• No results found

Strengthening ultrathin Si3N4 membranes by compressive surface stress

N/A
N/A
Protected

Academic year: 2021

Share "Strengthening ultrathin Si3N4 membranes by compressive surface stress"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Strengthening

ultrathin

Si

3

N

4

membranes

by

compressive

surface

stress

A.

Shafikov

a,∗

,

B.

Schurink

a

,

R.W.E.

van

de

Kruijs

a

,

J.

Benschop

a,b

,

W.T.E.

van

den

Beld

a

,

Z.S.

Houweling

b

,

F.

Bijkerk

a

aIndustrialFocusGroupXUVOptics,MESA+InstituteofNanotechnology,UniversityofTwente,Drienerlolaan5,7522NB,Enschede,theNetherlands1

bASMLNetherlandsB.V.,Veldhoven,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21August2020

Receivedinrevisedform

10November2020

Accepted19November2020

Availableonline23November2020

Keywords: Bulgetesting Residualstress Fracturestrength Siliconnitride Membrane

a

b

s

t

r

a

c

t

Inthiswork,theeffectofcompressivesurfacestressonthinfilmmembranefracturewasstudiedbybulge test.Inordertocreatemembraneswithcompressiveresidualstressatthesurface,low-pressurechemical

vapordeposition(LPCVD)Si3N4membraneswerecoatedwitha1−8nmcompressiveSiNxadlayeror

subjectedtoAr-ionbombardment.Fracturestrengthanalysis,doneusingfiniteelementmethodand

Weibulldistribution,andmicroscopeinspectionoffailedmembranesshowedthatthepressurelimit

ofthemembranesisdeterminedbytheintrinsicfracturemode,causedbyhighstressinducedatthe

membraneedgenearthetopsurface.Bycreatingcompressiveresidualstressatthemembranesurface, themaximumstressinducedbytheappliedpressurewasreducedandthefracturestrengthoftheSi3N4

wasincreasedfrom17.3GPato18.3GPa.Asaresult,membraneswithacompressivesurfaceshoweda

50%increaseinpressurelimit,from5kPa/nmto7.5kPa/nm.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thinfreestandingfilms(membranes)havebeenreceivingmore andmoreinterestduetotheiruseinawiderangeofapplications includingpelliclesforextremeultravioletlithography(EUVL)[1], X-rayand electrontransparent windows[2] and micro-electro-mechanical systems(MEMS).Oftentheapplicationsrequirethe freestandingfilmstobeextremelythin(downtotensofnm),as aresultsuchmembranescanbeextremelyfragile–thesmallest forceappliedtothethinfilmcancreatelargemechanicalstresses andleadtofailureofthemembrane.Hencemechanicalstrengthof thethinfilmsisofessentialimportance.

Aparticularmaterialthathasbeenreceivingalotofattention due to its excellent mechanical properties, is thin film amor-phous silicon nitride grown by chemical vapor deposition. In additiontohighmechanicalstrength,suchfilmshavehigh elec-trontransparencyduetothelowatomicmassofSiandNatoms andrandomizedelectronscatteringduetotheamorphous struc-ture.Combinationof thesepropertiesmakesamorphoussilicon nitridethinfilmsespeciallyattractiveforelectrontransparent

win-∗ Correspondingauthor.

E-mailaddress:a.shafikov@utwente.nl(A.Shafikov).

1 www.utwente.nl/xuv.

dowsusedingascells for environmentaltransmissionelectron microscopy(ETEM),which allowsin-situobservationof biolog-icalsamplesandprocesses occurringat highpressures,suchas metalhydrogenation,oxidationandothers[2–4].Thisisachieved byusingtwothinfilmmembranestoformawindowedgascell, whichenclosessamplesinasmallvolumeunderhighpressures insideaTEM.Thepressurethatcanbecreatedinsidesuchgascells islimitedbythestrengthofthemembranes–ifthestressesinduced bytheappliedpressuredifferenceexceedthestrengthofthe mate-rial,themembranewillrupturereleasingthegasandpotentially damagingtheelectronsource.Improvingtherobustnessof win-dowedgascellswouldallowtostudyprocessesathigherpressures thancurrentlyachievable.

One way to increase the pressure limit is to improve the mechanical strength ofthe thin film.Silicon nitrideis a brittle materialanditsstrengthisusuallylimitedbythedefectspresent in the material [5]. Therefore, reducing the amount of defects resultsin a strength increase. Thiscan bedoneby better con-trolandoptimizationofprocessconditions.Furthermore,onecan minimizethedefectsbyusingthesizeeffect–thesmallerthe sam-ple,thefewerdefectsitwillcontain.Forexample,Alanetal.[6] usedthesizeeffecttofabricateSi3N4 membraneswithstrength approachingthetheoreticallimit:15nmthickfilmscould with-standstressesas highas19.5GPa.Anotherwaytoincreasethe pressure limit is toreduce themaximum stress createdin the https://doi.org/10.1016/j.sna.2020.112456

(2)

thefieldofnanometer-scalethinfilmmembranes.Tothebestof ourknowledge,nostudieshavebeendoneoncompressivesurface strengtheningforsuchmembranesdespitetheirgreatpotentialfor useinapplicationssuchasETEMgascellsorthinfilmsensorsand actuators.

Therefore, the objectiveof this studywasto investigatethe effect of surface compressive stress on failure of ultrathin sil-icon nitride membranesunder appliedpressure. Using Weibull analysis and post-mortem inspection of membrane frames, we foundthattheultimatepressurelimitisdeterminedbythestress at themembrane edgenearthe filmsurface.Next, we demon-strated the strengthening effect of surface compressive stress using two different experimental approaches: 1) by adding a compressivelayeratopthemembrane surface,and 2)by alter-ing the surface of the membrane by ion bombardment to add compression. By using finite element method (FEM) to model stress distributions and analyzing the stresses at fracture as a function of the compressive surface layer thickness, we found thatfractureoriginateseitherfromthefreesurfaceofthe mem-braneorneartheinterfacebetweenthecompressivesurfacelayer and themain tensilemembrane layer,dependingonthe thick-ness.

2. Membranefabricationandmechanicaltesting 2.1. Fabrication

For the fabricationof thesilicon nitridemembranes, single-sidepolishedp-type,(100)-orientedsiliconsubstrates(Okmetic, Finland) with a thickness of 525±25␮m were used. A nomi-nally stoichiometric silicon nitride(Si3N4) layerof 47nm thick wasgrownbymeansoflowpressurechemicalvapordeposition (LPCVD).Next,frontandbacksideofthesubstratearespin-coated withpositivephotoresist,thebacksideisUVexposed througha Cr-mask containing6×6arrayof30 circlesof1750␮m diame-terand6circlesof3750␮mdiameter.Afterdevelopmentofthe photoresist,theexposedSi3N4(circularholes)onthebacksideis etchedbymeansofreactiveionetch(RIE)usingaSF6plasma chem-istry.Oncethe47nmofSi3N4isselectivelyetched,thephotoresist andetchresiduesareremovedinaUV-ozonesurfacecleaning sys-tem.Theherebyproducedchemicaloxidethinlayerisremovedin bufferedhydrofluoricacid(30s)andsubsequentlytheexposed sil-iconisetchedanisotropicallyintetramethylammoniumhydroxide (TMAH)(25%,90◦C,800min)throughoutthesubstratetorelease thesquareSi3N4 membranes.Anisotropicetchingterminateson theSi{111}planesandthesidesoftheetchedcavityinthesilicon waferhaveaslopeof54.7◦.Asresult,theSi3N4freestanding win-dowsformedonthefrontsideofthewaferhavesquareshapewith thesidesorientedalongtheSi<110>directionsandaresmallerthan thepatternedcircularopeningsintheSi3N4layeronthebackside ofthewafer.Thefinalreleasedmembraneshaveawindowsizeof 1.04×1.04mm2andathicknessof21.4±0.2nm,whichislower

X-rayreflectometry(XRR)afterreleaseandaftermodification,viz., coatingwithanadlayerorsubjectingthemembranetoanAr bom-bardment. Grazing incidence X-raydiffractometry (GIXRD)was performedonthemembranesand showedthat thelayershave anamorphousstructure.Roughnessofas-releasedandmodified membraneswasmeasuredbyatomicforcemicroscopy(AFM).All thesampleshadsmoothsurfacemorphologyandlowroughness withrootmeansquare valueof∼0.3nm.TypicalAFMscanning imagesarepresented in a Fig.1, showingsimilar surface mor-phologybetweennon-modified,Arbombardedmembranes and membranesovercoatedwitha8.3nmSiNxadlayer.Thereforethe effectofthesurfaceroughnessonfracturestrengthisexpectedto belowandthesameforallofthestudiedsamples.

2.2. Mechanicaltesting

Mechanicalpropertiesofthethinfilmmembraneswerestudied usingabulgetestsetup(Fig.2)consistingofamembranemounting stagewithnitrogengassupply,apressuresensorandascanning whitelightinterferometer(WLI).

InordertodetermineYoung’smodulusandresidualstressin thinfilmmembranespressurevs.deflectioncurvesweremeasured. Forthatapressurewasappliedfromthemembranecavitysideas shownonFig.2(a),andaheightmapofthemembranewindow andframewasobtainedwithWLI.Thedeflectionwascalculatedas theheightdifferencebetweentheflatframeandthecenterofthe membrane.Thepressurewasincreasedstepwiseandletto stabi-lizebeforeeachWLImeasurement.Atypicalpressurestepbetween themeasurements was7kPa, with a pressure increase rate of roughly1kPa/s.ThevaluesofYoung’smodulusandresidualstress weredeterminedbyfittingtheexperimentallymeasured pressure-deflectioncurveswiththebulgeequationforN-layermembrane(1) [8]: P=3.41



n=1..N 0,ntnh a2 +



n=1...N (1.981−0.585

v

n) En 1−

v

ntn h3 a4 (1) wherePistheappliedpressuredifference,histhedeflection,ais thehalf-widthofthesquaremembranewindowandtn,

v

n,En,0,n arethickness,Poissonratio,Young’smodulusandresidualstress ofthen-thlayer,respectively.ThePoissonratiowasassumedto be0.25forboththeSi3N4membranelayersandtheSiNxadlayers, whichiswithintherangeofvaluesthataretypicallyreportedfor siliconnitridethinfilms[5,9,10].

Todeterminethestrengthofthemembranes,burstpressures weremeasuredusingthesamebulgesetup.Pressurewas continu-ouslyincreasedwithanaveragerateofabout5kPa/s.Incontrastto pressure-deflectionmeasurements,themembraneburstpressure wasmeasuredbyapplyingpressurefromtheflatsideasshownon theFig.2(b).Itisknown,thatifamembraneispressurizedfrom thecavityside,asingularstressfieldformedatthesharpcorner betweentheframeandthefilmcancausedelaminationandearly failure[11].Therefore,pressurizationfromtheflatsideispreferred forapplicationswheremembranesneedtowithstandhighpressure

(3)

Fig.1.AFMscansof(a)as-releasedSi3N4membranes,(b)ArbombardedSi3N4membranes,and(c)membranescoatedwith8.3nmSiNxadlayer.

Fig.2. Bulgesetup.(a)Configurationusedduringpressure-deflectionmeasurements,pressureappliedfromthecavityside.(b)Configurationusedduringburstpressure

measurements,pressureappliedfromtheflatsideofthemembrane.

differencesandformeasuringstrengthofthethinfilmasfracturein thatcaseinitiatesfromthefilm,ratherthantheinterfacebetween thefilmandtheframe.Thestressdistributionsinthepressurized membranesweremodelledbyFEMusingtheComsolMultiphysics softwarepackage[12].Thefracturedmembraneswereinspected usinganopticalmicroscopetodetermineifthefractureoriginated fromthecentralfreestandingareaofthemembraneortheedgeof thewindow,wherethehigheststressinthethinfilmislocated.

3. Failureofsingleuniformlayermembranes

Fractureinbrittlematerials,suchasthesiliconnitridethinfilms usedinthisstudy,occursduetolocalstressconcentrationsatthe defectspresentinthematerial.Thelocalstressfieldaroundadefect dependsonitsshapeandsize.Generallylargerdefectscreatemore intensestressconcentrationsandinitiatefailureatlowervaluesof appliedstress.Therefore,failureofabrittlematerialisa statisti-calprocessanddependsonthedefectdistributioninthematerial. Thedefectsmayhaveextrinsicorigin,suchasa surfacecrack,a pinholeora dustparticleembeddedinthethin film.However, theyalsocanhaveintrinsicnature,forexampleagrainboundary inapolycrystallinematerialoratomicsizedeviationsfromshort rangeorderinamorphousglass-likematerials.Whereasintrinsic nanoscale defectsareexpected tobeabundantin thematerial, extrinsiconesarelargerandcanbesparselydistributed.Therefore, thesmallerthesamplevolume,thehighertheprobabilitythatit containsonlytheintrinsicdefects.Asaresult,thestrengthofthe sufficientlysmallsamplesis determinedbytheintrinsicdefects (intrinsicstrength),whilelargersamplesaremorelikelytofaildue toextrinsicones(extrinsicstrength).

LetusnowconsiderstressdistributioninthepressurizedSi3N4 membraneandpossiblefailureorigins.OntheFig.3,whichpresents anexampleofsuchstressdistributionobtainedbyFEM,wecan distinguishtwopartsofthemembranewithverydifferentstress states.Firstisthenarrowregionalongthemembraneedges,where

bendingcausesahighstress,whichhasamaximumatthetopside ofthethinfilminthemiddleofthemembraneedge.Thesecond isthecentralfreestandingpartofthemembrane,wherethestress isaboutthreetimeslowerthanthemaxstressattheedge.Letus nowassume,thattheSi3N4containstwodifferentpopulationsof defects:atomicallysmallintrinsicdefectsthatareabundantinthe layer,andlarger,butsparselydistributedextrinsicones.In that case,thenarrowregionalong theedgewould containonlythe smallintrinsicdefectsandexhibitrelativelyhighstrength (intrin-sicstrength),whereas thelargefreestandingregion wouldalso containlargerextrinsicdefectsandhavelowerstrength (extrin-sicstrength).Insummary,ifourassumptionaboutthetwodefect populationspresentinthelayersiscorrect,weshouldexpectthat pressurizedmembranescanexhibittwofailuremodes:1)intrinsic failureinitiatedfromtheedgeofthemembrane,2)extrinsicfailure initiatedfromanextrinsicdefectinthecentralfreestandingregion. Asnotedearlier,brittlestrengthdependsonthedefect distribu-tioninthematerial.Therefore,strengthofbrittlematerialshasto beanalyzedstatistically.Whenfailureofthematerialiscausedby asingledefectpopulation(singlefailuremode),strengthanalysis iscommonlydonebyfittingtheexperimentallymeasuredfailure probabilityasafunctionoftheappliedstressusingaunimodal Weibulldistribution[13]: F=1−S=1−exp





 



m



(2)

WhereFistheprobabilityoffailure(Sistheprobabilityofsurvival) atgivenvalueofappliedstress(maximumstress,ifloadingisnot uniform).TheparametersmandarerespectivelytheWeibull modulusandthecharacteristicstrengthforthisloadinggeometry. Assuming,thatthetwoproposedfailuremodesareindependent (i.e.,eventsofmembranesurvivingagainsteachfailuremodeare

(4)

Fig.3.StressdistributioninapressurizedmembraneobtainedwithFEM.Stressconcentrationispresentatthemembraneedge,whichcanleadtofailure.Simulation

parameters:E=225GPa,0=850MPa,v=0.25,windowsize2a=1.04mm,thicknesst=21.4nm,appliedpressureP=108.6kPa.

statisticallyindependent),failureprobabilitycanbedescribedbya multiplicativebimodalWeibulldistribution[13]:

F=1−SiSe=1−exp





center(P)e



me −



edge(P) i



mi



(3) WhereSiandSeareprobabilitiesofamembranesurviving intrin-sicandextrinsicfailuremodesunderappliedpressureP,edge(P) andcenter(P)arevaluesofmaximumstressthatcanbefoundat theedgestressconcentrationandinthecentralareaofthe mem-brane(maximummembranestress).Theparameterse,me and i,miarecharacteristicstrengthandWeibullmodulusfor extrin-sicandintrinsicfailuremodes,respectively.Assumingthatedge(P) andcenter(P)canbeapproximatedaspowerfunctionsofapplied pressureP(e.g.∼P2/3foracircularmembrane[8])wecanfurther rewritethebulgeequationwithappliedpressureasanargument, yielding: F=1−exp





PP i



mi



PP e



me



(4) WherePiandPearethecharacteristicburstpressuresforintrinsic andextrinsicfailuremodescorrespondingto63.2%failure proba-bilityfortherespectivemode,andmi,meareshapeparameters.This finalformoftheWeibullequationismoreconvenientforfitting theexperimentallymeasureddata(burstpressures)than distri-bution(3),since itusespressure assingleargument,insteadof edge(P)andcenter(P).Afterfittingtheexperimentallymeasured membranefailureprobabilitieswithdistribution(4),intrinsicand extrinsicstrengthscanbefinallycalculatedasi=edge(Pi) (maxi-mumstressattheedgeatPi)ande=center(Pe)(maximumstress inthecentralareaofthemembrane,i.e.membranestress,atPe) usingFEM.

3.1. Experimentalresults

To determine the strength of the Si3N4 layer, bulge test-ingwasperformedonas-releasedmembranes.Young’smodulus and residual stress in the membranes are determined by fit-tingpressure-deflectiondatatothebulgeEq.(1),whichdataare 225±6GPaand850±30MParespectively.Fig.4presentsthe fail-ureprobabilityplotforas-releasedSi3N4membranesasafunction oftheappliedpressure.Theplotconsistsoftwodifferentslopes:a steepslopecontainingdataofsamplesthatfailedatpressuresinthe rangeof100–110kPaandashallowslopewithsamplesfailingat lowerpressures.Theexistenceoftwosuchvisuallydistinctparts ofthedistributionsuggeststhattheyhavedifferentphysical ori-gins,i.e.theyarecausedbydifferentdefectpopulations.Tosupport thissuggestion,thefailedmembranesarecategorizedaccordingto theirappearanceafterfailure.Inmoredetail,theresidual mem-branepiecesstillattachedtotheedgeoftheframearepresentedin twodistinctivemanners.Themajorityofthesampleshavespikes

Fig.4. CumulativefailureprobabilityFof1.04×1.04mm221.4±0.2nmthickSi

3N4

membranes.ThebottomhorizontalaxisrepresentsthevalueofappliedpressureP,

whereasthetophorizontalaxiscorrespondswiththevalueofmaximalstressatthe

membraneedgeedge(P).Solidsquaresaremembranesfracturedattheedge,while

hollowonesaremembranesthatfracturedinthecentralarea.Thedataisfitted

(solidline)withabimodalWeibulldistribution(4).Fittedparametersandnumber

oftestedsamplesaregivenastextinsertontheplot.

pointingtothemiddleofoneofthefourmembraneedges,asshown onFig.5(a).Thissuggeststhatinthesesamplesfailureoriginated atthemembrane edgeandhappenedthroughtheintrinsic fail-uremode.Notethatintheverymiddleoftheedge,closetothe fractureorigin,membraneresidueisalwaysabsent,becauseofthe cracksthatpropagatealongtheedgefromtheorigin.Apartfrom thesesamples,membranesarefoundwithspikespointingtothe membranecenter,which arepresentonallfouredges,as illus-tratedonFig.5(b).Thesesuggestthatthefractureoriginatedfrom anextrinsicdefectinthefreestandingpartofthemembrane.Based ontheappearanceoftheresidualmembranepieces,allfailed sam-pleswerecategorizedintotwogroups:thosethatfracturedatthe edgeandthosethatfracturedinthecenter.Afailedmembranewas categorizedasfailedattheedgeifitmetthefollowingcriteria: (1)ifthecrackpaths,indicatedbythedirectiontheresidualfilms piecesonallfouredgesarepointingto,canbetracedtoapointon oneofthefouredges;(2)anapproximately50␮mwideareaatthe edge,containingthesuspectedgefractureorigin,doesn’thaveany residualmembranepieces;(3)nexttothatarea,frombothsides, thereareresidualmembranepiecesorientedtowardstheareaata shallow<45◦anglerelativetotheframe.Samplesthatdidnotmeet thecriteriagivenabovewereclassifiedasfracturedinthecenter. Usingthesecriteria,itwaspossibletounambiguouslycategorize eachsampleinoneofthetwogroups.Thecategorizedsamples

(5)

Fig.5.Schematicandopticaldarkfieldmicroscopeimagesofmembranesfailedthroughdifferentmodesshowingdistributionoffilmpiecesattachedtotheframe.The

redcrossandwhitedashedarrowsindicatetheexpectedlocationofthefractureoriginandthedirectionsofcrackpropagationinferredfromtheshapeofthemembrane

residualsleftontheframe.(a)Intrinsicfracturemode,spikespointingorcurvedtowardsthemiddleofthebottomedge(b)Extrinsicfailuremode,spikesonallfouredges

arepointingtowardscenterofthemembrane.

arelabeledinFig.4,wheresamplesfailedattheedgeandinthe centralareaareindicatedwithopenandfilleddots,respectively. Fromthiswecanconfirmourhypothesis,thatthetwoslopesof thefailureprobabilitydistributionhavedifferentphysicalorigins, namelytheshallowslopeofthefailuredistributioncorresponding totheextrinsicfailuremode,whilethesteepslopecorrespondsto theintrinsicmode.

Takingintoaccounttheexistenceofthetwoindependent fail-uremodes,theexperimentalfailureprobabilitydistributionwas fittedwiththebimodalmultiplicativeWeibulldistribution(4).The fitted distribution(solid line)and values of thefitting parame-tersare shownontheFig.4.Theherebyintrinsic andextrinsic layerstrength, foundfromFEM, arerespectively:i=17.3GPa ande=11GPa.Theobtainedvalueofiiscloseto19.5GPavalue reportedby[6],whichistothebestofourknowledgethe high-estexperimentallymeasuredstrengthvalueforsiliconnitridethin films.Furthermore,iisapproachingtheruleofthumbvalueof theoreticalstrengthE/10=22.5GPa,whichsupportsthenotion thatitisnotlimitedbyextrinsicdefectsandrepresentsthe intrin-sicfilmproperty.Ontheotherhandtheextrinsicstrengthislower thanintrinsicstrength,duetothelargersizeoftheextrinsicdefects. Inaddition,theextrinsicfailuremodeshowsalowervalueofthe Weibullmodulusme(i.e.largerspreadinsamplestrengthvalues)

thantheintrinsicmodemi,whichreflectsthefactthattheextrinsic defectshavealargervariationinsize.

Insummary,weobservedandidentifiedtheexistencetwo fail-uremodesinthepressurizedSi3N4thinfilmmembranes:intrinsic failure,i.e.failureinitiated fromtheedgeofthemembrane,the locationofthehighestappliedstress,andextrinsicfailure,i.e. fail-ureinitiatedfromthecentralfreestandingregionofthemembrane andcausedbytheextrinsicdefects.Reducingtheamountof extrin-sicdefectsbyoptimizingthefabricationprocess,i.e.byfindingthe source(s)ofdefectsorusingimprovedsubstratecleaning proce-dures,willhelptomakemorereliablemembranes,whichwould failinanarrowrangeofappliedpressures.However,toincrease theultimatepressurelimitofthemembranesoneneedstoeither increasetheintrinsicstrengthofthematerialorreducethe max-imumstressappliedtothethinfilm.Inthenextsectionwewill demonstratethatthemaximumstresscanbereducedbyadding compressivestressinthethintoplayerofthemembrane. 4. Improvedfracturestrengthandpressurelimitof membraneswithcompressivestressatthesurface

Intheprevioussectionweexplainedthattheultimatepressure thatamembraneisabletowithstandisdeterminedbythe

(6)

intrin-acttheinducedstressandincreasethepressurelimitofavessel. Theeffectofcompressionatthemembranesurfacewithrespectto failureisstudiedanddiscussedinthefollowingsections.

4.1. Elasticpropertiesofmembraneswithsurfacecompression Inthisworkwedemonstratetwomethodstoproduce mem-branes with residual compressive stress at the surface: 1) depositionofthinadlayerswithresidualcompressivestressand 2)exposingthemembranesurfacetoanAr-ionbombardment.

Inthefirstmethod,anadditionalthinSiNxlayer,oradlayer,is depositedbyreactivemagnetronsputteringontopofpre-released Si3N4membranes,themainlayer.ThesputteredSiNxlayerhasa compressiveresidualstressthatiscausedbytherelativelyhigh energyofatomsduringdeposition,typicallyintheorderof sev-eraleV.Tostudytheeffectofadlayerthicknessonthemembrane strength,SiNxadlayerswiththicknessesintherangeof1.4–8.3nm weredepositedontopofSi3N4membranes.Themaximum thick-nessof8.3nmisbasedontheconditionthattheaveragestressin themembraneremainstensileafteradlayerdeposition,toavoid wrinklingofthemembranewhichwouldcomplicatethe interpre-tationofthebulgetestresults.

InordertodetermineresidualstressandYoung’smodulusof theadlayers,pressure-deflectiondatawasmeasuredontheSi3N4 membranes withSiNx adlayers and fitted tothe bulge Eq. (1) for abilayermembrane withN=2.Fig.6shows thechangein theobtainedvalues accordingtothefitting parameters, includ-ing thetotal lineforce

t=0,mtm+0,ata and thestiffness

Et=Emtm+Eataofmembranesasafunctionofthethicknessof theadlayerta.Thelineforceandstiffnessshowalineardependence inthisrangeofthicknesses,thereforeitisassumedthatYoung’s modulusEaandresidualstress0,aoftheadlayersareuniformand independentoftheadlayer thickness.ThevaluesoftheYoung’s modulus and residual stress in theSiNx adlayers are obtained fromlinearfitting:Ea=208±11GPaand0,a=−1908±64MPa. Despitethebendingmomentcausedbythedifferenceinresidual stressatthebottomandtopsideofthemembraneswith adlay-ers,nosignificantchangeinresidualdeflection(withoutpressure applied)ofthemembraneswasobserved.Instead,allmembranes showedsimilarresidualwarpageof∼50nm,causedbytheresidual strainsandwarpageoftheSiframe.

Alternatively,thecompressivestresscanbegeneratedinthe Si3N4layeritself.Itisknownthatalowenergy(sub-keV)ion bom-bardment cangenerateseveralGPaofcompressivestressinthe firstfewnanometersofmaterialduetoionimplantationand sur-faceatomrepositioningordensification[14].Tostudytheeffectof compressivestressgeneratedbyionbombardmentonthepressure limit,membraneswereexposedforashorttime(10s)toanArion beamwithnominalionenergyandcurrentdensityof130eVand 0.2mA/cm2,respectively,amountingtoatotaldoseof∼1.3*1016 ions/cm2.FromXRRmeasurementsbeforeandafterexposure,the changeinSi3N4membranethicknesswasdeterminedtobe approx-imatelytm−tm=1.65nm.Valuesofaverageresidualstressand Young’smodulusinthemembranesbombardedbyArionswere

0,m tm−0,m tm−tAr

tAr =−2.77GPa,whichiscomparabletothestress

intheadlayers.However,sincetheactualresidualstress distribu-tionisunknown,wecannotcalculatethefracturestrength,whereas thisis possiblefor membraneswithadlayersand thereforethe preferredroutetostudyinmoredetail.

4.2. Fracturestrengthandpressurelimit

The failure probabilities for membranes with added surface compressionareplottedasafunctionoftheappliedpressurein Fig.7.

Similarlytoas-releasedmembranesinSection3,membranes withSiNxadlayersandbombardedbyanArionbeamexhibittwo failuremodes:intrinsic–strongersamplesfracturedattheedge, andextrinsic–weaksamplesfracturedinthemembranecenter. Theappearanceoftheresidualfilmpiecesontheframesoffailed membraneswassimilartothecaseofas-releasedmembranes,with theonlynotableexceptionthattheresidualfilmpiecestendedcurl, becauseofthebendingmomentcausedbythedifferenceinstress onthetwosidesof thefilm.Comparedtomembraneswithout addedsurfacecompression,alargerfractionofmembraneswith adlayersfracturedthroughextrinsicmechanism,ascanbeseen whencomparingFigs.4and7.Theriseoftheextrinsicmodeis likelycontributedtobyanincreasedamountofdefectsinthe mem-braneintroducedbysputterdepositionoftheadlayer.Inaddition, inthepresenceofanadlayer,theintrinsicmodeoffracturewill occurathigherpressuresandasaresultthemembranestresses (i.e.stressincentralarea)willreachhighervalues.Hence,thereis anincreasedprobabilityofmembranesfailingthroughtheextrinsic mode.Furthermore,onecannotethepoorfitqualitywiththe mul-tiplicativebimodalWeibulldistribution,whichbecomesespecially apparentformembraneswiththickadlayersforwhichamore sig-nificantfractionofsamplesfailsthroughtheextrinsicmode.This suggeststhattheextrinsicdefectsarenotdistributeduniformlyin thesamplepopulation(i.e.onepartofthewaferismore defec-tivethantheother),inwhichcaseanalternativebimodalWeibull distribution,e.g.additive[16],wouldbebettersuited.However, a more extensivestudy of theeffect of adlayers ondefectivity andextrinsicfailuremodewasbeyondthescopeof thispaper. Instead,wewillbefocusing ontheintrinsicmechanism of fail-ure,whichhappensattheedgeduetoconcentrationofbending stress.

Letusconsidertheintrinsicfailuremechanism-thesteeppart oftheWeibulldistribution.Ar-ionbombardedmembranes,despite theirlowerthickness(19.8nmvs.21.4nm),haveahigherintrinsic burstpressurethanas-releasedmembranes(134kPavs.109kPa). Thisincreaseiscausedbythereducedstressatthetopsurface,after beingbombardedbytheArions.However,asnotedbefore,the fracturestresscannotbecalculatedforArbombardedmembranes, astheresidualstressdistributionisunknown.

Intrinsicburst pressuresfor membranes withSiNx adlayers, normalizedtothetotalthickness,arepresentedonFig.8(a). Nor-malizationis donetoaccountfor anincrease inburst pressure

(7)

Fig.6.(a)Changeintotalline-force

tand(b)stiffness

Etofmembraneswithincreasingthicknessoftheadlayer.

Fig.7.ThecumulativeprobabilityoffailureFformembraneswithsurfacecompression.(a)-(e)21.4±0.2nmSi3N4membraneswith1.4-8.3nmthickSiNxadlayers.(f)

19.75±0.3nmmembranesafterArbombardment(initialthickness21.4nm).ThebottomhorizontalaxisrepresentsthevalueofappliedpressureP,whereasthetop

horizontalaxiscorrespondswiththevalueofmaximalstressatthemembraneedgeinthemainSi3N4layermainedge(P).Solidsquaresaremembranesfracturedattheedge,

whilehollowonesaremembranesthatfracturedinthecentralarea.Dataarefitted(solidline)withabimodalWeibulldistribution(4).Fittedparametersandnumberof

testedsamplesaregivenastextinsertontheplot.

causedsolelybytheincreaseinmembranethickness.Compared toas-releasedmembranes,membraneswithadlayershaveupto 50%highervaluesofnormalizedintrinsicburstpressure,which isanadvantageforsuchapplicationsasgascellsfor environmen-talTEMandEUVpellicles,whereacombinationofhighstrength andtransparency(smallthickness)isrequired.Itappearsthatthe normalizedburstpressuredoesnotchangemonotonouslyandthat theoptimalthicknessoftheadlayerisaround4nm.Tounderstand whatcausesthisnon-monotonouschangeofburstpressureletus assumethattheintrinsicfracturecaninitiatefromthelocationof

thehigheststresseitherin themainSi3N4 layerorin theSiNx adlayer.For each adlayerthickness,themaximum stressinthe mainlayerandadlayerwithanappliedpressureequalto intrin-sicburstpressure(main

edge(Pi)and ad

edge(Pi))werecalculatedusing FEM,theobtainedvaluesareplottedinFig.8(b).Itcanbeobserved thatad

edge(Pi)steadilyincreasesuntiltheadlayerreachesa thick-nessof4nmandthenstopsatabout17.3GPa.Thestressinthemain layermain

edge (Pi) alsoinitiallyshowsaslightincreasefrom17.3GPato 18.2GPa,butthen,asadedge(Pi)startstosaturate,mainedge(Pi) decreases andreduceseventobelow17.3GPa,thestrengthofanadlayer-free

(8)

Fig.8.(a)Intrinsicburstpressureof21.4nmSi3N4membraneswithSiNxadlayersasfunctionofadlayerthicknessta.PressurePiisnormalizedtoaccountforsheerincrease

intotalmembranethicknesst.(b)Maximumstressedge(Pi) foundinthemainlayerandadlayercorrespondingtointrinsicburstpressure.Dashedlinesonbothgraphsshow

expectedvaluesassumingconstantintrinsicstrengthof17.3GPaformainSi3N4layerandSiNxadlayers.

Fig.9.Diagramsshowingfracturebytheintrinsicmodeinmembranes(a)withoutadlayer,(b)withthinadlayer,(c)withthickadlayer.Diagramsinthebottomrow

qualitativelyillustratestressdistributionsinmain(blue)andadlayers(green)atthemomentoffracture,redcrossindicateslocationoffracture.

membrane.Thissuggeststhatwithincreaseoftheadlayer thick-ness, thelocationof thefracture originchangesfrom themain layertotheadlayer.Inas-releasedmembraneswithoutadlayerthe intrinsicfailureinitiatesfromthefreesurfaceofthemainlayerat 17.3GPa(Fig.9(a)).Assuch,anincreaseinadlayerthicknessalso increasestheratiobetweentensilestressintheadlayerandstress inthemainlayerofthepressurizedmembrane.Hence,whilein themembraneswithathinadlayerthefailureisstilldetermined bythestressinthemainlayer(Fig.9(b)),inthemembraneswith thickeradlayersthestressintheadlayerreachestheadlayer ten-silestrengthbeforethestressinthemainlayerleadstofailure. Asaresult,thefracturestartsfromthefreesurfaceoftheadlayer (Fig.9(c)).Theadlayerthicknesscorrespondingtothistransition from thesituationdescribed inFig.8(b) tothesituationin the Fig. 8(c) appearsto betheoptimalthickness, which allowsfor highestPi/t.Forapracticalpurposeitisdesirabletodelaythis tran-sition,i.e.tohaveaneventhickeradlayerwithfracturestillbeing limitedbythestressinthemainlayer.Inordertoachievethis,it willbeusefultouseadlayerswithevenlowerstress(more com-pressive)or/andhigherfracturestrength,whichmaybedoneby tuningthecompositionoftheadlayeranddepositionconditions.

Similarly,inthecaseofArbombardment,thedepthdistribution andmagnitude ofthecreatedcompressivestresswillinfluence thepressure limit ofthe membrane. Henceit shouldbe possi-bletofindmoreoptimalparametersfortheionbeamtreatment thantheonesusedinthiswork,andachievehigherincreaseofthe pressurelimit.Althoughitisdifficulttopredictwhichexact param-etersofthebeamwouldbeoptimal,weexpectthatmoreenergetic beamwouldleadtolargerimplantationdepthandhigher magni-tudeofthecompressivestresscreated,whichshouldresultina strongermembrane,aslongasthedamagecausedby implanta-tiondoesn’tcompromisethefracturestrengthofthebombarded layer.

Asnotedearlier,main

edge (Pi) initiallyincreaseswithadlayer thick-ness,inotherwordsthestrengthofthemainlayercoveredbythe adlayerishigherthanthefracturestressoftheas-released mem-brane.Comparedtocracksstartingfromafreesurface(Fig.9(a)), cracksoriginatingfromavolumeundertheadlayer(Fig.9(b))will requireahigheractingstressforgrowth[17].Hence,thestrength ofthemainlayerincreaseswhenitiscoveredbyanadlayerandthe fractureoriginismovedawayfromthefreesurfaceofthe

(9)

mem-brane.Themagnitudeofthecompressivestressintheadlayerand theadlayerthicknessshouldhaveaninfluenceonthe strengthen-ingeffectoftheadlayer,i.e.,anextremelythinadlayerwillprovide littleresistancetothecracksgrowingunderit,whileathickadlayer withlargecompressivestressshouldbemoreeffectiveat hinder-ingcrackgrowth.Howeverincreaseoftheadlayerthicknessquickly causesthefractureorigintomovetothefreesurfaceoftheadlayer, whichdoesn’tallowtostudythestrengtheningeffectindetailin thisexperiment andcompareitwiththetheoreticalmodel pro-posedbyGreen[17].

Insummary,membraneswithcompressiveresidualstressatthe topsurfaceinducedbyArionbeambombardmentorthedeposition ofthinadlayerscanwithstandahigherpressurebeforeintrinsic failureisinitiated.Compressivestressatthetopsurfacereduces themaximumstresscausedbybendingnearthemembraneedge andcausesthefractureorigintomoveunderthesurface,which leadstoincreasedfracturestrength.

5. Conclusion

In this work westudied thefailure ofthin film membranes withandwithoutsurfacecompressionunderanexternallyapplied pressure. By analyzing the failure probability distributions and inspecting the frames of failed membranes, we identified and quantified two distinct failure modes: intrinsic, corresponding to a failure initiated in the small highly stressed region along the membrane edge, and extrinsic, a failure mode caused by theextrinsicdefectsin thelargefreestandingpartofthe mem-brane.

Usingargon-ionbombardmentorthedepositionofadlayersto createmembraneswithcompressivetoplayers,wehave demon-stratedthatresidualcompressivestressatthesurfacemitigatesthe intrinsicfailuremode,whichallowsstrongermembranesthatare abletowithstandupto50%higherappliedpressures.Thisresult canbeusedtowidentherangeofapplicationsforthinfilm mem-branes,especiallyintheareaswheremembranetransparencyfor electronsorX-raysiskey.

Analysisofthestressinmembraneswithadlayerssuggeststhat whenthecompressivesurfacelayerissufficientlythin,the frac-tureoriginatesfromtheinterfacebetweenthecompressivesurface layerandthemaintensilelayer,whileinmembraneswithathicker compressivelayerfailurestartsfromthefreesurfaceofthe mem-brane.Stressrequiredforfracturetoinitiatefromunderneaththe compressivelayerwasfoundtobeslightlyhigherthanforfracture thatstartsfromthefreesurface.

CRediTauthorshipcontributionstatement

A. Shafikov: Methodology, Investigation, Writing - original draft.B.Schurink:Methodology,Investigation,Writing-review &editing.R.W.E.vandeKruijs:Methodology,Supervision, Writ-ing-review&editing.J.Benschop:Supervision,Writing-review &editing.W.T.E.vandenBeld:Methodology,Writing-review& editing.Z.S.Houweling:Supervision,Writing-review&editing. F.Bijkerk:Supervision,Fundingacquisition,Writing-review& editing.

DeclarationofCompetingInterest

Theauthorsreportnodeclarationsofinterest. Acknowledgements

ThisworkispartofresearchprogrammeoftheIndustrialFocus GroupXUV Optics, beingpartof theMESA+Institutefor

Nano-technologyandtheUniversityofTwente,(www.utwente.nl/xuv) andtheIndustrialPartnershipProgramme“X-tools”(projectNo. 741.018.301).TheworkwasfinanciallysupportedbytheDutch ResearchCouncil(NWO),ASML,CarlZeissSMT,MalvernPanalytical andtheProvinceOverijssel.

References

[1]M.Nasalevich,P.J.vanZwol,E.Abegg,P.Voorthuijzen,D.Vles,M.Péter,W.

vanderZande,H.Vermeulen,ResearchingnewEUVpelliclefilmsforsource

powersbeyond250watts,32ndEur.MaskLithogr.Conf.10032(2016)

100320L,http://dx.doi.org/10.1117/12.2255040.

[2]F.Wu,N.Yao,Advancesinwindowedgascellsforin-situTEMstudies,Nano

Energy13(2015)735–756,http://dx.doi.org/10.1016/j.nanoen.2015.03.015.

[3]T.Yokosawa,T.Alan,G.Pandraud,B.Dam,H.Zandbergen,In-situTEMon

(de)hydrogenationofPdat0.5–4.5Barhydrogenpressureand20–400◦C,

Ultramicroscopy112(2012)47–52,http://dx.doi.org/10.1016/j.ultramic.

2011.10.010.

[4]T.L.Daulton,B.J.Little,K.Lowe,J.Jones-Meehan,Insituenvironmental cell-transmissionelectronmicroscopystudyofmicrobialreductionof chromium(VI)usingelectronenergylossspectroscopy,Microsc.Microanal.7 (2001)470–485,https://doi.org/10.1017.S1431927601010467.

[5]J.Yang,O.Paul,FracturepropertiesofLPCVDsiliconnitridethinfilmsfrom

theload-deflectionoflongmembranes,Sens.ActuatorsAPhys.97–98(2002)

520–526,http://dx.doi.org/10.1016/S0924-4247(02)00049-3.

[6]T.Alan,T.Yokosawa,J.Gaspar,G.Pandraud,O.Paul,F.Creemer,P.M.Sarro,

H.W.Zandbergen,Micro-fabricatedchannelwithultra-thinyetultra-strong

windowsenableselectronmicroscopyunder4-barpressure,Appl.Phys.Lett.

100(2012),081903,http://dx.doi.org/10.1063/1.3688490.

[7]A.Atkinson,A.Selc¸uk,Residualstressandfractureoflaminatedceramic

membranes,ActaMater.47(1999)867–874,http://dx.doi.org/10.1016/

S1359-6454(98)00412-1.

[8]R.J.Hohlfelder,BulgeandBlisterTestingofThinFilmsandTheirInterfaces, StanfordUniversity,1998.

[9]R.L.Edwards,G.Coles,W.N.Sharpe,Comparisonoftensileandbulgetestsfor

thin-filmsiliconnitride,Exp.Mech.44(2004)49–54,http://dx.doi.org/10.

1007/BF02427976.

[10]J.J.Vlassak,W.D.Nix,Anewbulgetesttechniqueforthedeterminationof

Young’smodulusandPoisson’sratioofthinfilms,J.Mater.Res.7(1992)

3242–3249,http://dx.doi.org/10.1557/JMR.1992.3242.

[11]B.Merle,MechanicalPropertiesofThinFilmsStudiedbyBulgeTesting,2013.

[12]COMSOLMultiphysics®v.5.4.www.comsol.com.COMSOLAB,Stokholm,

Sweden.

[13]F.W.Zok,OnweakestlinktheoryandWeibullstatistics,J.Am.Ceram.Soc.100

(2017)1265–1268,http://dx.doi.org/10.1111/jace.14665.

[14]Y.Ishii,C.S.Madi,M.J.Aziz,E.Chason,StressevolutioninSiduring

low-energyionbombardment,J.Mater.Res.29(2014)2942–2948,http://dx.

doi.org/10.1557/jmr.2014.350.

[15]J.F.Ziegler,M.D.Ziegler,J.P.Biersack,SRIM—thestoppingandrangeofionsin

matter(2010),Nucl.Instrum.MethodsPhys.Res.Sect.BBeamInteract.Mater.

Atoms.268(2010)1818–1823,http://dx.doi.org/10.1016/j.nimb.2010.02.091.

[16]S.Nadarajah,S.Kotz,StrengthmodelingusingWeibulldistributions,J.Mech.

Sci.Technol.22(2008)1247–1254,

http://dx.doi.org/10.1007/s12206-008-0426-5.

[17]D.J.Green,Compressivesurfacestrengtheningofbrittlematerials,J.Mater.

Sci.19(1984)2165–2171,http://dx.doi.org/10.1007/BF01058092.

Biographies

AiratShafikovreceivedhisB.Sc.andM.Sc.(withhonors)degreesfromMoscow

InstituteofPhysicsandTechnology,in2015and2017,respectively.Heiscurrently

workingtowardsthePh.D.degreeinIndustrialFocusGroupXUVOpticsindustrial

focusgroupoftheMesa+instituteattheUniversityofTwente.Hisresearchinterests

includesynthesisandstudyofmechanicalpropertiesofnanoscale-thinfreestanding

films.

BartSchurinkhasabothaB.Sc.(SaxionUniversity,Enschede,2006)andM.Sc.

degree(UniversityofTwente,Enschede,2011)inBioMedicalsciences.APh.D.degree

(UniversityofTwente,Enschede,2016)inmicrotechnologyandfluidicsfora

brain-on-chip.FollowedbyworkingasaPostdoctoralResearcher(UniversityofTwente,

Enschede,2016)onfreestandingceramicthinfilmsaspellicleforEUVL.Since2020,

heisworkingasSeniorProcessEngineeratMicronitMicrotechnologies(Enschede).

RobbertvandeKruijshasbeeninvolvedinthedevelopmentofthinfilmcoatingsfor

mainlyx-rayandneutronapplicationsforover20years.Hisfieldofinterestranges

fromfundamentallayergrowthandatomicscaleinteractionstowardsapplication

relevanttopicssuchasthermaldamage,opticscontaminationandspectral

filter-ing.CurrentlyheisinvolvedinvariousEUVLrelatedR&DprojectswithintheXUV

focusgroupoftheMESA+instituteattheUniversityofTwente,exploring

industri-allyrelevanttopicssuchasopticslifetime,protectivepelliclesandadvancedreticle

(10)

graphene.Thescientificchallengethathetakesistorevealtheunderlying

funda-mentalphysicalmechanismsforthesechemicalprocesses.

SilvesterHouwelingreceivedaM.Sc.inPhysics(2007)fromUniversiteitUtrecht

onsiliconnitridethinfilmsforphotovoltaicsandthinfilmtransistors.Heobtained

Referenties

GERELATEERDE DOCUMENTEN

De Hemelloop is behalve om zijn intrinsieke waarde opmerkelijk om het tijdstip (tussen 1600 en 1608) waarop het werk werd samen- gesteld en waarop dus Stevin

Gardiner’s greatest issues that result in moral corruption are the intergenerational aspect of climate change and our lack of a sufficiently broad ethical theory for people to take

For those IMGs with citizenship from an African country at entry to medical school, citizens from five countries (Egypt, Nigeria, South Africa, Ethiopia, and Ghana) account for 76.0%

Keywords: Alzheimer’s disease; Cognition; Composite measure; Daily function; Longitudinal construct validation; Mild cognitive impairment; Prospective cohort..

infinite-dimensional system whose input to output map is coercive for small times interconnected with static and monotone nonlinear feedback, which includes the class of

Hierdie benadering (territorialisme) is die bevestiging van die idee dat elke staat die eksklusiewe reg het om binne sy grense te regeer.38 Daar word ook baie na.die benadering as

In the following section, it is tried to combine the findings from the focus groups and integrate them, to form a better understanding of how and why social media can possibly help

Uit de onderzoeken van Nelson en Leonesio (1988) en Ariel (2013) bleek al dat mensen niet goed in staat zijn zelf door te leren tot ze alles kennen en dat zij moeilijk de