  the  fertilizers.  These  millions  of  years   old  fossil  fuels  are  shipped  and  used  miles  from  the  point  of  extraction  (McClintock,  2010).  At  the  moment,   global  phosphate  demand  reaches  148  million  tonnes  of  rock  per  year  (Cordell  et  al.,  2009).  This  phosphate  is   mostly   exported   by   Morocco   and   China.   These   known   phosphate   reserves   are   expected   to   run   out   in   the   coming  fifty  to  a  hundred  years  (Cordell  et  al.,  2009).  

The  metabolic  rift  also  has  implications  on  the  social  sphere.  Not  only  did  humans  partly  cause  this  rift,  but  also   did  it  influence  them  in  their  being.  Because  humans  did  no  longer  consume  what  they  produced,    they  got   separated   from   the   fruits   of   their   labour.   Within   the   production   process   most   of   the   people   were   only   responsible  for  a  little  part  like  screwing  in  a  screw  for  instance.  This  made  that  they  could  no  longer  identify   themselves  with  their  work  (McClintock,  2010).  The  rift  had  also  its  cultural  aspects,  as  McClintock  states:  ‘’The   socio-­‐cultural   significance   of   food   and   agriculture   rarely   factors   into   calculations   of   profit   margins;   certain   social   relations   woven   into   the   agri-­‐food   system—for   example   agricultural   and   culinary   knowledge   and   its   cultural   significance—are   impossible   to   quantify   and   either   resist   commodification   or   are   erased   by   a   commodified  agri-­‐food  system”  (McClintock,  2010).    

 

One  way  to  soften  the  problem  of  the  metabolic  rift  is  by  the  fusion  of  town  and  country.  According  to  Marx:    

The  present  poisoning  of  the  air,  water  and  land  can  be  put  an  end  to  only  by  the  fusion  of  town  and  country;   and  only  such  fusion  will  change  the  situation  of  the  masses  now  languishing  in  the  towns,  and  enable  their   excrement  to  be  used  for  the  production  of  plants  instead  of  for  the  production  of  disease.  (Marx  and  Engels,  

1978,  723).  

 

 

One  method  for  the  fusion  of  town  and  country  is  Urban  Agriculture  (UA).  Urban  agriculture  is  the  activity  of   growing   food   in   and   around   a   city,   town   or   village   and   is   a   part   of   Green   Urbanism   (Lehman,   2011).   In   the   Global  North  this  way  of  agriculture  is  one  that  is  seen  as  a  way  to  encourage  urban  sustainability  (McClintock,   2010).  According  to  McClintock  (2010)  Urban  Agriculture  has  the  potential  to  soften  the  metabolic  rift,  because   UA  causes  the  closing  of  nutrient  cycles,  the  de-­‐alienation  of  humans  from  the  biophysical  environment  and   the  de-­‐commodifying  of  food.      

 

 

 

(5)

Gaps  of  knowledge  &  Research  Question

 

The  aim  of  this  research  is  to  contribute  to  the  solution  of  the  metabolic  rift.  In  this  research  a  new  way  of   processing  urban  grey  water  for  the  purpose  of  food  is  explored.  The  research  will  focus  on  the  Netherlands,   because  the  metabolic  rift  can  be  clearly  seen  in  Dutch  agriculture;  especially  its  use  of  artificial  fertilizer,  and   household  water  use.  With  one  of  the  world's  highest  population  density,  the  Netherlands  produces  a  lot  of   domestic  wastewater.  On  average  a  household  produces  more  than  120  litre  wastewater  a  day.  Large  amounts   of  water  are  needed  for  the  use  of  toilets  and  washing  machines,  but  also  cooking  of  dinner  and  doing  dishes   contribute  to  the  large  amount  of  wastewater  per  household  (Rijkswaterstaat,  2014).  Currently,  this  water  is   treated   and   fed   back   into   the   natural   water   cycle   at   a   location   separated   from   where   the   water   is   wasted.      

Domestic   wastewater   contains   high   values   of   pollutants   and   macro   nutrients.   Two   types   of   domestic   wastewater  exists:  grey  water  and  black  water.  Black  water  contains  faecal  matter  and  urine,  also  known  as   sewage.  Grey  water  or  sullage,  is  generated  from  all  other  domestic  sources  and  mainly  exists  of  soap  residues.   About   70%   of   the   120   litre   wastewater   produced   a   day   per   Dutch   household   is   grey   wastewater   (Rijkswaterstaat,   2014).   Grey   water   contains   a   lot   less   pathogenic   bacteria   comparing   to   black   water   and   is   therefore  easier  to  recycle  in  a  small  scale  system.  

Within  the  biophysical  dimension  the  larger  aim  of  this  research  is  to  assess  the  regaining  of  nutrients  P  and  N   from  municipal  grey  wastewater.  Sullage  can  be  seen  as  a  potential  source  of  nutrients  for  agriculture  instead   of  waste  that  has  to  be  treated  and  still  has  potential  to  damage  the  environment.  So,  if  this  system  succeeds  in   the  production  of  crops,  regional  food  production  also  increases  food  availability.  To  test  the  potential  for  food   production,  an  experiment  will  be  devised  using  cucumber  plants  (Cucumis  sativus),  which  is  selected  because   of  their  considerable  nutrient  need,  fast  germination  and  the  large  body  of  scientific  literature  around  the   species.    

 

Within  the  social  dimension,  this  research  will  mainly  focus  on  the  effects  of  the  wastewater  plant  system  on   human  behaviour.  Not  only  the  de-­‐commodification  and  de-­‐alienation  of  food  will  be  addressed,  but  also  the   degree  of  social  acceptance  will  be  examined.  

A  gap  in  knowledge  exists  around  the  implementation  of  this  system  in  society.  Multiple  researches  have  been   carried   out   on   grey   water   irrigation   in   communities   in   developing   nations,   however,   there   is   little   research   about   implementation   of   novel,   urban   agriculture   styled,   water   systems   in   developed   nations.   Our   research   question  therefore  will  be:    

               

How  can  a  socially  embedded  food  production  system  contribute  to  closing  the  metabolic  rift  on  Science   Park  Amsterdam  by  recycling  nitrogen  and  phosphorous  from  dishwater  to  grow  Cucumis  sativus?  

Food  production  by  nutrient  recycling  is  investigated  with  a  hydroponic  system  in  which  cucumber  plants  are   grown  and  monitored  for  length.  The  water  will  be  checked  for  pH,  nitrogen  (NH3,  NO3-­‐)  and  phosphorous  (PO43-­‐)  

and   salinity.   This   food   production   system   is   embedded   in   a   social   system;   the   users   of   science   park   will   be   questioned   about   the   level   of   social   acceptance   towards   the   technique   and  in-­‐depth   interviews   will   be   held   with  the  staff  of  the  Eurest  Science  Park  canteen.  These  inquiries  must  lead  to  a  deepened  understanding  of   the  metabolic  rift  and  possible  ways  of  closing  it.

 

 

Natural  Science

 

• What  is  the  ideal  composition  of  water  for  hydroponic  production  of  cucumber  plants?  

• Is  the  water  from  the  Eurest  and  Polder  canteen  suitable  for  cucumber  production  in  terms  of   nutrient  availability  (nitrogen  and  phosphorus)  and  pH?  

• What  is  the  chemical  composition  of  the  dishwater  from  the  Eurest  canteen  science  park   • To  what  extent  are  the  nutrients  from  the  dishwater  absorbed  by  the  plants?  

• What  is  the  composition  of  the  dishwater  when  it  leaves  the  system?  

 

Social  Science

 

• What  is  the  level  of  social  acceptance  of  a  nutrient  retrieval  system?   • How  can  the  social  acceptance  possibly  be  enhanced?  

(6)

• What  is  the  contribution  of  the  wastewater  plant  system  to  the  reunification  of  people  with  the  fruits   of  their  labour?  

Justification  for  an  interdisciplinary  approach

 

The  problem  addressed  in  this  report  is  complex  and  problem-­‐based.  More  than  two  disciplines  are  needed  to   offer   insight   in   the   question   at   hand.   The   idea   of   a   nutrient   reclamation   facility   with   the   help   of   plants   is   a   technical  solution  to  a  social  problem.  To  understand  the  disciplines  involved  with  this  research  we  have  set  up   a  diagram  describing  the  situation  at  hand  in  our  research.  This  is  represented  in  figure  1.  

The   center   of   our   theoretical   research   setting   is   formed   by   the   more   technical   disciplines;   Physics,   Bio-­‐ Chemistry  and  Earth  Sciences.  These  disciplines  will  work  closely  together,  identifying  the  best  way  in  which  the   facility  can  be  constructed  and  operated.  

Around  the  center  is  the  discipline  of  Human  Geography.  This  discipline  will  focus  on  the  social  acceptance  and   implementation  of  the  solution  in  the  specific  area,  being  Science  Park  Amsterdam.  Intensive  conversation  and   reflection  with  the  team  at  the  center  is  needed  to  further  understand  the  social  and  technical  implications  at   hand.   This   will   help   to   come   to   a   reflexive   strategy   to   heighten   social   acceptance   of   the   technical   solution   posed  by  the  team.    

The  all-­‐encompassing  discipline  is  Political  Science.  This  discipline  will  focus  on  the  effect  of  the  solution  on  the   divide  between  man  and  nature.  The  changes  because  of  the  solutions  posed  by  the  reflexive  work  by  both  the   center  and  secondary  circle  will  have  serious  impact  on  this  divide.  One  can  see  that  the  diagram  represent  a   big  picture  in  which  all  disciplines  have  to  work  closely  together  and  influence  each  other’s  work  in  a  reflexive   and  dynamic  manner.  

 

 

Figure  1:  Map  of  Different  Disciplines  

 

 

 

 

 

 

 

 

 

(7)

Theoretical  background

 

Before   diving   into   the   details   of   this   research   it   is   important   to   introduce   several   important   theories   and   concepts  that  are  used  to  conduct  this  research.  The  most  essential  are  the  following:  

Green  Urbanism

 

The  concept  that  is  being  used  in  order  to  build  this  research  on,  is  the  concept  of  Green  Urbanism  (Lehman,   2011).    This   concept   arose   in   the   1990’s   in   the   USA   in   order   to   promote   socially   and   environmentally   sustainable  cities  which  are  compact,  energy-­‐efficient  and  have  zero-­‐emission  and  zero-­‐waste.    It  also  focuses   on  adjusting  the  relation  between  nature  and  city.      

As   we   now   live   in   an   era   of   uncertainties,   where   water,   food   and   energy   are   scarce,   Green   Urbanism   is   committed  to  minimize  the  use  of  these  resources  (Lehmann,  2010).  Green  urbanism  is  mostly  used  as  a  tool  to   re-­‐engineer   urban   areas   with   a   holistic   approach   to   create   more   sustainable   cities.   In   order   to   create   these   cities,  a  set  of  principles  are  designed.  One  of  these  principles  is  sustainable  waste  management.  An  objective   of  this  management  is  turning  urban  waste  into  resources,  another  is  local  food  and  short  supply-­‐chains.  Part   of   this   principle   is   Urban   Agriculture   which   can   function   as   a   bridge   for   the   disconnection   between   city   and   country  (Lehmann,  2010).  

 

Wastewater  Treatment

 

When  browsing  the  technical  literature  on  wastewater,  it  seems  that  a  definition  of  the  concept  ‘wastewater’  is   rarely  found.  Subtypes,  such  as  industrial  or  domestic  wastewater  are  identified,  variation  in  chemical  

composition,  as  well  as  the  many  different  ways  to  dispose  the  chemicals  are  discussed  in  detail,  but  a  clear   definition  of  wastewater  is  not  given  (Gray,  1989).  Wikipedia  gives  the  following  definition:  ‘Wastewater  is  any   water  that  has  been  adversely  affected  in  quality  by  anthropogenic  influence.’(Wikipedia,  2014).  A  

representative  example  of  a  definition  of  wastewater  treatment  in  the  technical  literature  is  the  following:   ´Biological  wastewater  treatment  involves  the  transformation  of  dissolved  and  suspended  organic  

contaminants  to  biomass  and  evolved  gases  (CO2,  CH4,  N2  and  SO2)  which  are  separable  from  the  treated  waters.   Excess  biomass  produced  within  processes  must  be  disposed´  (Low  &  Chase,  p.  1120,  1999).  These  examples  of   wastewater  definitions  seem  to  merely  focus  on  the  word  ´waste´  in  ´wastewater  ´.  Clearly  the  assumption  is   that  the  water  contains  unwanted  substances  which  must  be  disposed  before  the  water  can  enter  the  water   cycle  again.  Although  there  is  a  strong  movement  in  science  and  engineering  to  reuse  compounds  found  in  the   wastewater  streams,  quite  some  research  about  nutrients,  especially  nitrogen,  seems  to  focus  on  the  disposal   of  these  substances.  

On  the  contrary,  agricultural  sciences  take  great  efforts  in  preserving  nutrients  in  watery  solutions  and  growing   media  (Hofstra  and  Bouwman,  2005).  Astonishingly,  the  molecular  composition  in  agricultural  nutrient  

solutions  do  show  resemblances  to  that  of  wastewaters;  both  contain  micro-­‐  and  macro  nutrients  needed  for   plant  growth  (figure  1).  A  major  difference  between  the  two  forms  of  water  is  that  wastewater  may  also   contain  chemicals  and  organisms  that  are  hazardous  for  plants  and  animals.  Additionally,  the  nutrient  levels  in   fertilizers  are  usually  adapted  to  meet  the  needs  of  the  specific  crops  they  are  used  on,  while  the  composition   of  wastewaters  can  vary  greatly  in  time  and  space.  (Gray,  1989).      

Although   using   wastewater   and   other   wastes   in   agriculture   is   a   old   practice,   the   documentation   of   nutrient   recycling   and   development   of   novel   techniques   is   of   a   more   recent   time.   Citations   referring   to   the   use   of   wastewater  for  irrigation  go  back  at  least  to  1967  (Pennypacker,  Sopper,  Kardos)  and  possibly  further.  After   this,  lots  of  research  has  been  conducted  into  the  effects  of  using  wastewater  for  irrigation  of  agricultural  land.   From   the   1970s,   novel   techniques   were   investigated   for   the   combined   production   of   mussel   or   oyster   and   algae   in   wastewaters   (Rither   et   al.   1972).   Another   focus   was   the   use   of   algae   grown   on   nutriënt   holding   wastewater,  for  the  production  of  biodiesel  (Pittman,  Dean,  Osundenko,  2011).  The  synchronous  cleaning  of   wastewater   and   use   of   its   nutrients   for   growing   food   crops   has   been   researched   by   Boyden   and   Rababah   (1996).  However,  this  research  ignores  the  health  risks  of  bacterial  contamination  and  heavy  metal  collection  in   the  plants  that  is  associated  with  municipal  wastewater  (Rosas,  Baez,  Coutino,    1984).  Other  researchers  have   focussed  on  the  health  effects  of  irrigation  with  either  grey-­‐  or  wastewater,  only  not  in  combination  with  water   purification.  This  is  where  a  gap  of  knowledge  is  present;  there  is  no  system  investigated  in  which  grey  water  is   used  in  a  system  that  has  the  combined  goal  of  providing  nutrients  for  food  crops,  providing  water  for  food   crops  and  providing  (partially)  cleaned  water.  The  advantage  of  using  grey  water  over  municipal  wastewater  is   that  it  is  expected  to  contain  a  far  lower  level  of  pathogens.    

(8)

 

Social  acceptance  theory

 

Practical  policy  literature  makes  much  use  of  the  term  social  acceptance,  but  clear  definitions  are  rarely  given.   It  is  sometimes  stated  to  be  just  an  aggregation  of  multiple  concepts  of  acceptance  and  not  really  a  unifying   holistic  theory,  but  for  the  sake  of  this  report  we  will  support  the  theory  side.  To  clarify  the  term  Wüstenhagen   et   all.   (2007)   distinguishes   three   dimensions   of   social   acceptance,   namely;   community   acceptance,   socio-­‐ political   acceptance   and   market   acceptance.   All   three,   sometimes   interdependent   categories   of   social   acceptance  are  of  importance  with  social  acceptance  of  services.  

One  of  the  most  important  concepts  is  ‘environmental  attitude’.  The  concept  of  environmental  attitude  was   first   used   by   Maloney   and   Ward   in   1973.   In   their   paper   called   Ecology,   let’s   hear   it   from   the   People.   An   objective   Scale   for   Measurement   of   the   Ecological   attitudes   and   Knowledge   they   talk   about   the   relation   between   the   attitude   of   people   and   their   willing   to   act   to   and   accept   environmentally   friendly   principles   of   living.  They  state  that,  assuming  that  someone’s  behaviour  is  generally  part  of  a  particular  behavioural  pattern,   which  is  based  on  values  and  attitudes,  a  real  solution  can  only  be  achieved  by  a  radical  change  in  mentality,   followed  by  a  change  of  critical  behaviour  on  a  population-­‐wide  scale  (Maloney  &  Ward,  1973).  They  believe   that  if  one  wants  people  to  change  their  behaviour,  they  need  to  change  their  environmental  attitude.  This  can   be   achieved   by   informing   the   public   of   environmental   issues.   Yet   further   research   indicated   that   the   environmental  attitude  of  people  was  not  strongly  linked  with  environmentally  friendly  behaviour.    

In  1975  the  theory  of  reasoned  action  (TRA)  was  coined  by  Fishbein  and  Ajzen.  It  makes  use  of  the  attitude   concept   stated   earlier   but   formulates   the   relation   between   action   and   attitude   differently.   In   this   theory   attitudes   are   based   on   a   combination   of   evaluations   of   attributes   of,   and   beliefs   about   the   object   of   study.   However,   the   attitude   does   not   directly   influence   behaviour;   instead   it   directly   influences   a   behavioural   intention  (Fishbein  &  Ajzen,  1975).    But  not  only  attitudes  are  influencing  the  intention.  There  are  social  norms,   constructed  from  beliefs  from  the  collective  of  family  which  might  prove  to  be  a  barrier  between  the  attitude   and   the   intention   (figure   1).   Behavioural   intentions   have   a   direct   influence   on   actual   action.   But   also   here   barriers   are   involved.   Per   example;   one   might   have   the   intention   (caused   by   attributes   and   beliefs)   to   separately  dispose  of  plastics  and  non-­‐plastics  but  if  there  are  no  such  disposal  sites,  he  will  still  dispose  of  it  in   the   same   way.   Research   using   this   theory   indicates   that   there   is   hardly   a   connection   between   the   general   notion  of  ‘environmental  attitude’  and  a  concrete  decision.  The  theory  of  reasoned  action  has  been  used  in   many   cases   and   has   supported   many   policy   decisions   (Tellegen   &   Wolsink,   2006).   Still,   not   everyone   agrees   with  the  theory’s  practica  assumptions.  

 

 

 

Figure  2:  Model  of  TRA

 

 

(9)

The   validity   of   the   theory   of   reasoned   action   is   questioned   in   recent   literature   on   environmental   decision   making.  For  example  Thogersen  (1996)  pointed  out  that  some  decisions  concerning  the  environment  are  made   in  a  more  altruistic  psychological  environment.  He  states  that:  

Expected  utility  models  cannot  be  fruitfully  applied  to  all  the  diverse  kinds  of  decisions  and  activities  with  which   people  cope”    (Thogersen,  1996).

 

Among   others,   Thogersen   argues   that   for   certain   kinds   of   behaviour   the   altruistic   dimension   is   of   more   importance  than  the  reflecting  subjective  utility  dimension  used  in  TRA.    He  argues,  after  a  literature  research,   that   for   example   participation   in   recycling   schemes   is   better   explained   by   the   altruistic   dimension   of   environmental  values  than  by  TRA  like  attitudes.  

 

Liebig’s  Law  of  the  minimum

 

 

‘Growth  of  any  organism  is  controlled  not  by  the  total  amount  of  resources  available,  but  by  the  scarcest   resource  in  the  system.’    

 

The  Law  of  the  minimum  stated  in  1840  that  the  rate  of  the  growth  of  a  plant,  the  size  to  which  it  grows,  and  its   overall  health  depends  on  the  amount  of  the  scarcest  of  its  essential  nutrients  that  is  available  to  it.  Carl  van   Sprengel  (1828)  was  one  of  the  first  to  discover  that  plants  feed  on  nitrogen  compounds  and  carbon  dioxide   derived  from  the  air,  as  well  as  on  minerals  of  the  soil.  Though,  it  was  Justus  von  Liebig  who  disseminated  the   theory.    

During  the  agricultural  revolution,  Liebig’s  Law  was  often  used  to  support  the  fertiliser  industry.  Though,  due  to   large   amounts   of   fertilizer   supplied   to   agricultural   fields,   the   amount   of   nutrients   is   often   not   the   scarcest   resource  in  the  system  anymore.  

Liebig’s  theory  is  applicable  to  the  fact  that  phosphorus  is  an  important  nutrients  for  all  primary  production.   Phosphorus  will  be  depleted  within  50-­‐100  years  (Cordel,  2009)  due  to  anthropogenic  activity.  This  makes   phosphorus  an  essential  and  scarce  nutrient,  so  if  not  already  it  probably  becomes  a  limiting  factor  in  primary   production.  Also  the  growth  rate  of  Cucumis  sativus  will  depend  on  the  availability  of  the  scarcest  of  the   essential  nutrients  present  in  the  dishwater.  

 

 

 

 

 

 

 

 

 

 

 

(10)

Methodology  

In   this   chapter   both   the   experimental   as   well   as   the   social   methodology   will   be   explained.   All   the   actions   involved  with  carrying  out  the  research  will  be  discussed  in  this  chapter.  

Experimental  Methodology

 

In  order  to  test  the  possibility  of  using  dishwater  to  produce  food,  the  research  entails  an  empirical  part  in   which  cucumber  plants  (Cucumis  sativus)  are  grown  on  perlite,  a  soilless  medium,  through  which  dishwater   flows.  Cucumber  plants  are  chosen,  because  of  the  extensive  body  of  literature  associated  with  the  species.   Studies  have  shown  that  high  yields  are  achieved  with  perlite  hydroponic  systems.  Moreover,  perlite  has  a   neutral  pH  and  is  sterile  (Wilson,  1984).  Dishwater  contains  less  nutrients  than  black  water.  Therefore  the  main   question  of  the  empirical  research  is,  whether  it  is  possible  to  use  the  little  nutrients  present  in  the  dishwater,   to  grow  food.  Additionally  from  the  values  obtained  from  the  research  conclusions  can  be  drawn  about  the   extent  in  which  nutrients  are  removed  by  the  waste  water  plant  system  (WWPS).  

Experiment  set-­‐up

 

Three   WWPS’s   were   built:   one   holds   6   cucumber   plants   on   the   dishwater   from   the   university   canteen.   The   other  two  systems,  each  holding  3  plants,  were  control  groups,  using  clean  water  with  chemical  fertilizers.  The   first  control  group  was  supplied  with  the  Hoagland  solution  (Hoagland  &  Arnon  1950),  which  contains  all  the   nutrients   most   commonly   applied   to   hydroponically   grown   plants.   The   other   solution   contains   the   same   phosphor  and  nitrogen  concentrations  as  measured  in  the  wastewater.  In  this  way  we  are  able  to  compare  the   results  of  the  cucumbers  growing  on  wastewater,  with  a  completely  conventional  hydroponics  system  and  a   system   which   contains   the   same   nitrogen   and   phosphorus   concentrations   of   the   wastewater,   but   does   not   contain  all  the  other  substances  in  wastewater,  and  which  is  sure  to  contain  all  the  other  kinds  of  nutrients   needed.  

 

The   laboratory   set-­‐up   consists   of   three   hydroponics   systems.   Every   system   consists   of   three   containers,   one   containing  the  dishwater,  one  containing  the  perlite  and  the  growing  cucumber  plants  and  one  receiving  the   outgoing  water.  The  plants  are  grown  on  perlite  hydroponic  medium  as  described  in  Trajkova,  Papadantonakis   &  Savvas  (2006).  Perlite,  a  processed  volcanic  glass,  is  a  commonly  used  medium  for  hydroponics  for  it  is  able   to  hold  high  amounts  of  water  and  hardly  reacts  with  other  substances.  A  peristaltic  pump  pumped  the  water   through  a  tube  from  the  dishwater  container  to  the  container  containing  the  plants.  The  container  containing   the  plants  has  a  hole  at  a  height  of  10  cm  through  which  the  water  can  escape  to  the  third  container.  In  order   to  prevent  the  perlite  particles  from  clogging  the  tubes,  a  cotton  filter  was  built  in  front  of  the  escaping  tube.  

 

Water  collection

 

Before   running   the   experiment,   water   was   collected   from   the   ‘Eurest   Science   Park’   and   ‘Café-­‐Restaurant   de   Polder’  dishwashers.  These  dishwashers  circulate  their  water  for  half  a  day,  after  which  the  water  is  disposed   into  the  sewage  system.  Water  could  be  sampled  at  15:00  or  19:30.  The  first  series  of  measurements,  on  which   the   experimental   set-­‐up   is   based,   used   water   sampled   at   15:00.   However,   it   is   likely   that   the   dishwater   produced   after   diner   (17:00   until   19:00)   has   a   higher   concentration   of   organic   debris   than   the   dishwater   produced  before  15:00.  Unfortunately,  the  supposedly  debris  richer  water  could  not  be  analysed  sufficiently   due   to   technical   and   financial   reasons.   During   the   experiment,   water   sampled   at   approximately   19:30   was   used.   The   data   obtained   from   analysing   the   15:00   water   has   been   assumed   to   be   a   lower   limit   and   used   to   determine  the  minimal  needed  flow  rate  and  synthetic  wastewater  composition.  Because  the  volume  of  the   dishwasher  from  ‘Café-­‐Restaurant  de  Polder’  was  insufficient,  only  water  from  ‘Eurest  Science  Park’  has  been   used.    

Samples   were   taken   after   stirring   the   contents   of   the   machine   to   create   a   homogenous   distribution   of   solid   particles.   For   the   Eurest   dishwasher,   the   first   dishwasher   along   the   conveyer   belt   was   chosen.   During   the   experiment,  water  was  collected  on  Mondays  and  Thursdays  and  stored  overnight.  On  Tuesdays  and  Fridays   the  water  in  the  experimental  set-­‐up  was  disposed  and  replaced  by  the  water  collected  the  day  before.  

 

(11)

Determining  the  water  flow

 

In  order  to  be  able  to  determine  the  speed  of  the  pump  in  combination  with  the  used  tubing,  the  pump  was   calibrated.  The  pump  has  a  speed  scale  from  0  to  10.  While  measuring  the  time,  10  ml  was  pumped  from  one   jar  to  the  other,  with  the  speed  settings  of  2,4,6,  8  and  10.  The  results  of  the  calibration  are  shown  in  figure  3.    

 

Setting

 

time  (s)

 

speed  (ml/s)

 

10   65

 

0.15

 

8   80

 

0.13

 

6   109

 

0.092

 

4   157

 

0.064

 

2   369

 

0.027

 

Figure  3:  Calibration  data  of  peristaltic  pump

.  

 

According  to  Harsharn  et  al.  (2010)  cucumbers  in  a  hydroponics  system  need  up  to  188  liters  water  spread  over   91  days.  This  irrigation  water  was  applied  during  the  crop  growing  period  of  which  116  L/plant  was  drained  off   and  72  L/plant  was  used  to  meet  the  crop  water  requirement  during  the  growing  period.  This  means  a  

cucumber  plant  takes  up  2  liters  per  plant  per  day.  Therefore  the  6-­‐plant-­‐system  needs  12  liters  per  day  (0,139   ml/s)  and  the  3-­‐plant-­‐system  needs  6  liters  per  day  (0,0694  ml/s).  Using  the  calibration  graph,  this  means   setting  8  and  setting  4  of  the  peristaltic  pump.  

Another  way  to  calculate  the  dishwater  demand  is  to  look  at  the  nutrients.  From  Ingestad  (1973)  can  be   concluded  that  1  plant  consumes  an  average  of  5,58  mg  Nitrogen  per  day.  If  the  6  plants,  having  a  nitrogen   consumption  of  35,1  mg/day,  would  take  up  all  the  nitrogen  present  in  the  water,  3,24  liter  of  fresh  dishwater   should  be  used  every  day,    based  on  below  described  nitrogen  levels  .  

This    would  mean  only  5,58  mg/plant/day,  so  if  we  grow  6  plants  33,48  mg/day.  Seeing  our  nitrogen  levels,  this   would  mean  that  we  would  only  need  2,07  L  of  fresh  grey  water  every  day  to  provide  nutrients.  However,  from   Ingestad  (1973)  can  also  be  concluded  that  it  is  the  nutrient  concentration  rather  than  the  amount  that  is   important  for  plant  growth.  In  this  article  nutrient  concentrations  up  to  500  mg  N/l  are  reported  to  increase   growth.  concentration  gets,  the  harder  it  is  for  a  plant  to  take  up  the  nutrients.  Therefore  the  applied  amount   of  dishwater  is  based  on  water  demand  rather  than  nutrient  demand.      

 

 

 

 

 

Chemical  analysis

 

 

Samples  were  centrifuged  at  130000  rpm  for  40  minutes.  The  sediment  was  collected  and  left  to  dry   underneath  the  fume  hood.  The  filtrate  was  also  collected  and  analysed  for    NO32-­‐,  NH3/NH4+  and  PO43-­‐  using   Merck  Millipore  Nitrate,  Ammonium  and  Phosphate  test  respectively.  The  sediment  was  not  analyzed  due  to   insufficient  and  inhomogeneous  volume.  

The  nitrate  test  reacts  the  nitrate  ions  with  2,6-­‐dimethylphenol  to  create  4-­‐nitro-­‐2,6-­‐dimethylphenol,  which   can  be  determined  by  photospectroscopy.  The  ammonium/ammonia  test,  reacts  ammonia  in  an  alkaline   environment  (ph  1-­‐3)  with  hypochlorite  and  a  substituted  phenol  to  form  a  indo-­‐phenol  derivative,  which  can   be  determined  by  photospectroscopy.  Samples  were  analysed  immediately  after  preparation  to  prevent  loss  of   NH3

 

The  phosphate  test  reacts  the  orthophosphate  ions  in  a  sulphuric  and  acidic  environment  with  molybdate  ions   to  form  molybdophosphoric  acid  which  can  be  determined  by  photospectroscopy.  

A  total  N,  total  P  and  Kalium  determination  were  taken  of  the  samples.  Samples  were  prepared  as  above  and   additionally  filtered  over  a  0.2  micron  membrane  filter.  Elemental  phosphorous  and  nitrogen  were  measured   to  determine  the  total  nitrogen  and  phosphorous  contents  of  the  water.  The  elements  can  emanate  either   from  organic  (food  debris)  or  chemical  sources  (dishwashing  soap).  Elemental  phosphorous  was  determined,   together  with  Kalium  using  inductively  coupled  plasma  atomic  emission  spectroscopy  (ICP).  Elemental  nitrogen  

(12)

was  determined  using  a  Shimadzu  total  nitrogen  unit,  which  thermally  decomposes  the  sample  and   subsequently  detects  chemiluminescence  of    nitrogen  compounds.  

 

C

 

Sample  1:  de  Polder

 

Sample  2:  Eurest

 

EC    (µScm-­‐1)

 

678   1385   pH

 

8,70   10,61   Total  N  (mg/l)

 

5,055   10,82   NO3  -­‐N  (mg/l)*

 

8,5   8,1   NH3/NH4+-­‐N  (mg/l)*

 

5,0   6,0   PO4-­‐P  (mg/l)*

 

32,1   68   Total  P  (mg/l)

 

6,975   29,326   K  (mg/l)

 

7,468   7,228  

Figure  4:  N,  P  and  K  levels,  pH  and  EC  of  samples  taken  prior  to  running  the  experiment    

*Values  were  discarded  because  of  interference  of  sample  with  analytical  technique.

 

 

In  both  samples  the  measured  nitrate  and  ammonia/ammonium  (expressed  in  the  weight/volume  of  the   element)  added  up  to  more  than  the  total  N  concentration.  PO4-­‐P  measured  by  photospectroscopy  also  yielded   higher  results  than  ICP  measurements.  This  leads  to  the  suspicion  that  photo  spectroscopic  measurements   were  biased  to  yield  higher  concentrations.  When  monochromatic  light  was  led  through  the  unprepared   sample,  the  light  was  indeed  scattered.  It  is  very  likely  that  this  turbidity  has  caused  the  false  high  values  for   nitrate,  ammonia/ammonium  and  phosphorus  concentrations.  Therefore  the  total  N  and  total  P  levels  were   used  in  subsequent  experiments.  

 

 

Composition  of  control  group

 

As  stated  two  control  groups  were  used.  The  control  group  ‘complete’  tested  the  capacity  of  the  used   hydroponic  set-­‐up  to  produce  cucumber.  The  nutrient  solution  supplied  to  this  group  contained  all  essential   macro  and  micro  nutrients.  The  control  group  ‘adjusted  N  &  P  levels’  tested  whether  the  lack  of  nitrogen  and   phosphorous  nutrients  affects  plant  growth.  The  composition  of  the  media  are  stated  in  table  3  below.   Nutrients  were  added  as  salts  to  the  water  before  supplying  the  water  to  the  plants.  K  and  Ca  levels  of  the   ‘adjusted  N  &  P’  group  were  adjusted  for  using  tap  water,  the  ‘complete’  group  nutrients  have  been  dissolved   in  purified  water.  

 

 

 

Control  group  'complete'

 

 

Control  group  'adjusted  N  &  P'

 

 

Species

 

Amount  (g/L)

 

Species

 

Amount  (g/L)

 

ammonium  nitrate

 

38.78

 

ammonium  nitrate

 

1.46

 

potassium  nitraat

 

33.73

 

potassium  carbonate

 

45.41

 

calcium  chloride  dihydrate

 

73.36

 

calcium  chloride  dihydrate

 

57.22

 

(13)

potassium  dihydrogen  phosphate

 

13.62

 

potassium  phosphate

 

12.87

 

potassium  phosphate

 

28.52

 

potassium  sulphate

 

28.52

 

magnesium  sulphate

 

29.29

 

magnesium  acetate  tetrahydrate

 

42.35

 

di-­‐sodium  tetraborate  tetrahydrate

 

1.76

 

di-­‐sodium  tetraborate  tetrahydrate

 

1.76

 

Tenso  YARA  Fe-­‐EDDHMA  (6%  Fe)

 

4.17

 

Tenso  YARA  Fe-­‐EDDHMA  (6%  Fe)

 

4.17

 

Manganese  II  nitrate  tetrahydrate

 

0.23

 

Manganese  (II)  nitrate  tetrahydrate

 

0.23

 

zinc  sulphate  heptahydrate   0.02   zinc  sulphate  heptahydrate   0.02   Copper(II)  chloride  dihydrate

 

0.0054

 

copper(II)  chloride  dihydrate

 

0.0054

 

ammonium  heptamolybdate

 

0.0018

 

ammonium  heptamolybdate

 

0.0018

 

Figure  5:  The  nutrient  composition  of  control  group  1  (complete)  and  control  group  2  (adjusted).  

 

 

Adjustment  of  dishwater

 

From  the  chemical  analysis  was  found  that  the  pH  levels  were  too  high  to  sustain  plant  growth.  Therefore  2M   sulfuric  acid  was  added  to  neutralize.  Because  of  the  buffering  capacity  of  several  components  of  the  

dishwater,  exact  amounts  could  not  be  calculated.  A  titration  has  been  performed  with  a  1:11  dilution  of  the   2M  sulphuric  acid.  50  ml  dishwater  with  pH  10,67  had  to  titrated  with  0,9  ml  of  diluted  sulphuric  acid  to  reach  a   pH  of  6,50.    This  means  that  sulphate  concentrations  in  the  dishwater  were  heightened  by  0,15  mM  SO3-­‐  upon   acidifying.    

Removal  of  nutrients  from  dishwater

 

To  see  what  the  efficiency  is  of  the  taking  up  of  nutrients  from  the  dishwater  by  the  cucumber  plants,  samples   were  taken  before  and  after  the  dishwater  entered  the  WWPS.  It  must  be  said  that  this  method  will  give  an   indication  of  the  nutrient  removal  rather  than  the  the  nutrient  uptake  by  the  plants,  because  nutrients  can  be   lost  to  the  atmosphere  by  denitrification  or  be  incorporated  in  biomass  which  can  stick  to  the  substrate.  An   external  party  analysed  the  samples  for  NH4,  NO3,  Ntot,  Dissolved  organic  nitrogen  (DON),  PO4  and  Cl.  Because  of   the  complexity  of  the  samples,  very  high  PO4  levels,  high  SO4  levels,  relatively  high  salinity,  high  turbidity,   presence  of  fats  and  lots  of  unknown  chemicals,  the  samples  proved  very  difficult  to  analyze.  One  set  of   samples  from  before  and  after  entering  the  WWPS  could  be  analyzed  to  yield  satisfactory  results.  

 

Social  Methodology

 

 

Consumer  Acceptance

 

In   order   to   assess   the   social   willingness   of   consumers   to   adapt   to   the   wastewater   plant   system,   a   quantitative   social   research   is   done.   As   the   research   area   the   Science   Park   canteen   is   chosen.   Here,   possible  consumers  were  interviewed  with  the  use  of  a  cross-­‐sectional  research  design.  Because  people   from   the   same   scientific   discipline   might   have   a   bias   towards   the   adaptation   to   the   wastewater   plant   system,  an  equal  distribution  of  consumers  are  selected  from  the  disciplines.  The  interviews  were  face-­‐to-­‐ face  interviews  so  to  avoid  the  problem  of  non-­‐response.  A  risk  of  this  method  is  that  the  answers  may  be   biased  because  the  respondents  were  more  like  to  adjust  their  answers  towards  their  interviewer.    First   the  general  and  then  the  specific  questions  were  asked  in  order  to  avoid  the  order-­‐effect.    

 

(14)

quantitative   research   there   is   little   room   for   digression   which   makes   small   differences   between   respondents  hard  to  show.  In  other  words:  the  ecological  validity  is  in  jeopardy  because  of  the  disruption   of  the  “natural  habitat’’  (Bryman,  2008).  But  this  very  same  quantitative  research  has  a  high  replicability,   for  it  can  be  repeated  easily  and  will  probably  have  the  same  sort  of  outcomes.  (Bryman,  2008).    

Consumers  were  asked  about  1)  their  attitude  towards  recycling  in  general  2)  their  attitude  towards  the   WWPS  3)  the  possible  barriers  between  intention  and  actual  behaviour.  

 

The   results   of   this   quantitative   questionnaire   were   analysed   with   the   help   of   the   theory   of   reasoned   action.   With   the   results   possible   barriers   between   intentions   of   behaviour   and   actual   behaviour   were   identified.   These   findings   can   be   used   to   adjust   the   wastewater   plant   system,   to   enhance   social   acceptance  from  consumers.  

 

Producer  Acceptance

 

In  order  to  assess  the  willingness  of  the  producers  to  adapt  and  implement  the  wastewater  plant  system  a   qualitative   social   research   is   done.   In   order   to   gain   information   about   the   possibilities   for   the   implementation   of   the   WWSP,   a   qualitative   interview   with   the   operational   manager   and   the   location   manager  was  conducted.  This  qualitative  social  research  consisted  of  semi-­‐structured  open  interview.  The   interview  took  an  hour  in  which  first  general  questions  about  reuse  were  asked  and  secondly  questions   about  the  willingness  of  Eurest  to  adjust  their  detergent  in  favour  of  the  WWPS  as  well  as  their  actual   willingness  to  implementation  the  WWSP.    

 

This  chosen  research  design  has  its  advantages  as  well  as  its  disadvantages.  During  qualitative  research   there  is  room  for  digression  and  one  can  observe  small  differences  between  respondents.  This  makes  the   observations  more  realistic;  they  do  not  need  to  be  quantified.    This  means  that  ecological  validity  is  high,   because  there  is  little  disturbance  of  the  natural  world  (Bryman,  2008).  The  advantage  of  flexibility  during   qualitative  research  is  at  the  same  time  its  disadvantage;  replicability  is  in  danger  when  there  is  digression   from  the  standard  questions.    

 

The  results  of  this  qualitative  questionnaire  were  analysed  with  the  help  of  the  theory  of  reasoned  action.   Possible  barriers  between  producer  intention  and  producers  behaviour  were  identified  with  the  help  of   the  results.      

 

 

 

 

 

 

Results

 

In  this  chapter  the  results  of  both  the  experimental  set-­‐up  as  well  as  the  social  research  will  be  presented.    

 

Potential  consumer  interview

 

To  get  a  better  understanding  of  the  social  acceptance  of  the  wastewater  plant  system,  a  series  of  short   interviews  were  conducted  among  students  of  Science  Park.  In  the  course  of  half  a  day  20  students  were   targeted  for  an  interview.  The  interviews  were  conducted  in  the  mess-­‐hall  next  to  the  Eurest  canteen.   Most  people  interviewed  were  actually  consuming  something  bought  from  Eurest.  This  means  that  the   people  targeted  are  possible  consumers  of  the  cucumbers  grown  with  the  wastewater  plant  system.    

 

Referenties

GERELATEERDE DOCUMENTEN

The recirculation time can be seen equivalent to the conveyor speed even as capacity (Bastani, 1988). Other than a random item distribution, items in that study are

Significant differences were observed in the relative abundance of 335 bacterial taxa collected from clinical wastewaters (i.e., hospital and nursing home sources) and

While no évidence was found that thèse particular stories are true, the thesis of this article is that much of Suri traditional medicine for common ills has functioned relatively

A Pry (Tombois), Bequet spécifie seulement 1 que les fosses axées du nord au sud étaient les plus communes. Ces quelques indications, fort imprécises encore, puisque la

Based on a prior thorough study on the currently used state-of-the-art NR metrics and the features most commonly used for their assessment, we designed and implemented an

The aim of the present study was to investigate whether baseline CTA and CTP measures in acute ischemic stroke patients can improve prediction of infarct presence and infarct volume

Metabolic rift recycling grey water waste water plant system (WWPS) Science Park Amsterdam... 4 University of Amsterdam Introduction In this report a

This section reviews relevant studies from trust in medical and online information, as well as trust in e-commerce, to locate factors that could affect the formation of trust