• No results found

Compression-mode resonances in the calcium isotopes and implications for the asymmetry term in nuclear incompressibility

N/A
N/A
Protected

Academic year: 2021

Share "Compression-mode resonances in the calcium isotopes and implications for the asymmetry term in nuclear incompressibility"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Compression-mode resonances in the calcium isotopes and implications for the asymmetry

term in nuclear incompressibility

Howard, K. B.; Garg, U.; Itoh, M.; Akimune, H.; Bagchi, S.; Doi, T.; Fujikawa, Y.; Fujiwara, M.;

Furuno, T.; Harakeh, M. N.

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2019.135185

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Howard, K. B., Garg, U., Itoh, M., Akimune, H., Bagchi, S., Doi, T., Fujikawa, Y., Fujiwara, M., Furuno, T.,

Harakeh, M. N., Hijikata, Y., Inaba, K., Ishida, S., Kalantar-Nayestanaki, N., Kawabata, T., Kawashima, S.,

Kitamura, K., Kobayashi, N., Matsuda, Y., ... Yang, Z. (2020). Compression-mode resonances in the

calcium isotopes and implications for the asymmetry term in nuclear incompressibility. Physics Letters B,

801, [135185]. https://doi.org/10.1016/j.physletb.2019.135185

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Compression-mode

resonances

in

the

calcium

isotopes

and

implications

for

the

asymmetry

term

in

nuclear

incompressibility

K.B. Howard

a

,

U. Garg

a

,

,

M. Itoh

b

,

H. Akimune

c

,

S. Bagchi

d

,

e

,

f

,

T. Doi

g

,

Y. Fujikawa

g

,

M. Fujiwara

h

,

T. Furuno

g

,

h

,

M.N. Harakeh

e

,

i

,

Y. Hijikata

g

,

K. Inaba

g

,

S. Ishida

b

,

N. Kalantar-Nayestanaki

i

,

T. Kawabata

j

,

S. Kawashima

c

,

K. Kitamura

c

,

N. Kobayashi

h

,

Y. Matsuda

b

,

A. Nakagawa

b

,

S. Nakamura

h

,

K. Nosaka

c

,

b

,

S. Okamoto

g

,

S. Ota

k

,

S. Weyhmiller

a

,

Z. Yang

h

aDepartmentofPhysics,UniversityofNotreDame,NotreDame,IN 46556,USA bCyclotronandRadioisotopeCenter,TohokuUniversity,Sendai980-8578,Japan cDepartmentofPhysics,KonanUniversity,Hyogo658-8501,Japan

dAstronomyandPhysicsDepartment,SaintMary’sUniversity,Halifax,NSB3H3C3,Canada eGSIHelmholtzzentrumfürSchwerionenforschungGmbH,D-64291Darmstadt,Germany fJustus-LiebigUniversity,35392Giessen,Germany

gDepartmentofPhysics,KyotoUniversity,KitashirakawaOiwake,Sakyo,Kyoto606-8502,Japan hResearchCenterforNuclearPhysics,OsakaUniversity,Osaka567-0047,Japan

iKVI-CART,UniversityofGroningen,9747AAGroningen,theNetherlands jDepartmentofPhysics,OsakaUniversity,Toyonaka,Osaka540-0043,Japan kCenterforNuclearStudy,TheUniversityofTokyo,Wako,Saitama351-0198,Japan

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received12November2019

Receivedinrevisedform17December2019 Accepted19December2019

Availableonline27December2019 Editor:D.F.Geesaman Keywords: Collectivity Giantresonance Nuclearincompressibility Equationofstate

Recent data onisoscalar giant monopole resonance (ISGMR) in the calcium isotopes 40,44,48Ca have

suggested that,theasymmetryterminthenuclearincompressibility,hasapositivevalue.Avalue

of >0 is entirely incompatible with present theoretical frameworks and, if correct, would have

far-reaching implications onour understanding ofmyriad nuclear and astrophysical phenomena. This paper presentsresultsofanindependent ISGMRmeasurementwiththe40,42,44,48Ca(

α

,

α

)reactionat =386 MeV. Theseresults conclusivelydiscountthe possibilityofapositive value for ,and are

consistentwiththepreviously-obtainedvaluesforthisquantity.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Theisoscalargiantmonopoleresonance(ISGMR)hasbeen well-establishedasthemostdirectmeans bywhichone canconstrain theincompressibility ofnuclearmatter. Theincompressibilityofa nucleusisextractedfromtheresonanceenergy,EISGMR,suchthat:

EISGMR

= ¯

h



KA m



r2 0

,

(1)

where KA is theincompressibility ofthe nucleusof mass A

un-dergoingtheexcitation,m isthefree-nucleonmass,and



r02



isthe mean-square radius ofthe ground-state density. Withindifferent

*

Correspondingauthor.

E-mailaddress:garg@nd.edu(U. Garg).

modelframeworks,thevalueofEISGMR isassociatedwithdifferent

momentratiosoftheISGMRstrengthdistribution[1,2],the extrac-tionofwhichistheprimary goalofmanyexperimentsventuring to constrain theincompressibility, K,and, thence, the Equation ofState(EoS)ofinfinitenuclearmatter[3].

Inasystemwithaproton-neutronimbalance,theEoSdepends additionallyontheasymmetryparameter

η

= (

N

Z

)/

A,andthe symmetryenergy,S

(

ρ

)

.InthesamewaythattheISGMRprovides a direct measurement of K, the curvature of the EoS of sym-metric nuclearmatter, the trendof measurements ofnucleiwith varying values of

η

yields a direct constraintofthe curvature of S

(

ρ

)

.Foramorecompletediscussionofthemeansbywhich prop-erties of the giant resonances provide constraints on the EoS of suchasymmetricnuclearmatter,wereferthereadertoRefs. [3,4].

https://doi.org/10.1016/j.physletb.2019.135185

0370-2693/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

2 K.B. Howard et al. / Physics Letters B 801 (2020) 135185

Themicroscopic formalism forextractingproperties ofinfinite nuclearmatter frommeasurements on finitenucleiisdetailedin Ref. [5]. Themacroscopicleptodermousexpansion ofKA interms

ofpropertiesofinfinitenuclearmattergives: KA

K

+

KsurfA−1/3

+

η

2

+

KCoul

Z2

A4/3

.

(2)

Equation (2) is usefulin determining the value of Kτ for fi-nitenuclei,owinginparttotheisolated dependenceon

η

within the expression,aswell asthefairly minimal changes in the sur-facetermwithinanisotopicchain.Thegeneralprescriptionforthe sameisdetailedinRefs. [6,7],andinvolvesquadraticallyfittingthe dependenceofKA

KCoulZ2

/

A4/3 on

η

witha modelfunction of

theform

η

2

+

c,withc beingaconstant.The

Kτ valuesso ex-tracted are consistent withone another:

= −

550

±

100 MeV and

= −

555

±

75 MeV,fortheeven- A112−124Snand106−116Cd

isotopes,respectively[6–8].

The corresponding definition of Kτ∞ in terms ofproperties of theEoSforinfinitenuclearmatteris1 [9]:

Kτ

=

Ksym

6L

Q

KL (3)

within which L and Ksym are, respectively, the slope and

curva-tureof S

(

ρ

)

,andQ

/

K istheskewnessparameterfortheEoS ofsymmetricnuclearmatter. Theimplicationsofthisarethat ex-perimentalconstraintsonKτ arisingfrommeasurementsofKAon

finitenucleiarehelpfulindeterminingthedensitydependenceof thesymmetryenergy;thisargumentispredicatedonthe smooth-ness withwhich the valuesof KA vary acrossthe nuclear chart.

Indeed,ashasbeenarguedinRef. [10], anynuclear structure ef-fectsonpropertiesofthegiantresonanceswhichariseinanarrow regionof thechart ofnuclides woulddramaticallyaffectour un-derstanding of the collective model upon which has rested the understandingoftheseresonances.

Inlightofallthis,theresultsreportedrecentlyfor40,44,48Caby

theTAMUgroup[11–13] wereverysurprising:themomentratios fortheISGMRand,therefore,theKAvaluesfor40,44,48Caincreased

withincreasing mass number. The most immediateconsequence ofthis, consideringEq.(2), isthat Kτ isapositive quantity,andit was shownin Ref. [12] that a large positive value of Kτ models the data well. In a test of hundreds of energy-density function-als currently in usein the literature, the valuesof Kτ extracted were consistently between

800 MeV

≤ −

100 MeV [14]. Examination of Eq. (3) also directly suggests that the symmetry energy would need to be extremely soft in order to accommo-date Kτ

>

0 [15]. Moreover, the hydrodynamical model predicts EISGMR

A−1/3,whiletheresultsofRefs. [11–13] indicatedexactly

the opposite: the ISGMR energies increasing with mass number overtheisotopicchain.

Theseresultsclearlydemandedanindependentverification be-foresignificanttheoreticaleffortswereexpendedinunderstanding, and explaining, this unusual and unexpected phenomenon. This Letterpresentstheresultsofsuchanexperiment;itisfoundthat theISGMRsinthemeasuredcalciumisotopes( A

=

40,42,44,48) followthe “normal”patternof EISGMR decreasing withincreasing

mass,rulingout apositivevalueforKτ .

ThemeasurementswerecarriedoutattheResearchCenterfor Nuclear Physics (RCNP) at Osaka University, utilizing a beam of

1 ItshouldbenotedthatK

τ isnot equaltothevalueofextractedfromfinite

nucleiutilizingthemethodologyofEq.(2),justasK∞=KA.However,throughthe sameself-consistentmechanismsbywhichmeasurementsofKAservetoconstrain

K∞ asdescribedbyBlaizot[5],determining valuesof fromfinitenucleican

constraintheEoSforasymmetricinfinitenuclearmatter.

Fig. 1. Measureddouble-differentialcross-sectionspectrafrom 40,42,44,48Ca(α,α) atθLab=0.7◦,afterparticleidentificationandsubtractionoftheinstrumental

back-ground.

386-MeV

α

-particleswhich was,forall practical purposes, “halo-free”. This beamimpinged onto enriched 40,42,44,48Ca target foils

of areal densities

1–3 mg/cm2. The scattered

α

-particles were momentum analyzed in the high-resolution magnetic spectrom-eter, Grand Raiden [16]. The focal-plane detection system was comprised of a pair of vertical and horizontal position-sensitive multiwire drift chambers in coincidence withplastic scintillators which providedthe particleidentificationsignal [17,18]. Arecent andcomprehensivedescriptionofthe procedureemployed inthe offline data analysis has been presented in Ref. [10]. Here, we briefly revisit the most salient points: in addition to the lateral dispersion of the spectrometer allowing for the scattered parti-cles to be distributed across the horizontal focal plane accord-ing to their momentum, the unique optical properties of Grand Raidenallowfor

α

-particleswhosemomentumtransfersoccurred only at the target to be coherently focused onto the median of the vertical focal plane distribution. Onthe other hand, particles that undergo scattering processes before or after the target are, correspondingly, over- or under-focused along the vertical axis. The latter events constitute the instrumental background, which in thepresent methodologycan be eliminated fromthe inelastic spectraprior tofurtheranalysis. Thisremovesany,andall, ambi-guities associated withmodeling theinstrumental background in the subsequentextractionof theISGMR strengthdistributions. In contrast,themeasurements reportedinRefs. [11–13] employeda phenomenologicalmodeling oftheinstrumental background,thus introducinganadditionaluncertaintyintheanalysis[19];this pro-cesswassuggestedasthemostlikelyreasonbehinddifferencesin the extractedISGMRstrength distributions notedrecentlyforthe

A

90 nuclei[10,20–22].

Inelastic scattering data were obtained over a broad angu-lar range 0◦

≤ θ

Lab

10◦, and the acceptance of the

spectrome-ter along the lateral dispersiveplane ranged fromapproximately 10

Ex

35 MeV.Foreachangularsettingofthespectrometer,a

precisemulti-pointenergycalibrationwasacquiredviathe analy-sisof24Mg(α

,

α

)spectra.Theenergylossthroughthetargetfoils

was accountedforwithinthemodelframework ofSRIM[23].The inelasticangulardistributionswereextractedin200-keV-widebins for40,42,44Ca;inordertoachievecomparablestatistical uncertain-ties, a wider 1-MeV-wide bin size was used for the analysis of

48Ca.The“0 spectra,wheretheISGMRcrosssectionsare

maxi-mal,arepresentedinFig.1.

To extract the strength distributions of the giant resonances, it is necessary to have an optical model parameter (OMP)-set to be employed inthe Distorted-Wave Born Approximation(DWBA)

(4)

Table 1

Optical-modelparametersextractedfromfitsto elas-ticscatteringangulardistributionsfor42,44,48Ca.

Def-initionsoftheparametersareprovidedinRef. [10].

Vvol Wvol RI aI [MeV] [MeV] [fm] [fm] 40Ca 37.4 31.6 4.47 0.990 42Ca 37.4 31.6 4.53 0.990 44Ca 37.4 31.1 4.64 0.990 48Ca 41.2 32.7 4.82 0.939

calculations. To adequately constrain the OMP, elastic scattering data were measured for 42,44,48Ca over a broader angular range (5◦

25◦). Thenuclear reactions code

PTOLEMY

was utilized for a

χ

2 minimization of DWBA results from a single-folding,

den-sitydependent,hybridopticalmodelpotential[24] relativetothis datawiththeempiricaldensitydistributionsreportedin[25].The extracted OMPs are presented in Table 1; further details of this procedurehavebeenprovidedelsewhere[10].Becauseof unavail-abilityofelasticscatteringdata on40Ca, OMPsextractedfor42Ca wereemployed forthat nucleus. TheuseofOMPs fromanearby nucleushasbeenshowntohavenegligibleeffectintheresultsof thegiant resonancestrength extraction [7], which isfurther evi-dencedby theminimalvariationinthe OMPsthemselvesasseen inTable1for42Caand44Ca.We furthernotethat Refs. [12] and

[13] hasalsoemployed the sameOMP-set inthe analyses ofthe

44Caand48Cagiantresonancedatawhichoriginallymotivatedthis

work.

The Multipole-Decomposition Analysis (MDA) of the inelastic spectrawas carriedoutemploying thenow“standard”procedure, described, for example, in Refs. [10,22,26,27]. The experimental double-differentialcrosssectionsovertheEx

=

10

31 MeVregion

weredecomposedintoalinearcombinationoftheDWBAangular distributionsforpureangularmomentumtransfers:

d2

σ

exp

c.m.

,

Ex

)

d

dEx

=



λ

(E

x

)

d2

σ

λDWBA

c.m.

,

Ex

)

d

dEx

.

(4)

The

(

Ex

)

coefficientscorrespond tothe fractionofthe

energy-weighted sum rule (EWSR) for the multipolarity

λ

exhausted within a particular energy bin [2]. DWBA cross sections for isoscalarmodes were included inthe MDA up to

λ

max

=

8, and

thecontributionfromtheisovectorgiantdipoleresonance(IVGDR) wasaccountedforusingtheGoldhaber-Tellermodelandthe avail-able photoneutron data for the calcium isotopes [28,29]. Typical resultsoftheMDAarepresentedinFig.2.

Fromthe coefficients,the strengthdistributions forthe

IS-GMRwerecalculatedusingthecorrespondingEWSRrelationships [2]. Shown in Fig. 3 are the extracted ISGMR strength distribu-tionsforeachofthecalciumnucleiinvestigatedinthiswork.From theseextractedstrengthdistributions, S

(

Ex

)

,the momentsofthe

strengthdistributionwereextractedintheusualway: mk

=



S(Ex

)E

kxdEx

.

(5)

The moment ratios

m1

/

m−1,m1

/

m0, and

m3

/

m1 that are

customarilyusedincharacterizingtheexcitationenergyofthe IS-GMR[30] arepresentedinTable2.Thequoteduncertaintieshave beenestimatedusingaMonteCarlosamplingfromtheprobability distributions of the individual

(

Ex

)

andconstitute a 68%

con-fidence interval. The pattern of moment ratios observed in the calcium isotopic chain(decreasing with A, asexpected fromthe A−1/3rule)iscontrarytothatreportedinRef. [12] viz. increasein themomentratioswithincreasing A.

Fig. 2. Multipole-decomposition analysesfor40,42,44,48Caforexcitationenergybins

centeredat18MeV(leftpanels)and28MeV(rightpanels).Shownarethetotalfits (solidblacklines),aswellasthefittedcontributionsfromtheisoscalarmonopole (red),dipole(blue),quadrupole(green),andhighermultipolemodes(cyan).Also shownisthecontributionfromtheisovectorgiantdipoleresonance(dot-dashed line), basedonknown photoneutroncross-sectiondata andthe Goldhaber-Teller model.

Fig. 3. Extracted isoscalar monopole strength distributions for40,42,44,48Ca. In addition to the momentratios exhibiting the expected be-havior over the isotopic chain, the demonstrated trend for the extracted finite incompressibilities, KA, is even more illustrative

(see Fig. 4):The agreement ofthe extracted KA valueswith the

behaviormodeledbytheleptodermousexpansionofEq.(2) using theacceptedvaluesfor Kτ and K israthergood,andstands in starkcontrasttotheresultsfromRef. [12].WhiletheextractedKA

for44Ca isconsistentwiththat whichwasmeasured inRef. [12], the KA forthe extrema of40Ca and 48Ca follow precisely

(5)

4 K.B. Howard et al. / Physics Letters B 801 (2020) 135185

Table 2

Percentages of the EWSR (m1)for the ISGMR strength

dis-tributions, as well as the corresponding moment ratios (in MeV) calculated over the energy range 10−31 MeV. The constrained-model(√m1/m−1),centroid(m1/m0),and

scaling-model(√m3/m1)energies arepresented.The corresponding

quantitieswhichwerereportedbythe TAMUgrouparealso shownforcomparison;thesewerecalculatedovertheenergy range9−40 MeV[11–13].Inallcases,thequoteduncertainties inthe%EWSR(m1)areonlystatistical;therecanbe15%–20%

additionaluncertaintyfromtheDWBAcalculationsthemselves (fromthechoiceoftheOMP,forexample).

RCNP 40Ca 42Ca 44Ca 48Ca m1% 102+34 89+ 3 −3 88+ 4 −4 78+ 4 −3  m1 m−1 19.5+0.1 −0.1 19.0+ 0.1 −0.1 18.9+ 0.1 −0.1 19.0+ 0.2 −0.2 m1 m0 20.2+00..11 19.7+ 0.1 −0.1 19.5+ 0.1 −0.1 19.5+ 0.1 −0.1  m3 m1 22.3 +0.1 −0.1 21.7+ 0.1 −0.1 21.5+ 0.1 −0.1 21.3+ 0.3 −0.3 TAMU 40Ca 44Ca 48Ca m1% 97+1111 75+ 11 −11 95+ 11 −15  m1 m−1 18.3+0.30 −0.30 18.73+ 0.29 −0.29 19.0+ 0.1 −0.1 m1 m0 19.2+0.40 −0.40 19.50+ 0.35 −0.33 19.9+ 0.2 −0.2  m3 m1 20.6+00..4040 21.78+ 0.84 −0.72 22.6+ 0.3 −0.3

Fig. 4. The incompressibility,KA,forthecalciumisotopesinvestigatedinthiswork (bluesquares).These werecalculatedwithinthe scalingmodelfromthe experi-mentaldata(EISGMR=√m3/m1,forconsistencywiththepresentationofRef. [12];

seeTable 2).The expectedtrend forthesevaluesutilizing thepreviously docu-mentedcentralvaluefor= −550 MeV,andK∞=220 MeVasinputtoEq.(2) ispresented(bluedashedline),alongwiththesamecalculationbutwiththevalue

= +582 MeVreportedinRef. [12] (reddottedline).Afittothedataleadstoa

curvethatisnearlyidenticaltothatshownabove(bluedashedline)andleadstoa valueof= −510±115 MeV.Forcomparisonpurposes,thedatafromRef. [12]

areshown(redcircles),aswellasthe KA valuescalculatedfromthe ISGMR re-sponsespredictedbytherelativisticFSUGarnetinteraction(greensquares)[15,31]. Thesolidlinesthroughthedatapointsaremerelytoguidetheeye.

additional datapoint for42Ca which was absent in the TAMU

analysis–that followsthesamegeneraltrendastheother three isotopesfound inthepresentworkinspires greater confidencein ourresults.Thesedata,thus,conclusivelyexcludethepossibilityof apositive Kτ valueforthecalcium nuclei.We alsonote thatthe

fitpresentedfortheTAMUdatainRef. [12] correspondedto K= 200MeV,whichissignificantlylowerthanthecurrentlyaccepted valueof240

±

20 MeVforthisquantity [3,32].

Also presented in Fig. 4 are the KA values derived from the

40,42,44,48Ca strength distributions predicted by the FSUGarnet

[15,31] relativistic interaction. The Kτ∞ has a moderate value of

247

.

3 MeV for this particular interaction and, accordingly, the KA valuesare observedtodecrease overtheisotopicchain,

qual-itatively similar to theexperimental results.This trendis indeed expected,andobserved,fortheoverwhelmingmajorityof interac-tionsandmodels[14].

Theseresults,ofcourse,begthequestionastotheoriginofthe differencesintheextractedISGMRresponsesfromthoseobtained bytheTAMUgroup.Themostobviousdifferencebetweenthe ex-perimental techniques liesin the accounting of theinstrumental backgroundandphysicalcontinuum.Whereasinthepresentwork theformerisalmost completelyeliminatedandthephysical con-tinuumisincludedwithintheextractedISGMRstrength,theTAMU group subtracts bothby approximatinga smoothbackground un-derlyingtheinelasticspectra.Asstatedearlier,thishasresultedin similar discrepancies intheextracted ISGMRstrengths, especially atthehigherexcitationenergies(Ex

>

20MeV),inthe A

90

nu-clei[10,20–22].

In summary, motivated by the great cause for concern that would arise were

>

0 a reality, we have carried out a sys-tematic measurement ofthe ISGMR responseof 40,42,44,48Ca and extracted the nuclear incompressibilities, KA, therefrom. In

con-trast to prior results [11–13], the ISGMR strength distributions, and themetrics that are generallyused to characterize the exci-tation energy of the response, obey expected trends. It may be concluded, therefore, that there are no localstructure effects on the ISGMRstrength distribution inthecalcium region ofthe nu-clear chart and that a positive value for the asymmetry term of nuclearincompressibility,Kτ ,isruledout.

Acknowledgements

We thank Profs. W.G. Newton, J. Piekarewicz, and H. Sagawa for their comments on the implications of a positive Kτ in nu-clearstructureandnuclearastrophysicsapplications.Weare grate-ful, further, to Prof. J. Piekarewicz for providing the results of theFSUGarnet calculations.KBHacknowledges thesupportofthe ArthurJ.SchmittFoundation, aswell astheLiuInstitute forAsia andAsianStudies,andtheCollegeofScience, UniversityofNotre Dame.SWwouldliketothanktheGlynnFamily Honorsprogram at the University ofNotre Dame forfinancial support. This work has been supported in part by the National Science Foundation (GrantNo.PHY-1713857).

References

[1]S.Stringari,Phys.Lett.B108(1982)232.

[2]M.N. Harakeh, A. van der Woude, Giant Resonances: Fundamental High-FrequencyModes ofNuclearExcitation, Oxford UniversityPress,New York, 2001.

[3]U.Garg,G.Colò,Prog.Part.Nucl.Phys.101(2018)55. [4]G.Colò,U.Garg,H.Sagawa,Eur.Phys.J.A50(2014)26.

[5]J.P.Blaizot,J.F.Berger,J.Dechargé,M.Girod,Nucl.Phys.A591(1995)435. [6]T. Li, U. Garg, Y. Liu, R. Marks, B.K. Nayak, P.V.M. Rao, M. Fujiwara, H.

Hashimoto, K. Kawase, K. Nakanishi, S. Okumura, M. Yosoi, M. Itoh, M. Ichikawa,R.Matsuo,T.Terazono,M.Uchida,T.Kawabata,H.Akimune,Y.Iwao, T.Murakami,H.Sakaguchi,S.Terashima,Y.Yasuda,J.Zenihiro,M.N.Harakeh, Phys.Rev.Lett.99(2007)162503.

[7]T. Li, U. Garg, Y. Liu, R. Marks, B.K. Nayak, P.V.M. Rao, M. Fujiwara, H. Hashimoto,K.Nakanishi,S.Okumura,M.Yosoi,M.Ichikawa,M.Itoh,R. Mat-suo,T.Terazono,M.Uchida,Y.Iwao,T.Kawabata,T.Murakami,H.Sakaguchi,S. Terashima,Y.Yasuda,J.Zenihiro,H.Akimune,K.Kawase,M.N.Harakeh,Phys. Rev.C81(2010)034309.

(6)

[8]D.Patel,U.Garg,M.Fujiwara,H.Akimune,G.P.A.Berg,M.N.Harakeh,M.Itoh, T.Kawabata,K.Kawase,B.K.Nayak,T.Ohta,H.Ouchi,J.Piekarewicz,M.Uchida, H.P.Yoshida,M.Yosoi,Phys.Lett.B718(2012)447.

[9]J.Piekarewicz,M.Centelles,Phys.Rev.C79(2009)054311.

[10]K.B.Howard,U.Garg,Y.K.Gupta,M.N.Harakeh,Eur.Phys.J.A55(2019)228. [11]D.H.Youngblood,Y.-W.Lui,H.L.Clark,Phys.Rev.C63(2001)067301. [12]J.Button,Y.-W.Lui,D.H.Youngblood,X.Chen,G.Bonasera,S.Shlomo,Phys.

Rev.C96(2017)054330.

[13]Y.-W.Lui,D.H.Youngblood,S.Shlomo,X.Chen,Y.Tokimoto,Krishichayan,M. Anders,J.Button,Phys.Rev.C83(2011)044327.

[14] H.Sagawa,PrivateCommunication. [15] J.Piekarewicz,PrivateCommunication.

[16]M. Fujiwara, H. Akimune, I. Daito,H. Fujimura, Y. Fujita, K. Hatanaka, H. Ikegami, I.Katayama, N. Nagayama,N. Matsuoka,S. Morinobu,T. Noro,M. Yoshimura,H.Sakaguchi,Y.Sakemi,A.Tamii,M.Yosoii,Nucl.Instrum.Methods Phys.Res.,Sect.A422(1999)484.

[17]A.Tamii,Y.Fujita,H.Matsubara,T.Adachi,J.Carter,M.Dozono,H.Fujita,K. Fu-jita,H.Hashimoto,K.Hatanaka,T.Itahashi,M.Itoh,T.Kawabata,K.Nakanishi, S.Ninomiya,A.B.Perez-Cerdan,L.Popescu,B.Rubio,T.Saito,H.Sakaguchi,Y. Sakemi,Y.Sasamoto,Y.Shimbara,Y.Shimizu,F.D.Smit,Y.Tameshige,M.Yosoi, J.Zenhiro,Nucl.Instrum.Meth.Phys.Res.A605(2009)326.

[18]A.Tamii,H.Sakaguchi,H.Takeda,M.Yosoi,H.Akimune,M.Fujiwara,M.Ogata, M.Tanaka,H.Togawa,IEEETrans.Nucl.Sci.43(1996)2488.

[19]D.H.Youngblood,Y.W.Lui,X.F.Chen,H.L.Clark,Phys.Rev.C80(2009)064318.

[20]D.H.Youngblood,Y.W.Lui,Krishichayan,J.Button,M.R.Anders,M.L.Gorelik, M.H.Urin,S.Shlomo,Phys.Rev.C88(2013)021301.

[21]Y.K.Gupta,U.Garg,K.B.Howard,J.T.Matta,M. ¸Senyi˘git,M.Itoh,S.Ando,T. Aoki,A.Uchiyama,S.Adachi,M.Fujiwara,C.Iwamoto,A.Tamii,H.Akimune, C.Kadono,Y.Matsuda,T.Nakahara,T.Furuno,T.Kawabata,M.Tsumura,M.N. Harakeh,N.Kalantar-Nayestanaki,Phys.Lett.B760(2016)482.

[22]Y.K.Gupta,K.B.Howard,U.Garg,J.T.Matta,M. ¸Senyi˘git,M.Itoh,S.Ando,T. Aoki,A.Uchiyama,S.Adachi,M.Fujiwara,C.Iwamoto,A.Tamii,H.Akimune, C.Kadono,Y.Matsuda,T.Nakahara,T.Furuno,T.Kawabata,M.Tsumura,M.N. Harakeh,N.Kalantar-Nayestanaki,Phys.Rev.C97(2018)064323.

[23]J.F.Ziegler,M.D.Ziegler,J.P.Biersack,Nucl.Instrum.MethodsPhys.Res.,Sect.B 268(2010)1818.

[24]G.R.Satchler,D.T.Khoa,Phys.Rev.C55(1997)285. [25]G.Fricke,C.Bernhardt,Phys.Rev.C60(1995)177.

[26]D.Foreman-Mackey,D.W.Hogg,D.Lang,J.Goodman,Publ.Astron.Soc.Pac. 125(2013)306.

[27]J.Goodman,J.Weare,Commun.Appl.Math.Comput.Sci.5(2010)65. [28]G.Satchler,Nucl.Phys.A472(1987)215.

[29]V.A.Plujko,O.M.Gorbachenko,R.Capote,P.Dimitriou,At.DataNucl.Data Ta-bles85(2018)1.

[30]E.Lipparini,S.Stringari,Phys.Rep.175(1989)103. [31]J.Piekarewicz,Phys.Rev.C96(2017)044314.

Referenties

GERELATEERDE DOCUMENTEN

Using the sources mentioned above, information was gathered regarding number of inhabitants and the age distribution of the population in the communities in

In addition, in this document the terms used have the meaning given to them in Article 2 of the common proposal developed by all Transmission System Operators regarding

In this new historical period for the military, one-way armed and autonomous violence persists to be referred to as combat, in a vast but almost unnoticed rede nition of the

It implies that for a given country, an increase in income redistribution of 1 per cent across time is associated with an on average 0.01 per cent annual lower economic growth

It states that there will be significant limitations on government efforts to create the desired numbers and types of skilled manpower, for interventionism of

In this study, we have tested the hypothesis that TRPM7, by analogy to its D- kinase family members from Dictyostelium, affects actomyosin contractility. We provide evidence

Confocal imaging of living cells showed that TRP induced the translocation of GFP-PH from membrane to cytosol, confirming previous findings that thrombin receptor activation leads

It is well established that TRPM7 channels may be activated by depletion of internal Mg 2+ or magnesium-nucleotides in “whole-cell” patch clamp experiments (a method for