• No results found

Hydrogen production from biomass wastes by reforming in hot compressed water: studies with model oxygenates in the quest for finding an optimal catalyst

N/A
N/A
Protected

Academic year: 2021

Share "Hydrogen production from biomass wastes by reforming in hot compressed water: studies with model oxygenates in the quest for finding an optimal catalyst"

Copied!
186
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)Hydrogen production from biomass wastes by reforming in hot compressed water Studies with model oxygenates in the quest for finding an optimal catalyst. Anna Kaisa Kristiina Vikla.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13) -alumina. The performance of this catalyst was then compared to Pt/-.

(14)

(15)

(16) γ γ.

(17)

(18)

(19)

(20)

(21) Cx H2x Ox ↔ xCO + xH2 CO + H2 O ↔ CO2 + H2 Cx H2x Ox + xH2 O ↔ xCO2 + 2xH2.

(22) γ. γ. γ.

(23) γ.

(24) γ. γ.

(25)

(26)

(27) C6 H12 O6 + 6 H2 O → 6 CO2 + 12H2.

(28)

(29) CH4 + H2 O ↔ CO + 3H2. .

(30) 100 90 1 bar. Conversion (%). 80 70. 10 bar. 60 50 5 bar 40 30 20. S/C = 2 S/C = 3 S/C = 4. 10 0 450. 500. 550. 600. 650. 700. 750. 800. Temperature (°C). 850. 900. 950.

(31) Cn Hm + nH2 O → n CO + (n +. m 2. ) H2.

(32) Ni + H2 O → NiO + H2. . CO + H2 O → CO2 + H2. 10. 8. 6. TOF 4. 2. 0. Pt/TiO2. Pt/Ti0.5Ce0.5O2. Pt/CeO2 Pt/Ce0.8Zr0.2O2. Pt/ZrO2. .

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40) PCO =. PCO2 PH2 K WGS PH2 O.

(41) Pbubble ≈ Psystem = PH2O + ∑products Pi.

(42)

(43)

(44) γ.

(45)

(46)

(47)

(48)

(49)

(50) ⁰.

(51)

(52)

(53)

(54) γ.

(55) ȩ. ś.

(56) Ś. ń.

(57)

(58) γ.

(59) γ. γ. γ.

(60) ń. ń.

(61)

(62)

(63)

(64) . . .

(65) .

(66) Vn = pn ∗ GCF ∗ VN2. 𝑠𝑛. 𝑐𝑝,𝑛. 𝑇𝑠. CGF =. 𝑑𝑁2 ∗𝑐𝑝𝑁 (p1 s1 +p2 s2 +⋯+pn sn ) 2. pd1 cp1 +p2 d2 cp2 +⋯+pn dn cp,n. 𝑇𝑥. 𝑑𝑛.

(67) Temperature Corrected CGF = GCF ∗. 𝑅. Fn =. pn Vn R∗T. Tx Ts. 𝑇. 𝐹𝑛.

(68) 𝑋𝑡,𝑠,𝑖 𝐶𝑠. 𝑉𝑓𝑒𝑒𝑑 𝐹𝑠. 𝑜𝑢𝑡 𝐶𝑠,𝑖. 𝑜𝑢𝑡 𝑉𝐿𝑄. 𝑜𝑢𝑡 𝐹𝐿𝑄. 𝐹𝑠. 𝐗 𝐭,𝐬,𝐢 =. out Cs ∗ Vfeed −Cout s,i ∗VLQ. Cs ∗ Vfeed. =. Fs −Fout LQ,i Fs. ∗ 100. 𝑋𝐶2𝐺,𝑖 𝑖𝑛 𝐶𝑐𝑎𝑟𝑏𝑜𝑛. 𝑜𝑢𝑡 𝐶𝑐𝑎𝑟𝑏𝑜𝑛,𝐿𝑄,𝑖. 𝑉𝑓𝑒𝑒𝑑 𝑖𝑛 𝐹𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝐹𝑐𝑎𝑟𝑏𝑜𝑛. 𝐗 𝐂𝟐𝐆,𝐢 =. out out Cin carbon ∗Vfeed −Ccarbon,LQ ∗VLQ. Cin carbon ∗Vfeed. =. out Fin carbon −Fcarbon,LQ,i. Fin carbon. 𝑜𝑢𝑡 𝑉𝐿𝑄 𝑜𝑢𝑡 𝐹𝑐𝑎𝑟𝑏𝑜𝑛,𝐿𝑄,𝑖. ∗ 100. 𝑋𝐿𝑄,𝑖 𝑖𝑛 𝐹𝑐𝑎𝑟𝑏𝑜𝑛. 𝑜𝑢𝑡 𝐹𝑐𝑎𝑟𝑏𝑜𝑛,𝐿𝑄,𝑖. 𝐶𝑔𝑎𝑠,𝑖 𝑉𝑔𝑎𝑠,𝑖. 𝐗 𝐋𝐐,𝐢 =. out Fin carbon −Fcarbon,LQ,i −Cgas,i∗ Vgas,i. Fin carbon. ∗ 100.

(69) 𝑜𝑢𝑡,𝐻𝑃𝐿𝐶 𝐹𝑐𝑎𝑟𝑏𝑜𝑛,𝐿𝑄,𝑖. 𝐹𝑐𝑎𝑟𝑏𝑜𝑛,𝑔𝑎𝑠,𝑖 𝐶𝑔𝑎𝑠,𝑖 ∗ 𝑉𝑔𝑎𝑠,𝑖. 𝐹𝑐𝑜𝑘𝑒,𝑖. out,HPLC. 𝐂𝐁𝒊 =. Fcarbon,LQ,i ∗Fout carbon,LQ,i +Fcarbon,gas,i +Fcoke,i out,CHN. Fcarbon,LQ,i +Fcarbon,gas,i +Fcoke,i. ∗ 𝟏𝟎𝟎. 𝑆𝐻2,𝑖 𝐹𝐻2,𝑖. 𝐒𝐇𝟐 ,𝐢 =. FH2 ,i Fs ∗ Xt,i. ∗. 1 RR. 𝐹𝑠 ∗ 𝑋𝑡,𝑖. ∗ 100. C2 H6 O2 → 2CO + 3H2 2CO + 2H2 O → 2CO2 + 2H2 C2 H6 O2 → 2CO2 + 5H2. C3 H6 O2 + H2 O → 3CO + 4H2 3CO + 3H2 O → 3CO2 + 3H2 C3 H6 O2 + H2 O → 3CO2 + 7H2.

(70) 𝑜𝑢𝑡 𝐶𝑥,𝑖. 𝑁𝑥𝑐𝑎𝑟𝑏𝑜𝑛. 𝐒𝐱,𝐢 =. 𝑁𝑥𝑐𝑎𝑟𝑏𝑜𝑛. out carbon Cout x,i ∗Vi ∗ Nx. Fs ∗2∗ Xt,i. 𝑉𝑖𝑜𝑢𝑡. 𝑁𝑥𝑐𝑎𝑟𝑏𝑜𝑛. ∗ 100. 𝐘𝐇𝟐/𝐱,𝐢 = Si ∗ Xt,i 𝑟𝑃𝑡. 𝑚2. 𝐴𝑃𝑡. 𝐫𝐏𝐭. 𝐦𝟐. =. (Xt ⁄100)∗Fs 𝐴𝑃𝑡. 𝐷𝑃𝑡. 𝐓𝐎𝐅𝐬 = (m. 𝑀𝑃𝑡. Xt ∗Fs Pt ⁄MPt )∗DPt. 𝐹𝐻2. 𝐓𝐎𝐅𝐇𝟐 =. FH2 mPt,cat ∗DPt MPt.

(71)

(72)

(73)

(74) ±. ∑. ×.

(75)

(76) γ. γ.

(77) →.

(78)  .  . .  . . .

(79) θ α.

(80) . . . .

(81) .  . . γ. . .

(82) .

(83)   .   . . .

(84) . .    . .  .

(85)  . .

(86) . . .

(87)

(88) γ. γ.

(89)

(90)

(91) C3 H6 O2 + 4 H2 O → 3 CO2 + 7H2.

(92) γ. α. γ.

(93) γ. ●.

(94)

(95)

(96) C3 H6 O2 + H2 O → 3CO + 4H2 CO + H2 O → CO2 + H2.

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104) CO + 3 H2 → CH4 + H2 O CO2 + 4 H2 → CH4 + 2 H2 O (2n + 1)H2 + n CO → Cn H(2n+2) + n H2 O .

(105)

(106)

(107)

(108)

(109) γ.

(110) γ.

(111)

(112) 2CH3 COOH → CH3 COCH3 + CO2 + H2 O 2CH3 COCH3 → CH2 COHCH3 (enol) + CH3 COCH3 CH2 COHCH3 (enol) + CH3 COCH3 → (CH3 )2 C(OH)CH2 COCH3 (diacetone alcohol). (CH3 )2 C(OH)CH2 COCH3 (diacetone alcohol) → (CH3 )2 C = CCHCOCH3 (MO) + H2 O.

(113)

(114) .

(115) γ.

(116) γ. γ.

(117) α.

(118)

(119) γ. γ.

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129) . .     . . . . °. .

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140) .

(141)

(142)

(143)

(144)

(145) φ. φ.

(146)

(147) α.

(148)

(149)

(150)

(151)

(152) − Ea. k = Ae RT.

(153) .

(154)

(155)

(156)

(157)

(158)

(159) .

(160)

(161)

(162)

(163)

(164)

(165)

(166) obs d2 rv,p p a′ k c Cb. obs d2 rv,p p Cs De. L 20n C0 > ln dp Pea Cf.

(167)

(168) CO (g) + H2 O(l) ↔ H2 (g) + CO2. CO (g) + 3H2 (g) ↔ CH4 (g) + H2 O (l).

(169)

(170)

(171)

(172)

(173)

(174)

(175) γ γ γ. γ.

(176) .

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186) Anna Kaisa Kristiina (Kaisa) Vikla was born on 1st September 1982 in Nurmijärvi, Finland. She studied chemistry at University of Helsinki and received Bachelor of Science degree in 2008. After working in paint and coatings industry for 2 years, she started studies in Aalto University. In 2012 she graduated with a Master's degree in Chemical Engineering from Industrial Chemistry group. In 2013 she started PhD at Catalytic Processes and Materials group at University of Twente. The research findings are described in this thesis.. ISBN: 978-90-365-4668-3 DOI: 10.3990/1.9789036546683.

(187)

Referenties

GERELATEERDE DOCUMENTEN

Criteria optimal settings for automated metabolic assessment of VAT The optimal threshold and erosion settings for the automated metabolic assessment of VAT had to fulfill

Zo bleek dat er in de jaren zeventig vrouwen om verschillende redenen vaker afzagen van het gebruik van de pil maar Der Spiegel kon hier geen begrip voor opbrengen omdat de pil

In vitro, treatment with FGF2-SPIONs evidenced increased therapeutic effects (attenuated TGFβ-in- duced HSCs activation, migration and contraction) of FGF2 in TGFβ-activated HSCs

As noted above, smart devices and Things can ‘sense’ the environment in a way that was unimaginable before, and, consequently, the streams of rich and finer data acquired by IoT

Subsequently, the location of the aerial vehicle (AV) is estimated using another KF with the multilateration (MLAT) method and the dynamic model of the AV.. We demonstrate

section now reads that an accused charged with a violent offence (including murder, culpable homicide, rape or another charge involving serious violence or where the

Nog 'n onvergeetlike botsing moet more in goeie ge sindheid op Olenpark tot die geskiedenis gevoeg word.. Boweal, dis n dag waarop die universele band van stu~

Besides software and platform analysis, this thesis employed the research methods of auto-ethnography and interviews with DJs who have been using both analog and timecoded