• No results found

Method and examples for calculation of flight path and parameters

N/A
N/A
Protected

Academic year: 2021

Share "Method and examples for calculation of flight path and parameters"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

24th EUROPEAN ROTORCRAFT FORUM

Marseilles, France-

15th -17th

September

1998

AD04

·Method and examples for calculation of flight path and parameters

while performing aerobatics maneuvers by the Ka-50 helicopter

based on flight data recorder information.

tH 0, PH

1\

XK,XB

oXK,oX

3

Boris N. Bourtsev, Leonid

J.

Guendline, Sergey V. Selemenev Kamov Company, Moscow Region, Russia

ExtremeJy high maneuverability of the Ka-50 helicopter requires to develop software for

analysis of flight dynamics.

Tills paper presents a brief description and functions of the NST AR program system to provide processing, analysis and registration of the records from the on-board recording devices. This system performs :Ulalysis and error elimination in recording by test instrwnentation, filtration for partial restoration of recordings by using kinematic ratios in Euler or Hamilton!Rodriges forms.

Using records made by test instrumentation, NST.AR system makes possible to restore the llight path and to calculate values of inm1ediate inmesuarnble llight parameters specifically in dead (band) of manometridaneroid pressure transducers, vane (aerometric) sensors, Le. at low night speeds I large attack and slip angels. The paper describes a solution of track restoration and indirect llight parameter calculation at helicopter motion equation integration.

The paper presents examples of aircraft record processing by means of NSTAR system and tracks of Ka-50 helicopter maneuvers.

Notation

outside air temperature I pressure, de g. C I mercury column, nun

relative air density I value increment

pilot's cyclic stick positions (positive to left and fore), nun

blade angle amplitudes depending on cyclic stick position, deg.

B,'"'

I

A,yn,

XH,6XH; cpow

y,&,\jf,\j!M; e,'¥

0:, ~

blade tip plane incidence, lateral/ longitudinal (positive to left and fore), deg.

pedal position, differential collective pitch , rnm, deg; collective pitch, deg. roll, pitch, yaw, magnetic heading, deg.; track inclination angle, course angle, deg. angle of attack at fuselage, sideslip angle at fuselage, de g.

0:KI0:3 0) xl ,CO yl ,CO zl

a·G

P

"

,

,

llxg l nyg J nzg nxl J nyl) nzl

coR;

ll8

,nn

Wo, Ow

V

11

p,Vi,V,V

3

R; X,Y,Z

incidence of resultant velocity to hub plane I to blade tip plane, de g. angular velocities in fuselage axes system, deg!sec., rad/sec.

acceleration due to gravity (mls'); helicopter weight, kg. ; main rotor load, kg!rn2 g-loads in Earth axis system

longitudinal, normal, lateral g-load in fuselage a,'<is system

blade tip speed, m!sec. ; rotor speed, gas generator speed, %

wind speed I angle, mlsec., deg.

Calibrated, indicated, true, equivalent airspeed, m!sec, km/h

Main rotor radius, rn; helicopter e.g. coordinates in Earth axis system, rn

H5AP, Hr, HE

pressure altitude, geometric altitude; altitude on kinetic energy, rn 16·

ny1

I

(L'.

·(OlR)2 • rcR2)

Cg/

cr 7

=

N . c

I

rcR rotor bearing capacity, where N b number of blades on both main rotors

b

--V,V,et; M

0

,M,

relative flight speeds; Mach number (overage, total)

(2)

J

Introduction

For ti1e flight limitations monitoring while acrobatic maneuvering of the Ka-50 helicopter, a detailed analysis of track and maneuver parameters is required. For this purpose KAMOV Company developed NSTAR program system to perform processing and analysis of the parameters and visualization (animation) of the flight track.

NST AR system is compatible both with "GAlviTvlA" system providing record and processing of the test flight parameters and witi1 standard "TESTER-U3" system.

Usage of univet,'1l NST AR system enables saving in spe.oialists, hardware I software and facilitates tracking and modification of the integrated processing algorithm.

2 List of recorded flight data

Measured flight test parameters may be divided into several main groups: I. Helicopter control parameters: Xa, X;:, Xru <pow etc.

2. Power plant ratings specifying parameters: nTK, na etc.

3. Helicopter motion parameters: \liTP, HsAP. Hr,

Y, \V

M'

.S,

CJ.., ~, nxi, nyl. nzb ill xi ,CD yl ,CO zl etc.

4. Weather conditions specifying parameters: tH,

to,

P0, W0,

i5

w etc.

Additional parameters provided for the specific flight test program may be measured if required.

Parameters mentioned above are registered by on-board test instrumentation on magnetic medium in a form of digital data files with

6t

time discrete step in a form which can provide their processing and analysis with the help of ground computer-based system.

3 Flight data preliminary processing

Flight parameter records, read out from on-board memory stores, can contain both casual malfunctions and systematic errors defined mostly by t11e test instrumentation precision (including precision of its calibration) and a preliminary processing for algorithms of tl1e flight data on-ground processing is required.

At the preliminary processing first stage files of recorded digital flight data are checked for availability of the simple type errors and malfunctions to be easily confined and corrected algorithmically:

- single sharp measurements outliers (corrected by "three point scheme"); - time sequence (

6t)

discreteness malfunctions of flight data recordings;

-single repeat recordings with the same on-board time (eliminated from the data file);

-single skip of records according to on-board time (eliminated by linear interpolation on the neighboring recording portions).

More complicated types of digital record errors and malfunctions are elintinated at the second stage of the preliminary processing according to the following algorithms.

4 Filtration of flight parameters records

The following well known meti10ds and algoritluns solve the problem of experimental data smoothing-off: Kalman filter, Onnsby filter, Potter-Bickford-Glase filter, Brison-Frisier smoothing-off procedures [ 21, 23, 24].

More simple and effective procedure of the signal smoothing off is flight data filtration witl1 tl1e help of symmetric digital differcnting filter [3] with no phase (frequency) distortion of parameters filtered off.

Basic configuration of the symmetric filter is given in linear transformation of the follo\\ing type:

m

x;(t)= J h

5

;x,(t+s), (tEm+l, ... ,T-m),

S=-m

where X;, X; - discrete signals prior to I after filtration correspondingly;

h,,

-weight factors.

At (2m+ l) filtration interval points (m -preceding ti1e t point values and m- following the t point), discrete initial data are approximated by polynomials of degrees 2 (q=2) or 3 (q=3):

x;(t.s)= a,

0

(t)

+a,,(t)s+ ... +a,q(t)s

4

,

(s E-m, ... ,m).

Base of filter (m) is selected by experiment to provide requested smoothing off.

(3)

Convenience in usage of differential filter lies in the fact that time derivatives of the flight parameters which we need, for example

8xB, 8xK,

y,

~if,

& ,

oi '"', oi

)'II,

oi

ZH etc., can be obtained by the polynomial smoothing factors simultaneously.

Higher requirements to the given task are made on ftltration of ()) xi , ())

yl, ())

zJ angular velocity components and

n,

1,

ny

1,

n,

1 g-loads considered as the main parameters to be used for integration of the helicopter motion equations.

A practical usage of a differentiating ftlter confirmed its functioning and reliability at flight test results processing. Parameter filtration results are presented below:

- for helicopter control:

x.,

X~<, XH, cp ow, nB, (f = 8 Hertz, m

=

4 ) ( ref. to Fig.6); - for helicopter motion: ()) , 1, ())

yl , ()) ,

1 ,

n," ny

1,

n,

1 , (f

=

8 Hertz, m

=

8 ) ( ref. to Fig. 8, 9 ).

5 Correction of recording errors

By using of kinematic relations between measured flight parameters it is possible to upgrade substantially the quality of experimental data processing. The well-known [13] differential kinematic relations in a form of Euler I Rodriges-Hamilton (ref. to Fig.2) are used. Convenience in usage of kinematic relations in a form of Rodriges-Bamilton lies in the fact that ( !RH) relations are synuuetric and linear about parameters at ()) xi , ()) yJ , ()) ,1 specified angular velocities. Besides, right parts of (JRH) differential equations are always fixed unlike (IE) Euler relations which become uncertain atl&l "'rr./2 pitch values.

It is nowble that before use of Euler or Rodriges-Hamilton kinematic relations it is necessary to put record files of the helicopter angular positions to a (4) form by the following manner:

- the ljf M Itk1goetic course angle recorded in the range of

0

<

IJf

M :<; 2rr. should be put to - rr.

<

1Jf

:<; rr. yaw angle by the following fonnula [ 26] : lgl!f = sin(-

IJf

M)

I

cos(-

1Jf

M) ;

(5)

- if the. helicopter pitch angle 1s registered within - rr.

<

.S

:<; rr. range and the recording on inverted flight conditions (of Nesterow loop type), at temporal recording portions, where to - rr./ 2

<

S

:<; rr./ 2 is performed by the following formula:

tg&

= sinS

I

Ieos

&I;

(6)

encloses an information

I& I

>

7t/

2 , reduction

In the same temporal record portions. pitch/roll angle records should be corrected and "jumps" inserted:

y

=

y

-sign(

y

);r ;

(7)

1Jf

= ljf-

sign(

1Jf

)7t.

(8)

It is verified that in case of combinations (4) completed kinematic relations in fonns of Euler and Rodriges-Hamilton are fully identical except

c:

-vicinity of a special point:

I& I"'

rr./2 where (IE) Euler relations become uncertain.

(IE), (2E), (!RH), (2RH), (3RH-E), (3E-RH) relations (ref. to Fig.2) can be used for data correction obtained as a result of tests, in different conditions, depending on measurements. Iteration process (ref. to block-diagram, Fig.3) enables to correct records of angles and angular rates. With correctly selected relaxation factor of 0 <

K

:<; 1 , iteration process may be converged stably in 5 - 6 iterations. Flight recording processing experience revealed that data correction method on the algorithm given in t11e block-diagram is available and a selection of kinematic relations type to be used in a form of Euler or Rodriges-Hamilton depends on specific analyzed flight mode.

As an example (Fig.7) we refer to initial

y,

IJf,

S

angle records corrected to ftltered angular rate records (ref. to Fig.8).

6 Flight path restoration

In the practice of flight tests, different means and metlwds are used to provide registration of flight patlt [ !, 12 ], as follows: - witl1 t11e help of measuring photographic camera (fixation of flight path per one still frame);

-camera-read tl1eodolite metlwd (tllis metlwd was first used by Rynin (Russia) in 1910); -with the help of TV and video sets;

- radar metlwd etc.

The given methods for flight registration are carried out wit11 tl1e help of ground aids and depending on outside conditions U1ey have different accuracy and demands for more labor consuming measurements.

More simple is the flight patl1 calculation method by means of the helicopter motion equation integration (ref. to Fig..l) according to records of data concerning c. of g. I angular position I angular velocity performed by on-board recording devices.

In U1e practice of Russian aviation, this method has been applied originally by V.S.Vedrov in 1935 during investigation of spin in flight perfonned by the P-5 airplane [7, 8, 9]. Tlris method was at a later time developed and adapted to the helicopter subjects and used by KMIOV Company successfully at processing and analyzing of acrobatic flight modes.

(4)

7 Motion equations

of

the helicopter

It is known that (10, 17] equations of the helicopter motion in fuselage coordinate system (ref. to Fig.4), in a vector form appears as a principle of momentum (9) and in fixed Earth coordinate system they have been recorded directly in a form of main dynamic equation of the material point (9g).

Two conventional differential (D.E.S.) equations of the first-order (10) I (lOg) corresponded to [ 9,16], represented by g-loads, can be gained in the appropriate coordinate axes.

Solution to (10) I (lOg) equation systems have the same result at the full compliance of .flight parameters

y,

\jf,

&,

OJ xi, OJ yl, OJ ,1 records with the kinematic relations (ref. to Fig.2). But numeric solutions of (lOg) equation system are carried out more simple algoritlunically because all including equations are independent. Equation system choice ( (10) or (lOg) ) depends upon completeness of the flight data recorded.

Initial integration conditions to solve (10) or (lOg) equation systems are set at initial portion record of the maneuvers at steady-state intervaL In this case the following information should be used (ref. to Fig.4):

-calibration relations [ 1]:

V,

=

r(

Vnp,

~.a)

& weather information concerning wind speed

c

W

0 ) and direction

c

8

w );

-known kinematic relations between a,~.

V

flight parameters.

After D.E.S. equation solution in a form of (10) or (lOg), c. of g. coordinates are defined completely in the normal Earth

coordinate system by D.E.S. (14) integration according to calculated

V,,, V

1,,

V,g

velocity projections. Flight parameters

(ref. to Fig.5) are calculated additionally.

8

Time integration

Solution of Ute conventional D.E.S. of the first order (10), (JOg), (14) are carried out with the help of standard Runhe-Cutta method of the fourth order, in this case discrete functions of the right equation parts are interpolated between nodes by modified polynomial method (4].

lt is known ( 9, 18 ] that when integrating on great time intervals, measurement errors should be added to errors of numeric equation system solutions, which, when accumulated, could change significantly the result For example, "itlt C.n

=

±0.05

steady error in recording of any g-load components in the C.t

=

1

Osee

time interval of integration, velocity and coordinate errors should be estimated at

C.

V

=

C.O · g · 6

t "'

±5m

I

s and

C.S

=

C.n · g · C.t

2

/2 "' ±25m

correspondinglv.

Flight test processing practice demonstrated Utat the method mentioned above is usable for relative short time intervals up to I 0 ... 15 sec which would suffice for processing of the majority of the helicopter acrobatic flight modes.

9 Numerical results

Based on the matltematical model mentioned above NSTAR program system is developed to provide processing, analysis and recording of the flight infomtation consisting of Ute following units:

unit intended for analysis and error correction. filtration and partial restoration of the flight data records using kinemauc relations in a form of Euler or Rodriges-Hamilton:

unit intended for indirect flight paUt and parameters calculation when helicopter motion equations integrated: unit intended for graphical displaying of processmg results.

NST AR system enables using 23 recorded flight parameters to calculate indirectly up to 63 flight parameters including values of in1mediate irunesuarable flight parameters speciftcally in dead band of manometric I aneroid pressure transducers, vane (aerometric) sensors, i.e. at low flight speeds I large attack and slip angels. A comparison between indirectly calculated and measured flight parameters (

V

DP , HsAP.

y,

tV ,

1,

& .

CO ,1 , OJ yl , OJ zl , a , ~ ) enables to verify autltenticity of records made what is the equal of installation of an additional stand-bv instrumentation I recording system inside the helicopter.

The findings of Ute NSTAR system operation for each flight mode are presented in Ute "Catalogue for the coaxial helicopter maneuver elements" in a fomt of canonical set of graphs. tables, print-outs both in paper and magnetic records.

For example, Fig. 6-14 presents a part of graphs taken out from "Catalogue" according to record processing of the right loop maneuver perfomted by Maj.-Gen. B.Vorobyo,·.

Summarized, one can recognize quite sufficient compliance of flight parameters indirectly calculated and with the

measured ones.

I 0 Conclusions

NSTAR system operation results arc used for the following tasks:

to check for flight limitations, especially while performing acrobatic maneuvers;

to analyze pilot's actions and to assist pilots in standard and acrobatic maneuver training; to analyze and forecast loads and clearances [ 6 ] of tllC coaxial rotors blade tips;

as irtitial data for numerical simulation of dynamics and loads according to ULISS-6 aerolastic maUtematical model of the coaxial rotors [ 2, 5 ].

(5)

J J

References

l.Aru!Mon A.M., EepeCTOB JI.M., MHxeeB P.A., JiemHble ucnwnaHUJl eepmollemoe. MocJ<Ba, <<l'v!annrnocrpoeHHe>>,1994. 2. Akimov, A. I., Butov, V.P., Bourtsev, B.N., Se1emenev, S.V., <<Flight Investigation of Coaxial Rotor Tip Vortex Structure>>,

American Helicopter Society

5!/'

Annual Forum, Washington, DC, May 1994, p.p. 1431-1449. 3.AH.uepcoH T., Cmamucmu4ecKuu alfa/lU3 apeMeHHbiX p510oe I ITep. c aHrJI. MocJ<Ba, <<Mllp>>, 1976.

4.EamapHH A.B., TiocnrnKOB IO.B., llpwuepbl pacllema a6moMamu3Upoeamwzo 3lleKmponpusoOa Ha 3B/vf. J1eH1iHipan:,

<<3ueproll3)1acD>, 1990, crp.180-187.

5.Bourtsev, B.N., <<Aeroelasticity of Coaxial Helicopter Rotor», Proceedings of 17th European Rotorcrafl Forum, Germany, Berlin, Sept !991.

6.Bourtsev, B.N., Selemenev S.V., <<The Flap Motion and the Upper Rotor Blades to Lower Rotor Blades

Clearance for the Coaxial HelicopterS>>, Proceedings of 19th European Rotorcrafl Forum, Italy, Como, Sept. 1993.

7.BeJ1POB B.C., CraHKeBif'! !O.K., Koponi!IlKltii C.A., HcClleOoeaHue wmonopa cGMollema P-5 e nolleme. TpyJlhi

UAI11

No228, 1935.

8.BeJ1POB B.C., Kana'!ena

r.c.,

HcClleOoeaHUe BbiXOOa U3 nflQ11Up08QHUJl COMO/lema P-5. Tpy)l;hi ~ No244, 1935. 9.BeJ1POB B.C., Taii11 M.A., Jlemllble ucnbm<aHUJl caMollemoe. MocJ<Ba, <<06opOHrll3>>, 1951.

lO.Beperemuu<oB B.r. H ..a:p., Teopemulf.eCKWl ).texaHUKa. BbuJoiJ u aHaJlU3 ypaBHeHuii 06U:JICeHWl Ha 3BM MociCBa, «Bl>ICmaH

IIIKOJia>>, 1990.

1l.Borro)1Ko A.M., OcHOBbl JlemHou 3Kc!lllyanUII{UU 6epmollemo8. j{uH<JMUKa no/lema. MocJ<Ba, <<TpaHcrropn>, 1986.

12.Volodko, A.M., <<Mathematical model helicopter dynamics in emergency situationS>>, Proceedings of 21 European Rotorcrafl Forum, Paper No IV.4, Russia, St-Petersburg, Sept. 1995.

!3.fop6areHKO C.A., Ma:KamoB 3.M., ITorryiiiKHH 10.<!>., illeljlreJU, JI.B., MexaHUKa no/lema (0614ue c8eoeHW!. Ypa8HeHW< o8u:JJceHW!). f!II:JJCeHepHblu cnpaao4HUK. MocJ<Ba, <<MamHllocrpoeHHe>>, 1969.

14.fpeBUOB H.!vL, lvfemoiJ uHmezpupoeamm ypaBHeHuil OeuJICeHUR CaMOllema, ocHoeaHHblii Ha annpoKcUMaquu pemeHUJI. nollUilOMCL\fU. Tpymr ~ No2121, 1982, crp.3-13.

15.fpeBI10B H.M., KpiDKaHOBC!G!ii E.B., MeJThl1 !1.0., Onpeoe/leHue tfiYHKquu 8/lUJlHUJl 8 1aoa"ax onmZL\fU3al{uu iluHaMU4ecKux cucme,\1 c y4emoM J<emooa uHmezpupo8aHUJl ypaeHeHuu ilau:JJCeHUJl. Tpymr ~ No2121, 1982, crp.14-21. 16.KacbJIHOB B.A., Y!lapl1eB E.IT., Onpeoe!leHue xapaKmepucmUK 8030Y"'Hb!X cyOo8 ,uemooGMU uoeHmupuKai{UU. MocJ<Ba, <<MamHHOCTpOCHHe>>, 1988.

17.Jlall.llay JI.,[(., 11HljliiiHI1 E.M., },JexaHuKa. MocKBa, «HaYKa>>, 1965.

18.MamKOB 3.M., Bbt4UCJlume.7bHb<e .ltemoObl 8 3aoa4ax iluHaMuKu no/lema. MocJ<Ba, MAH, 1978.

19 .Nlm<enar:oe B.f ., TIITOB B.M., 0cH06Hble zeo~\tempu>.JecKue u a3poiJuHaMU>.Jecxue xapaKmepucmuKU CCLl.tOilemoe u paKem. Cnpaao4HUK. MocKBa, <<MamHHocrpoeHne>>, 1982.

20.lv1Hxeen P.A., !Ip04Hocmb eepmo11ema. MocJ<Ba, <<ManmHocrpoeHHe>>, 1984.

2l.Oruec P., 3HOKCOH JI., !IpuKllailHou aHG/lU3 8pe.\leHHb!X p51ooa I ITep. c aHrll. MocJ<Ba, <<Mlip>>, 1982.

22.TierpoB r.M., Jlaeymm H.E., EaprO.'Th)1 3.E., MemOObl -•wilellupo8allUJl cucme-w ynpa8lleHUJl Ha aHOJlOZ08biX u aHO!lOZO-l{U<jlp06blX 6b<"UCJlumellbHbiX MawuHax. MocKBa, <<MarrrrmocrpoeHHe>>, 1975.

23.11orrmmcKJili E.K., «0 cjJUllbmpazfUU nozpeumocmeU npu onpeOeneHuu Ol{eHOK llUHeUHb!X npeo6pG3oeaHuU 3Kcnepu.HeumaJlbHbiX 3aeuctLl!OcmeU ,\temoiJoJol .J,tuHIL\IaJlbHOU OucnepcuuJ>: C6. Tpy.n;oB ce~nrnapa <dvtneMaTH9:ecKHe MeTO.Llbi

B crreUlla.'ThHOH BhffilCJIHTenhHOil reXHHKe>>. 1958, N2l. Crp.70-83.

24.Stalford, H.L., <<The EBM system identification technique and its application to height alb modeling of aircraft>>. AL4A

Almas. Flight. Mech. Conf, Mass. 1981, p.p. 619-625.

25.Xe:Hcpeu MJ1., 06pa6omKa pe3)J;1bmamoa ucnbimaHuU. Ailzopunv.1bl, HO),f02pa.M.Mbl, ma6JIUlfbl. MocKBa,

«MaumHOCTIJOeHHe», 1988.

(6)

SYSTEMS OF COORDINATES

SIGN CONVENTION

OoXgYgZg ·NORMAL EARTH AXES SYSTEM

OXgYgZg -NORMAL AXES SYSTEM y1 OX1Y1Z1 -FUSELAGE A.XES SYSTEM OXHYHZH • HUB· SHAFT

A.XES SYSTEM Oo ' Zg

\L

+

UlZ:1

~---NW

'v

E

270°+---~;---j-l

... 90°

Zg

sw

SE

--y

Z1

(slip right)

Fuselage axes system

X1

Xg

Wo-

wind speed;

8w-

wind angle

in normal Earth axes system;

\j!M-

magnetic heading.

&

normal Earth a.xes system.

\V ·

yaw.._\)- pitch .._

y ·

roll

General rotation matrix:

Lm ( y,

& , IV)

=

L

3 (

y

)L, (

& )

L,

(IV) -

from Earth to fuselage axes system;

L

123 (

IV,&,

y)

=

L;'

(IV

)L~

1

(

& )

L~

1

(y)

=

L~\J

y,

&,

IV) - from fuselage to Earth.

Sequential rotation matrixes:

cos

IV

0 - sm

IV

cos

&

sinS 0

0

L

1

(IV)

=

0

0

L

2 (

& )

=

-sin

&

cos

&

0 ; L

3 (

y)

=

0

cosy

Slll IV

0

cos

IV

0

0

0 -

Slll

y

Fig.l

AD04 · 6

o

I

. I

Slll

y

I

I COSY

I

(7)

KINEMATIC RELATIONS

Euler (E)

y

= OJ,

1 -

\j;

sinS;

.

OJ,, cosy -OJ,, sin

y

IV=

cos s

&

= OJ,, sin

y

+OJ" cosy.

xl '

(IE)

Rogriges-Hamilton

(RH)

p = -(OJ ,,A.+ OJ ,tJ .. t +OJ,, v)

I

2;

i = (CD,, p - CD

yl

v + CD,, 1-l)

I

2;

ft

= (CD,, v + CD

yl

p - CD,, A)

I

2;

v = (-CD ,,!-l +CD ,,A.+ CD ,,p)

I

2.

Inverted relations:

CD ,

1

= 2(pi- A.p + fiv- Y!-l );

( IRH)

OJ

=

-y·

+

ljf.

sins·

)

OJ,, =

&

sin

y

+IV cosy cos S; (

2E)

OJ,, = S cosy -

\j;

sin

y

cos S.

CD,

1

=2(pfi-~-tp+vA.-iv);

(2RH)

OJ,, = 2(pv- vp +

i~-t-

f!A. ) ..

Relation between Rodriges~Hamilton parameters & Euler angles:

IV

S

·r

. I V . S . y

p = cos-cos-cos--sm-sm-sm-·

2

2

2

2

2

2'

. I V . S :

IV

S . y

A.= sm-sm-cos-+ cos-cos-sm-·

2

2

2

2

2

2'

.1v

s

·r

IV.s.y

1-l

= sm -cos-cos-+ cos-sm -sm -· (

3RH-E)

2

2

2

2

2

2'

IV.S

·r

.IV

S . y

v = cos

2

sm

2

cos

2 -

sm2cos2sm2;

p' +A.' +

~-t'

+ v' =

I.

Euler angles through Rodriges-Hamilton parameters:

tgy = 2(pA.-

v~-t)

I

(p

2

+

~-t'-

v

2 -

i

2);

tgiV =

2(p~-t-

A.v)l

(p

2

+

A-

2 -

~-t'-

v');

tgS = 2(pv +

A-~-t)

I

l(p' +

~-t'-

v

2 -

i ..

')~.-1

+-t---,g',..-yl =

= 2(py +

A.~t)f!(p'

+

A-

2- ~-t'- v')~l

+ tg

21vl-Fig.2

(3E-RH) Range of angles:

- n

<

y .s;

n;

-TC<IV$rc;

(4)

(8)

BLOCK- DIAGRAM

OF "ANGLES- ANGULAR VELOCITIES"

CORRECTION

I

j

=

o :

Start

t

Initialization

for integration ( t =to)

Yi'\lfi,Si; pi,Ai').li' Vi (3RH-E)

Iteration counter

j=j+l

~

*i

=

Angles iteration

K

*i

+(1-

K)

*H

I'TRUE'I

(*- y,\lf,Sl

~

Differential equation system

(IE), (lRH) integration

Yi'\lfi'Si; pi,Ai').li' vi (3E-RH)

I

Yes -+

and derivations calculation

'*-

y,\jf,S)

yj,~j,Sj;

Pj'Aj'~j'

vj

(3RH-E)

Angular velocities calculation

(2E), (2RH)

leo

"li -

oo

"lj-1l

< e

CO xlj '0) y!j 'Q) zlj Yes

( *-

x,y,z)

No

Check for convergence

Angular velocities iteration

'FALSE'

co.

1i

=

Kro.

1i

+ (l-

K)ro.

1i_1

( *-:'l:,y,z) (3E-RH) No Yes

'TRUE'

Stop

Fig.3

AD04- 8 * -* j - j-! (*-y,\lf,Sl co ... lj

=

co.lj-1

I

-( *-

x,y.z)

(9)

MOTION EQUATION INTEGRATION

(HELICOPTER CENTER OF MASS)

Normal Earth axes system:

Fuselage axes system:

ct.P/ctt

=

R.

(9gJ

dP/ dt +

Q

X

p

=

R

(9)

vxg ::::; gn:tg;

V"=g(n"-1);

(lOg),

v,,

=

gn,,.

P-

momentum vector;

!:2 -

angular velocity vector of fuselage axes system;

R-

total force vector.

nxg nxl

n,,

=

L

123(1v,

S,

y) x n,,

V,, =

w ,,

V,, -

w ,,

V,, + g( n,, -sinS);

V,, =w,,V,, -w,,V,, +g(n,, -cosScosy);

(10);

V,, =

w ,,

V,, -

w ,

1

V,, + g( n,, +cos S sin

y ).

n,,

Initialization of integration

Airspeed components

in fuselage a'\es system:

V" = V cos a

cos~;

)

v,,

=-V.sinacos~; (11)

V,

1 =

V

Sin~.

Wind speed components

in normal

Earth

axes system:

\V,, =-W

0

cosliw;)

W

\'I! = O· ' (12)

\V,,

= -W

0

sinliw.

Airspeed components

in normal

Earth

axes system:

v,,

v,,

I

\V,,ij

V,,

=

w,,i

+L

123

(1jf,S,y)x

V,,

(13'!<---...J

w!

zg

l

V,,

Initialization of integration

Ditferential equation system integration:

L':.X

=

v,,;

L\.

y

=

v,,;

(l4)._ _ _ _ _ _ _ _ _ _ j

L':.Z

=

v,,.

Fig.4

(10)

FLIGHT PARAMETERS INDIRECTLY ACCOUNTED

Helicopter speeds:

- airspeed: V = V, / JI:,

where: v, =

r(v"P'~'o:),

t:,.

= 0379PH/(273+tH), PH= 760(1-HiiAP/44300)'

256;

- in hub-shaft axes system:

- in tip path plane axes system:

v ..

l:ll

(v,,-

w,,)

v

YH

=

L~'(E)

X

LJ2,(y, S,

\jJ)

X

(vy,-

w,.,) ;

v"'

(v,,-w,,)

Angular velocities:

- in hub-shaft axes system:

-angular velocities of tip path plane tilt:

COXH cox!

co~,

=

L~

1

(E)

x co,,

(J) Z.H CO z!

Angles:

- track inclination angles, course angles:

tge = vy,;v,gz,,

tg'¥ =- v,,;v,,;

- attack angles, slip angles (of fuselage):

tgo: =- vy,;v,, ,

tg~

= v,, cos o:;v,, ;

- design

&

tip path plane attack angles:

tgaK:;::::;-

v)1!/VX!I7JI'

tga3:;::::;-

VJJ1'./V3:r..HZH.

X, Y, Z in normal Earth axes system:

- "energy" altitude: HE= V'/(2g).

Similarity criteria:

-rotorbearingcapacity:

Cg/r:;

7

=16P/(t:.(coR)

2

cr,), where: P=ny

1

G/(rrR');

-relative flight speeds:

V

= V

3

,>VJ,/(2JP{i1),

V

=

V

3

,.~./(coR),

J.L

= V coso:

3 ;

- Mach number (overage, total):

M

0

= coR

I (

20~273

+ tH),

M:

= M

0 (

1 + v) .

Fig.S

(11)

XK mm

:;

·;

:

20 0 -20

i

00 20 I Xe mm

~

:~

XH mm

~

1

::

-iO

I

'

A

A ~I'-

r-...

1__,.

'

.f'---/ \

j

"'-/

---...

.../

-I

I

I

I

:;;

~

/>.

10

~0

~

:;

;;

_,,

I -~~ 1 -60 -60 ·~g

"

<row deg

J

ne

IJ

% 100 9S

]

eo

~!E.

SEC 17:l6

!ff

mr

Y.

deg

y, deo/s

T 0 160

I

160 140 110

r

100

.,

"'

40 10 1735 I

I

,..,...

' ' !

I

17'() :7'Q

'""

17'<1 17'18 1750 175:2

Fig_6 Position to the controls

&

rotor speed (

lls,

% )

--~

,---' ,---'

'-'

'""

---... '

...

---

:

~,---' ~,---'

'-'

'

'

'

I

'

t

1756

I

U'\U"., SEC InS 17313 Ji'() J'N2 l'Ni 17'!6 l'Ml l?SO 1752 175'l 1756

Fig. 7 Helicopter roll, magnetic heading, pitch

angles

&

their time derivatives

(12)

Y1

w

d egis

'I

'

.,

70 5

,;

sa a

"'

20 10 a

"

"

"

40 sa

"

70

.,

9<J nv1

'·'

l,S

'·'

a.s a. a .... s -l.O -1.5 WX1 deg/s 90 BQ 70 ;o sa

"

.,

20 10 ·10 ·20 -30 ·<O -sa

~~

-?Q ·8

_,

WZ1 deg/s BQ

"

70

"

sa

"'

"

"

"

a -10 -~0

_,

·<0 -so

"''

-70 -eo+

_,,.

IDU:, SEC nx1 nxg 2.00-!.

7s.l-1-su+

l.zst

l.»t O.iSf o.s~ a.;>Si J.

-·-~

nvg -a. a

":J:

3.0 -1.00 2.5 -1.25+

-·-~

-1.' 2.0 -2.0 l.S l.O o.s 0.0 -0.5 -1. a

nz,

-I. 5 nzg -2.0 1. iS -2.5 ).50

t

l

I

I

l

+

k.

""

I

I

r

I

I

l

I

;

/"'-..

,...

~ F:!

i

.,__,.

v

t

I

I

i

i

I

~

~

~

!

i

/ \

'

~

·.-.

,_.,-1

!_...-...

I

I

I

I l'l:lB

,,..,

'""

'"" '""

'""

'"''

J7S2

'""

l75S

Fig.S Angular velocities of helicopter

( in fuselage axes system )

' "· ', nxg ' / .. ~r·· .. ··· .. •,_/ nvg ·· ..

'·'1

I

.. /nzg -2.01 -3. 0

1.25-'-'·'±

o. 75 o.so j 0.2;;.... ~ O,iJ • ...J.2s+ -o.sot ..0.75--!,OQ.l -J.:!s-1- ....

"'-"±

-1, 7S -2.00 Tt\IE, SEC

"''

1736

''"'

1742

'""

''"'

"""

'""

1752 175'< 1756

Fig.9 Longitudinal, normal, lateral g-Ioads of helicopter

( in fuselage

&

Earth axes systems )

(13)

ViY1 Vv1 kmlh Vix1, Vx1 Vnp,km/h V3YH mi•

I •••

Vix1 VX1 V3YH ···-····..( ··· ... , .. ~Vnp ( c:alculnted) ~--~---- ---~~---.

..

V3XHZH --·ViY1 V,km/h Vv1

g

~0 v ___ ... ···Viz1 VZ1 m

/

.. V3XHZH TIM.t. SLC

""

""

'"" ""'

17'N 17'<8 1Nl 17S<l 1"2

"'"

1758

Fig.lO

Calibrated, indicated, true

&

equivalent

'f'

helicopter airspeeds projections

deg :~~ ~~~

~~

0 -30 ·6<l ·90 ·120 -ISO ·9 -180

~de•

UK,aa ' 0

"

70 60 50

"'

30

"'

"

·1ij..j. ,U -2~

a

=eoo-1: -s0-1- 9 0dcg .iij..j. ' -70-1- 7 0 0 _,OJ. 6 _g(j.i s 0 0

""

3 0 2 1 ·1 -2 0 0 0 0

't

-3<) ·'<I -50

OI

-6<1 -7 -eo -90

i'"

70 60 50

"

~fr

0 ~~: ·2 ·30 ·YO -50 -60 ·70 -eo ·90 ~

/'f'

.... ··

"

1

0.3

--

---I

;--.. I

e

I

---

~

'•/

--

----!

~

-

-

--

-

--

-'

I

I

'

I

~--

J3 (

mensured ) UK _

~

I

-~

-~ '•;-

~1

J3 (

calc:l~~:;-~----U (pitch)

\···

l

.· ----~----' a

1._;.<---

--

.

---1_

.

,.

--

-

----""-:;·.::· ... ... -···

----···· ... ···" ... ·· lt\tt. SEC 1738 17"38 17"0 1N2 l"N-l 17".8 I~ 1750 1752 17S'-I 175!1

Fig. II

Inclination angels of track

I

course;

sideslip

I

attack

I

pitch

(14)

Yg m

;

~~

"

3S

"

"

20 IS 0 s s VYg m/s YO

"

30 25 20 15 10 5 -5 10 -10

§:l~

-25 -30 -35 YOO -'-10 -20 -2

v

'·j

'·]

s.o

'·'

t-:.Xg, m Vxg, kmlh ~:

I

~

;xg ;;;;

I

:::

·:,

··· .. ···.

--

~

;~

I

j

···

---

~

--ISC ... _ ... -wo Vxg

l

:~

_;s;

~00

I

,;HE

i

---./_

... --·;;-:-,

-

----· -t

--

---

-

,;)i6AP

I .·

.. ··

--

-

... .·-1'

-

/'-- "'-..._

--r

,;yg

I.

,;z---

·-····

I

/

,;zg, m i VYg ·· ... Vzg, km/h

I

e

I

I

,;zg

I

I

1

I

---•sot

I

1---:CIJ-i-

I

so'- .... ...

---

... -~

N

.. · .. · ... ... .. .. ...

:;;:t

---

...

_

... ,_.,_.1 -~ool .. ··

-29J+

... ··

"

:~

Vzg

-"<X>'-IDlL SEC !7.35 17~6 17'10 17'-12 17'1'-f 1'NS 17'-IS 1150 1752 175'-i 1756

Mo, Mt ;,ooo-0,37~..:.. o.ssc.:.

a.m.:..

J. :;.eel. J,

fm+

o. es:-a.~t o.

eoc-Fig.12 Differences of helicopter

C.

of G. coordinates

&

airspeeds in Earth axes system

I

I

u. ns.:. 0, ?SC.!.

a. nst

3.0

Mo=0.6815--o. 7.""'f---t~==--;==~""'=-~~-~=4.-=~=-!,;j;:;:;,...,; 2.s ti=1 o.ssct 2•0 ns=89%~:~I

o. s Q,s-;;;1. J,S]+ o.::z: ... a. :oool. o.a,.t..._--~---T----,---[---+---t---l v~

I

~g~?!

1

J.~+ j -~~

I

;:"'+

J.'-<C+

!

0.3':'!.!.

v

~:~t

... ··'

J.soc.:.. o.:o!S+ Cg/0'7

~=

J.2:"S+ /·· .. J.:OC+ 0. r:-s+ J.l ~ 's.;.l.

"'" '""

l'l'l2 IN-i 17'-16 17'16 1750 1752 1756

Fig.13 Similarity criteria

(15)

Yg

N-W aspect angle

from the observer

Oo

54

S-W aspect angle

from the observer

t

=

17

52

Zg

Xg

42

t

=

1740

sec

Yg

"-Xg

Referenties

GERELATEERDE DOCUMENTEN

Chapter 2: Lombrosean Monsters in Fin-de-Siècle Gothic Fiction 14 2.1 Degenerate Monster and the Born Criminal in Dracula 15 2.2 Impurity and the Duality of Human Nature in

Hierdie artikels stel dit onomwonde dat die bates van ‟n skuldenaar slegs aan die buitelandse verteenwoordiger oorgedra sal word indien die plaaslike skuldeisers se

This study distinguishes five types of actors: local council, local executive (e.g., governors, mayors, regent), civil servants, public officials from central government (e.g.,

Dit is belangrijk voor de klinische praktijk, omdat met deze informatie adequate interventies ontwikkeld kunnen worden om de conditie van patiënten voorafgaand aan een

Minjian is the unofficial social space, in which Chinese citizens talk about their everyday life experiences, express their political wills, and negotiate with civil society and

We hypothesized that: (1) courses of sleep quality parameters will decrease and courses of sleepiness parameters will increase during the offshore work periods and revert during

Ona apeal a ll s eer In tletsreparasles ; Koop en verkoop van gebrulkte !letse; Bandel met nuwe.. tletse en

De tijd die alle wonden heelt Ze loopt niet zonder jou Ik kan je niet laten gaan Al schreeuw ik dat't beter is Alleen en zonder jou Ik kan't gewoon niet aan Ik mis je armen om me