• No results found

Improvement of natural rubber – silica interaction by silane-grafting of the polymer

N/A
N/A
Protected

Academic year: 2021

Share "Improvement of natural rubber – silica interaction by silane-grafting of the polymer"

Copied!
22
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

IMPROVEMENT OF

NATURAL RUBBER - SILICA INTERACTION

BY SILANE-GRAFTING OF THE POLYMER

KARNDA SENGLOYLUAN, JACQUES W.M. NOORDERMEER, KANNIKA SAHAKARO, WILMA K. DIERKES, ANKE BLUME

DEPARTMENT OF RUBBER TECHNOLOGY AND POLYMER SCIENCE, FACULTY OF SCIENCE AND TECHNOLOGY, PRINCE OF SONGKLA UNIVERSITY, PATTANI CAMPUS, THAILAND

ELASTOMER TECHNOLOGY AND ENGINEERING, DEPARTMENT OF MECHANICS OF SOLIDS, SURFACES AND SYSTEMS (MS3), FACULTY OF ENGINEERING TECHNOLOGY, UNIVERSITY OF TWENTE, ENSCHEDE, THE NETHERLANDS

(2)

E

X

P

E

R

IM

E

N

TA

L

R

E

S

U

LT

S

&

D

IS

C

U

S

S

IO

N

C

O

N

C

LU

S

IO

N

S

A

C

K

N

O

W

LE

D

G

E

M

E

N

TS

NATURAL RUBBER - SILICA INTERACTION

BY SILANE-GRAFTING OF THE POLYMER

OUTLINE

W

H

Y

N

A

TU

R

A

L

R

U

B

B

E

R

&

S

IL

IC

A

?

(3)

Introduction

What can we win by using silica technology?

https://www.iea.org/publications/freepublications/publication/TheFutureofTrucksImplicationsforEnergyandtheEnvironment.pdf

Reduction in fuel consumption in passenger car tires: up to 7 %

With courtesy from Apollo Global R&D

https://www.fesports.com.au/blog.php?article=38 ht tp ://w w w .ru b be rn ew s.c o m /a rtic le /2 0 1 80 92 5/ N E W S /1 8 0 92 99 67 /a po llo -ro lls -o u t-fir st-tru ck -tir es -fr om -p la nt -in -h u ng a ry

 Road freight transport makes up 32% of

total transport-related energy demand

 US: app. 3.3 mb/d of oil-based fuels for

road freight transport

 Oil use from road freight vehicles was

close to 17 mb/d in 2015

 7% savings = app. 1,2 mb/d worldwide

https://www.iea.org/publications/freepublications/publication/The FutureofTrucksImplicationsforEnergyandtheEnvironment.pdf

(4)

Advantages

Renewable resource

Converts solar energy

to raw material

Effective CO

2

sequester

Low energy input

Low fertilizer demand

Valuable source of timber

Outstanding properties

Low hysteresis

High tensile strength

High elasticity

Good resilience

Low heat build up

Resistance to abrasion

Resistance to crack growth

Flexibility at low temperature

cis -1,4 polyisoprene

n

C

CH

3

CH

2

H

2

C

H

C

Introduction

(5)

Introduction

What makes natural rubber so special?

cis

trans

C

CH

3

CH

2

H

2

C

H

C

2

C

CH

3

CH

3

H

2

C

H

C

n

C

CH

3

CH

2

H

2

C

H

C

C

CH

3

CH

2

CH

2

OH

H

C

2 trans-1,4 isoprene units 1000 – 3000 cis-1,4 isoprene units

proteins Mono- or di-

phosphate group

(6)

Introduction

Where’s the problem with silica-silane and tire polymers?

Silica particle

Silica:

hydrophilic

Rubber:

hydrophobic

E Si O Si O Si O Si O Si O Si O O O OH O OH Si Si O tO (CH2)3 (CH2)3 Si O (CH2)3 OEt S S Si OEt EtO (CH2)3 S S S S S S

(7)

Introduction

What’s the problem with silica-silane and NR?

Processing and dispersion improves

Deproteinized NR (0,4 %wt proteins) NR (1,3 wt% proteins) Skim rubber (13 %wt proteins)

Flocculation

But: no bond to the polymer!

(8)

Pre-treated silica

Introduction

Approaches for silica-silane in NR

Silica particle

Modified natural rubber

 Silanes (vinyl-, mercapto-, aminosilanes, TESPT, …)

 In-situ polymerization of monomers onto the surface

(styrene, isoprene, butadiene)

 Plasma polymerization (acetylene, thiophene)

 Epoxidation of NR

 Butadiene grafted with mercaptosilane

 Silanization

(9)

Pre-treated silica

Introduction

Approaches for silica-silane in NR

Silica particle

Modified natural rubber

 Silanes (vinyl-, mercapto-, aminosilanes, TESPT, …)

 In-situ polymerization of monomers on the surface via

bi-layers of surfactants (styrene, isoprene, butadiene)

 Plasma polymerization (acetylene, thiophene)

 Alcohols (methanol, hexadecanol)

 Epoxidation of NR

 Butadiene grafted with mercaptosilane

(10)

Melt mixing:

Brabender® 50EHT (Brabender® GmbH & Co.KG, Germany)

140

C, 12 minutes, 60 rpm

Silane:

OTPS: 3-OctanoylThio-1-PropyltriethoxySilane

MPDS:

3-MercaptoPropyl-di(triDecan-1-oxy-13-penta(ethyleneoxide) ethoxySilane

Concentration: 10, 20 phr

Initiator:

1,1′-di(tert-butylperoxy)-3,3,5-trimethylcyclohexane

Concentration: 0.1 phr

Experimental

Grafting of silane onto NR

CH3 CH3 CH3 O O O C CH3 CH3 CH3 O C CH3 CH3 CH3 CH3 CH3 CH3 O O O C CH3 CH3 CH3 2 Fragmentation C CH3 CH3 O CH3 2 2 (I) (II) T

O C

CH

3

CH

3

CH

3

or

CH

3

(I)

(II)

HS C

3

H

6

Si

OCH

2

CH

3

O(CH

2

CH

2

O)

5

C

13

H

27

O(CH

2

CH

2

O)

5

C

13

H

27

S C

3

H

6

Si

OCH

2

CH

3

O(CH

2

CH

2

O)

5

C

13

H

27

O(CH

2

CH

2

O)

5

C

13

H

27

CH

4

or HO C

CH

3

CH

3

CH

3

H

2

C

C

CH

H

3

C

CH

2

n

H

2

C

C

CH

H

3

C

CH

n

Si

OCH

2

CH

3

O(CH

2

CH

2

O)

5

C

13

H

27

O(CH

2

CH

2

O)

5

C

13

H

27

S

C

3

H

6

CH

2

C

CH

2

H

3

C

CH

2

n

C

3

H

6

Si

OCH

2

CH

3

O(CH

2

CH

2

O)

5

C

13

H

27

O(CH

2

CH

2

O)

5

C

13

H

27

S

O C

CH

3

CH

3

CH

3

or

CH

3

(I)

(II)

H

2

C

C

CH

H

3

C

CH

2 n

S

CH

2

Si

OCH

2

CH

3

OCH

2

CH

3

OCH

2

CH

3 3

C

H

2

C

H

3

C

O

6

S

CH

2

Si

OCH

2

CH

3

OCH

2

CH

3

OCH

2

CH

3 3

CH

2

C

CH

2

H

3

C

CH

2 n

C

3

H

6

Si

OCH

2

CH

3

OCH

2

CH

3

OCH

2

CH

3

S

H

2

C

C

CH

H

3

C

CH

n

Si

OCH

2

CH

3

OCH

2

CH

3

OCH

2

CH

3

S

C

3

H

6

C

H

2

C

H

3

C

O

6

C

H

2

C

H

3

C

O

6

CH

3

or

O C

CH

3

CH

3

CH

3

(11)

Experimental

Grafting reaction

O C CH3 CH3 CH3 or CH3 (I) (II) HS C3H6 Si OCH2CH3 O(CH2CH2O)5C13H27 O(CH2CH2O)5C13H27 S C3H6 Si OCH2CH3 O(CH2CH2O)5C13H27 O(CH2CH2O)5C13H27 CH4 or HO C CH3 CH3 CH3 H2C C CH H3C CH2 n H2C C CH H3C CH n Si OCH2CH3 O(CH2CH2O)5C13H27 O(CH2CH2O)5C13H27 S C3H6 CH2 C CH2 H3C CH2 n C3H6 Si OCH2CH3 O(CH2CH2O)5C13H27 O(CH2CH2O)5C13H27 S O C CH3 CH3 CH3 or CH3 (I) (II) H2C C CH H3C CH2 n S CH2 Si OCH2CH3 OCH2CH3 OCH2CH3 3 C H2C H3C O 6 S CH2 Si OCH2CH3 OCH2CH3 OCH2CH3 3 CH2 C CH2 H3C CH2 n C3H6 Si OCH2CH3 OCH2CH3 OCH2CH3 S H2C C CH H3C CH n Si OCH2CH3 OCH2CH3 OCH2CH3 S C3H6 C H2C H3C O 6 C H2C H3C O 6 CH3 or O C CH3 CH3 CH3 NR-g-MPDS NR-g-OTPS CH3 CH3 CH3 O O O C CH3 CH3 CH3 O C CH3 CH3 CH3 CH3 CH3 CH3 O O O C CH3 CH3 CH3 2 Fragmentation C CH3 CH3 O CH3 2 2 (I) (II) T Decomposition of 1,1′-di(tert-butylperoxy)-3,3,5-trimethylcyclohexane

(12)

Experimental

Compounding & mixing

Mixing procedures Cumulative

time (mins.) Step 1: Internal mixer

- NR and silane-grafted-NR (or NR only) mastication - Addition of first half of silica (and ½ of silane if any) - Addition of second half of silica (and ½ silane if any) and

TDAE oil

- Addition of ZnO, stearic acid and TMQ

2 7 12 15

Step 2: Two roll mill

- Addition of DPG, CBS and sulfur 5

Mixer; Brabender® 50EHT, Mixing chamber volume: 70 cm3 TCU settings: 100°C Dump temperature: 135-150°C Ingredients phr RSS3 100.0 100.0 95.0-80.0 TESPT - 4.7* -Grafted NR** - - 5.0-20.0 Zeosil 1165MP 55.0 55.0 55.0 TDAE oil 8.0 8.0 8.0 ZnO 3.0 3.0 3.0 TMQ 1.0 1.0 1.0 Stearic acid 1.0 1.0 1.0 DPG 1.0 1.0 1.0 CBS 1.5 1.5 1.5 Sulfur 1.5 1.5 1.5

* TESPT 4.7 phr = 8.6 wt% rel. to silica ** OTPS- and MPDS-grafted-NRs were prepared by using silane contents of 10 and 20 phr

Silane contents for straight use were calculated based on silane loading in the non-purified silane-grafted-NR Amount of OTPS/MPDS-grafted NR Total amount of silane (wt% rel. to silica) Grafted with 10 phr of silane 5 phr 10 phr 15 phr 20 phr 0.8 1.7 2.5 3.4 Grafted with 20 phr of silane 5 phr 10 phr 15 phr 20 phr 1.5 3.0 4.6 6.1

(13)

Results: TESPT versus OTPS and NR-g-OTPS

Processing, filler-filler & filler-polymer interaction

Silane content (wt% rel. to silica)

 Similar filler hydrophobation

 Less chemical filler-polymer

coupling for OTPS

 Shielding of filler similar for high

concentrations

 Suppression of flocculation

independent of concentration

(14)

Results: TESPT versus OTPS and NR-g-OTPS

Reinforcement

Better filler-polymer network formation for

NR-g-OTPS compared to straight addition

Similar reinforcing strength

at equal concentrations

(15)

Results: TESPT versus OTPS and NR-g-OTPS

Breaking interface topography

no compatibilizer with TESPT at 8.6 wt%

rel. to silica with OTPS at 3.4 wt%

rel. to silica

with OTPS-grafted-NR containing total OTPS of 3.4 wt% rel. to silica

with OTPS at 6.1 wt% rel. to silica

with OTPS-grafted-NR containing total OTPS of 6.1 wt% rel. to silica

(16)

Results: TESPT versus MPDS and NR-g-MPDS

Processing, f

iller-filler & filler-polymer interaction

Silane content (wt% rel. to silica)

 Similar filler hydrophobation

 Less chemical filler-polymer

coupling for MPDS

Similar shielding of filler

MPDS MPDS

MPDS MPDS

MPDS MPDS

(17)

Results: TESPT versus MPDS and NR-g-MPDS

Strength & breaking pattern

Strength properties reflected in

breaking pattern

with MPDS-grafted-NR containing total silane of

6.1 wt% rel. to silica with MPDS at 6.1 wt% rel. to silica with TESPT at 8.6 wt% rel. to silica without compatibilizer MPDS MPDS MPDS MPDS

(18)

Results: TESPT versus NR-g-OTPS & NR-g-MPDS

Processing, f

iller-filler & filler-polymer interaction

Similar filler

hydrophobation

Better shielding of silica

surface by OTPS

Blocked thioester-group &

triethyl-moeities more

reactive for chemical

coupling

MPDS

MPDS

(19)

Results: TESPT versus NR-g-OTPS & NR-g-MPDS

Reinforcement

Better filler-polymer network

formation for OTPS

Final strength comparable

MPDS MPDS

(20)

Results: TESPT versus NR-g-OTPS & NR-g-MPDS

Dynamic properties

 TESPT gives the best secondary network  highest storage modulus

 No compatibilization: poor filler-polymer interaction  highest loss modulus

 Higher Tg for grafted NR  more restricted polymer movement

 Tan δ at 60ºC for silane grafted onto NR similar to TESPT  expected similar reduction in rolling resistance

MPDS MPDS

(21)

Conclusions

• OTPS- and MPDS-grafted-NRs act as compatibilizers in NR-silica compounds

 stronger reduction of filler-filler interaction (Payne effect)

 higher reinforcing effect

compared to straight use of these silanes

• Comparable effect to conventional use of TESPT

(22)

Department of Rubber Technology

and Polymer Science

Prince of Songkla University

Pattani Campus, Thailand

Rubber Stichting

(The Dutch Natural Rubber Foundation)

Elastomer Technology and Engineering

Department of Mechanics of Solids, Surfaces

and Systems

University of Twente

Enschede, the Netherlands

Acknowledgements

Thank you

for your

attention

Referenties

GERELATEERDE DOCUMENTEN

models need to behave as dark matter on relatively small scales (to account for structure formation), and as dark energy on relatively large scales (to account for

The role of civil society in the promotion of political Islam is another significant subject that should be subject to examination in order to know how

The features of the sentences for this classifier are the sentence, the prediction probability of it being a highlight sentence by using the GBDT model from Section 9.1 and the

The possibility of a tight security dilemma is ruled out because the Jewish majority rightly perceived that Israel’s Arab citizens identify themselves as part of the

As already mentioned in the introduction of this work, current participatory strategies as presented by online moving image archives have the potential to disrupt

It can be argued that because of the lack of a father and a good mother, the film filled this void with another fatherly figure, namely the teacher, and providing the message that

draagt de jaarlijkse aanlevering van kwaliteitsindicatoren zoals die opgesteld zijn door de IGZ bij aan interne kwaliteitsverbetering bij Nederlandse ziekenhuizen en hoe

Alle respondenten weten dat er cameratoezicht in Amsterdam in de publieke ruimte plaatsvindt en geven aan dat de aanwezigheid van deze camera’s er niet voor zorgt dat zij zich