• No results found

The influence of Na2O on the hydration of C3A I. Paste hydration

N/A
N/A
Protected

Academic year: 2021

Share "The influence of Na2O on the hydration of C3A I. Paste hydration"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The influence of Na2O on the hydration of C3A I. Paste

hydration

Citation for published version (APA):

Spierings, G. A. C. M., & Stein, H. N. (1976). The influence of Na2O on the hydration of C3A I. Paste hydration. Cement and Concrete Research, 6(2), 265-272. https://doi.org/10.1016/0008-8846(76)90124-1

DOI:

10.1016/0008-8846(76)90124-1

Document status and date: Published: 01/01/1976

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

THE INFLUENCE OF Na20 ON THE H Y D R A T I O N OF C3A. I. PASTE H Y D R A T I O N

G.A.C.M. Spierings and H.N. Stein Laboratory of General C h e m i s t r y

Technological University, Eindhoven, The Netherlands

(Communicated by H. F. W. Taylor) (Received Dec. 2, 1975)

ABSTRACT

The influence of Na~O on the h y d r a t i o n of C3A was studied both by following t~e hydration of x N a 2 0 . ( 3 - x ) C a O . A 1 2 0 3

(0<x<0.25) in water, and of C~A in solutions of NaOH. Low NaOH c o n c e n t r a t i o n s prevent a very early a p p e a r a n c e of the second heat evolution peak, indicating a m o r e

controlled formation of C~AH~ nuclei. Higher NaOH

c o n c e n t r a t i o n s advance th~ s~cond peak; this is ascribed to a d e c r e a s e d stability of the hexagonal hydrates with increasing NaOH concentrations.

Der Einfluss von NagO auf die H y d r a t a t i o n des C3A wurde untersucht sowohl mlttels der H y d r a t a t i o n von

xNa~O.(3-x)CaO.Al203 (0<x<0.25) in Wasser und von C 3 A in NaOB-L~sungen.

Niedrige N a O H - K o n z e n t r a t i o n v e r h i n d e r n ein sehr fr~hes

Auftreten des zweiten WMrmeentwicklungspeaks; dieses

deutet auf eine besser beherrschte Keimbildung des C~AH 6 hin. H~here N a O H - K o n z e n t r a t i o n e n verfr~hen den zwei£en Peak; d i e s e s w i r d einer abnehmenden Stabilit~t der hexagonalen Hydrate mit steigender N a O H - K o n z e n t r a t l o n

zugeschrieben.

(3)

266 Vol. 6, No. 2 G. A. C. M. Spierings, H. N. Stein

I n t r o d u c t i o n

The a l k a l i e s in a p o r t l a n d c e m e n t c l i n k e r h a v e a d i s t i n c t i n f l u e n c e on t h e s t r e n g t h d e v e l o p m e n t of a c e m e n t p a s t e p r e p a r e d

f r o m it (1,2). A s a f i r s t step in u n d e r s t a n d i n g this e f f e c t the

i n f l u e n c e of a l k a l i e s on the h y d r a t i o n m e c h a n i s m of p o r t l a n d c e m e n t m i n e r a l s has to be studied.

The a l k a l i e s c a n be i n c o r p o r a t e d i n t o a n u m b e r of p h a s e s in

the c l i n k e r . P a r t of the N a ~ O is n o r m a l l y t a k e n up by the C3A.

R e c e n t w o r k (3,4) has s h o w n ~hat t h e r e e x i s t s e v e r a l s e r i e s of s o l i d s o l u t i o n s of g e n e r a l f o r m u l a xNa20. ( 3 - x ) C a O . A l ~ O ~ , of w h i c h a c u b i c o n e w i t h 0 < x < 0 . 0 8 , an o r t h o r h o m b i c o n e w i t h 0 7 1 5 < x < 0 . 2 0 and a m o n o c l i n i c one w i t h 0 . 2 0 < x < 0 . 2 5 are r e l e v a n t to the p r e s e n t

i n v e s t i g a t i o n . W h e n 0 . 0 8 < x < 0 . 1 6 a m i x t u r e of two p h a s e s is found.

S o m e a s p e c t s of the i n f l u e n c e of N a ~ O on the h y d r a t i o n of C3A h a v e b e e n i n v e s t i g a t e d (5-9) but no d e t a i l e d study has b e e n

r e p o r t e d . The p r e s e n t i n v e s t i g a t i o n d e a l s w i t h t h e p a s t e h y d r a t i o n

of C3A in s o l u t i o n s of NaOH and of xNa20. ( 3 - x ) C a O . A l 2 0 3 in water. E x p e r i m e n t a l

M e t h o d s

S p e c i f i c s u r f a c e w a s d e t e r m i n e d by N~ a d s o r p t i o n in an A r e a m e t e r ("Str~hlein") . F r e e l i m e w a s d e t e r m i n e d by the m e t h o d

of P r e s s l e r et al. (I0). S c a n n i n g e l e c t r o n m i c r o g r a p h s (SEM) w e r e

m a d e u s i n g a C a m b r i d g e M K - 2 A i n s t r u m e n t .

X - r a y a n a l y s i s w a s p e r f o r m e d u s i n g a P h i l i p s d i f f r a c t o m e t e r

P W I 0 1 0 w i t h f i l t e r e d Cu r a d i a t i o n ; the q u a n t i t i e s of t h e c o m p o u n d s

p r e s e n t w e r e e s t i m a t e d f r o m the i n t e n s i t i e s of c h a r a c t e r i s t i c peaks, w h i c h are g i v e n in a r b i t r a r y u n i t s ( v v w < v w < w < m w < m < m s < s < v s ) . The p e a k s used w e r e the same as t h o s ~ u s e d b y C o r s t a n j e , S t e i n and S t e v e l s (11) t o g e t h e r w i t h the 10.7 K p e a k for C 2 A H 8.

I s o t h e r m a l c a l o r i m e t r y w a s p e r f o r m e d at 25°C as d e s c r i b e d

p r e v i o u s l y (12). T h e p a s t e s w e r e p r e p a r e d and the h y d r a t i o n

r e a c t i o n s a r r e s t e d as d e s c r i b e d by de Jong, S t e i n and S t e v e l s (I 3). C a l c i u m w a s d e t e r m i n e d b y a s p e c t r o p h o t o m e t r i c t i t r a t i o n m e t h o d

(Slanina et al. (15)) S o d i u m w a s d e t e r m i n e d u s i n g a s o d i u m ion

e l e c t r o d e (Swasey ( 1 6 ) . M a t e r i a l s

The N a 2 0 c o n t a i n i n g C ~ A s a m p l e s w e r e p r e p a r e d f r o m m i x t u r e s

of C a C O ~ (p.a. M e r c k ) , A I 2 0 ~ (U.C.B.; loss on i g n i t i o n 0.57%) and

N a 2 C O 3 ~p.a. M e r c k ) . T h e s £ a r t i n g m a t e r i a l s w e r e m i x e d in an

a g a t e b a l l m i l l , h e a t e d tree t i m e s in p l a t i n u m c r u c i b l e s for two

h o u r s at 1 3 2 5 ° C w i t h i n t e r m e d i a t e g r i n d i n g , and sieved. The

f r a c t i o n s w i t h p a r t i c l e s s m a l l e r t h a n 36 ~ m w e r e used. C 3 A w a s

p r e p a r e d as d e s c r i b e d by de Jong, S t e i n and S t e v e l s (13). T a b l e I

c o n t a i n s s o m e d a t a for t h e m a t e r i a l s .

A c c o r d i n g to R e g o u r d and G u i n i e r ( 3 ) , C q A and N O 0 5 C 2 Q5 A are

c u b i c w h i l e N^ ^~C. 75 A is m o n o c l i n i c , a n d N^ .~C~ ~ ' A a ~ x t u r e

of the c u b i c ~ D o r ~ h o r h o m b i c p h a s e s . T h e s a m p - e s w e e

c h a r a c t e r i z e d by t h e i r X - r a y d i f f r a c t o g r a m s w h i c h a g r e e d c o m p l e t e l y w i t h t h e d a t a g i v e n by R e g o u r d and G u i n i e r .

(4)

t e m p e r a t u r e s h o r t l y b e f o r e use. The a l k a l i h y d r o x i d e s o l u t i o n s w e r e p r e p a r e d from L i O H . H 2 0 (Koch light >99%), N a O H and KOH

(Titrisol Merck) and RbOH (Koch light >99.8%). The NaAI(OH)

s o l u t i o n s w e r e p r e p a r e d by d i s s o l v i n g A1 r i b b o n (p.a. M e r c k ) 4 i n

a q u e o u s N a O H solution. A l l p r e p a r a t i o n s w e r e c a r r i e d out using a

g l o v e b o x w i t h a N 2 - a t m o s p h e r e free f r o m C O 2. TABLE I D a t a on M a t e r i a l s E m p l o y e d S p e c i f i c F r e e C a / N a s u ~ f a ~ e lime cm g % T h e o r e t i c a l A n a l y s i s C A 3210 0.3 . . . . 3 N 0 05 2 . 9 5 ~ C 2890 <0.1 2 7. 5 28 1 . N "

0.15 2.85

c 3 0 6 0 0.3 9.5 10 6

N0.25C2.75a

2670

0.7

5.5

6.0

H y d r a t i o n of C 3 A in S o l u t i o n s of A l k a l i H ~ d r o x i d e or H y d r o x 6 a f u m i n a t e R e s u l t s

Fig. I gives t y p i c a l heat e v o l u t i o n c u r v e s for p a s t e s (w/s =

I) m a d e w i t h C 3 A and w a t e r or a q u e o u s NaOH. In Fig. 2, the time

020 [

i!0.15

u

~

0.I0

8 o.os I I I I I I

/

'l[lO~H

%\'

1 2 3

Time (h)

FIG. I H e a t e v o l u t i o n rates of p a s t e s (w/s = 1) m a d e u s i n g w a t e r and a q u e o u s N a O H "~8C " U C O O O E ~0( E E ,,. 2( O E ° ~ o o o I o

:',8

\

o v ~ I I I I I 0.25 0.5 I 2 3 NaOH concentration M FIG. 2 T i m e of s e c o n d h e a t e v o l u t i o n peak

(5)

268 Vol. 6, No. 2 G. A. C. M. Spierings, H. N. Stein

of the second neat e v o l u t i o n peak is p l o t t e d against NaOH

concentration. Heat e v o l u t i o n in the first 15 m i n u t e s d e c r e a s e s

w i t h i n c r e a s i n g NaOH c o n c e n t r a t i o n . W i t h w a t e r or NaOH less

c o n c e n t r a t e d than about 0.5M, the time of the second peak is not

very reproducible. W i t h m o r e c o n c e n t r a t e d NaOH, the

r e p r o d u c i b i l i t y is m u c h better, and the o c c u r e n c e of this peak at

very short times is prevented. The time of the second peak falls

with c o n c e n t r a t i o n above IM. Mori et al. (6) also found this.

X - r a y results (Table II) show that C3AH 6 is formed w i t h i n 10

m i n u t e s and that its amount increases wit~ tlme thereafter. At

short times the amount is v i r t u a l l y i n d e p e n d e n t of NaOH

concentration. H e x a g o n a l h y d r a t e s w e r e only once found (after

20h in 2N NaOH) with X-rays, but the SEM (Figs. 3 and 4) showed

the p r e s e n c e after 10 m i n u t e s of h y d r a t e s other than C3AH 6. T h e s e

had a platey h a b i t r e m i n i s c e n t of that of h e x a g o n a l hydrates. The absence of the c h a r a c t e r i s t i c X - r a y peaks i n d i c a t e s that h e x a g o n a l hydrates, if formed, are m u c h disordered.

The effect of v a r y i n g the alkali c a t i o n was studied u s i n g 2M

solutions. The only o b s e r v e d effect was a small d e c r e a s e in heat

e v o l u t i o n rate over the w h o l e p e r i o d of h y d r a t i o n w h e n the cation radius was increased.

Fig. 5 shows the effect of adding NaAI(OH) 4 as w e l l as NaOH. The second heat e v o l u t i o n peak is d e p r e s s e d a n d - s l i g h t l y retarded.

D i s c u s s i o n

A d d i t i o n of NaOH lowers the s o l u b i l i t y of Ca(OH)~ and

i n c r e a s e s that of AI(OH) 3. Berger, K o t s u p a l o and P u s ~ n y a k o v a (161

found that aqueous alkall p a r t l y d e c o m p o s e s C3AH 6 to give Ca(OH) 2 C4AH1. and a l u m i n a t e ions in solution, but Jones (17) found in a s£udyJof the C - A - N - H system that C3AH 6 is s t a b l e in I% NaOH, even

~ ° FIG. 3 S E M of C 3 A h y d r a t e d for 10 m i n u t e s in w a t e r FIG. 4 SEM of C q A h y d r a t e d for 10 m i n u ~ e s in 2M NaOH

(6)

T a b l e II X - r a y D a t a o n P a s t e H y d r a t i o n of C 3 A in R w a t e r and N a O H s o I u t i o n s N a O H H y d r a t i o n C 3 A C 2 A H 8 C 3 A H 6 (M) t i m e (min) 0 I 0 vs - v w 0 30 vs - m 0 120 s - s 0.04 I 0 vs - vw 0.2 I 0 vs - v w 0.2 50 vs - m w 0.2 1200 vs v v w m R N e i t h e r C a ( O H ) ~ nor C 4 A H x was ever d e £ e c t e d . T .06

ro

c o ~ .02 o U l 0 " r m i i \

[~

\\\

. z . r o

il

x ~'x ~ ~ [ I I 1 2 3 Time (h) FIG. 5 Heat e v o l u t i o n r a t e s of p a s t e s (w/s = I) c o n t a i n i n g b o t h N a O H (2M) and NaAI(OH) 4 of c o n c e n t r a t i o n s s h o w n

at low a l u m i n a t e ion c o n c e n t r a t i o n s . The r e s u l t of B e r g e r ,

K o t s u p a l o and P u s h n y a k o v a _ c a n be a s c r i b e d to the i n i t i a l a b s e n c e

in the s o l u t i o n of AI(OH) 4 . It n e v e r t h e l e s s seems s t r a n g e t h a t no

s o l i d Ca(OH) 2 c o u l d b e d e ~ e c t e d in the p r e s e n t work.

R e t a r d a t i o n of the h y d r a t i o n r e a c t i o n a f t e r the f i r s t p e a k is g e n e r a l l y a t t r i b u t e d to ~ p r m a t i o n of a l a y e r of h y d r a t e s , w h i c h

i m p e d e s the p a s s a g e of C a ' - and a l u m i n a t e ions i n t o s o l u t i o n . The

S E M r e s u l t s (Figs. 3 a n d 4) c o n f i r m t h a t such a layer is formed. H o w e v e r , m i s f i t b e t w e e n C ~ A a n d h e x a g o n a l h y d r a t e s as r e g a r d s i n t e r a t o m i c d i s t a n c e s a n d - h a b i t s w i l l m a k e it d i f f i c u l t to o b t a i n a fit o n an a t o m i c scale, and s o m e s p a c e w i l l e x i s t b e t w e e n the

C ~ A and the h y d r a t e c r y s t a l s . S o m e r e t a r d a t i o n m e c h a n i s m s

c ~ m p a t i b l e w i t h t h e e x i s t a n c e of such a s p a c e w i l l b e d i s c u s s e d in a later p a p e r (18).

The e x i s t e n c e of the s e c o n d h e a t e v o l u t i o n p e a k is g e n e r a l l y

a t t r i b u t e d t o r e c r y s t a l l i z a t l o n of this layer. T h e e f f e c t of

a l k a l i in p r e v e n t i n g the v e r y e a r l y o c c u r e n c e of this p e a k can be a t t r i b u t e d t o r e t a r d a t i o n of the h y d r a t i o n of the C ~ A w h i c h c o u l d

be e x p e c t e d t o c a u s e a m o r e c o n t r o l l e d g r o w t h of C3~d{ 6 nuclei.

The f a c t t h a t the a m o u n t of C 3 A H ~ f o r m e d in the f i r s t 10 m i n u t e s d o e s not d e p e n d o n N a O H c o n c e n t r a t i o n i n d i c a t e s t h a t the

n u c l e a t i o n of C 3 A H ~ is not m a r k e d l y a f f e c t e d by t h e t y p e of

a l u m i n a t e ion p r e s e n t in t h e solution. The e a r l i e r a p p e a r a n c e of

the s e c o n d p e a k at h i g h a l k a l i c o n c e n t r a t i o n m i g h t b e c a u s e d b y c h a n g e s in t h e n u c l e u s g r o w t h r a t e of C ~ A due to h i g h e r a l u m i n a t e

c o n c e n t r a t i o n s . H o w e v e r , the s e c o n d p e a k does not o c c u r s o o n e r

w h e n NaAI(OH).- is a d d e d i n i t l a l l y (Fig. 5); t h e r e f o r e t h e e a r l i e r

o c c u r e n c e of ~ h e s e c o n d p e a k is a t t r i b u t e d to c h a n g e s in the r a t e at w h i c h A I ( O H ) 4 p a s s e s into s o l u t i o n f r o m t h e h e x a g o n a l h y d r a t e s .

(7)

270 Vol. 6, No. 2

•0.0@

To 0~06 . $ . , r , , ,

8

o.o~ -g o LIJ .,., 002

-r

G. A. C. M. Spierings, H. N. Stein I I I C3A I \ - - - N0.05C2.95 A I \ -o.-o- N C A \ 0.15 2.85 % I ~ - x - x - N0.25C2.75 A

t .

1 2 3 Time (h) FIG. 6 H e a t e v o l u t i o n r a t e s for p a s t e s of w a t e r and

NxC3_xA p r e p a r a t i o n s

A t , - - ~" 0.0 8 r~ t u trl 0.06 (M

g

0.0~ >, .,_. 0.02: - r I I N0~ 5 C2.95A + N0.15 C2 85 A .... ~005C2 95 A + N02~275A \

"-\

I 1 I 1 2 3 T,me (h) FIG. 7 H e a t e v o l u t i o n r a t e s for p a s t e s of w a t e r a n d m i x t u r e s of N x C 3 _ x A p a s t e s H y d r a t i o n . o f x N a 2 0 . ( 3 - x ) C a O . A l 2 ~ 3 S o l i d S o l u t i o n s Figs. 6 a n d 7 g i v e h e a t e v o l u t i o n c u r v e s for s e v e r a l p r e p a r a t i o n s and m i x t u r e s t h e r e o f . A s w i t h h y d r a t i o n of C ~ A in N a O H s o l u t i o n s , N a T O c a u s e s t h e f i r s t p e a k t o o c c u r l a t e r £ h o u g h no i n c r e a s e in t h e - e f f e c t w i t h N a 2 0 c o n t e n t w a s o b s e r v e d b e y o n d x = 0.05 d e s p i t e t h e v a r i a t i o n s in c r y s t a l s t r u c t u r e . M o r i et al. (6) f o u n d a s i m i l a r e f f e c t . T h e s e c o n d p e a k o c c u r r e d s o o n e r at h i g h N a 2 0 c o n t e n t s . X - r a y r e s u l t s (Table III) s h o w e d t h a t C ~ A H R w a s f o r m e d i n i t i a l l y . T h e a m o u n t d e c r e a s e d a f t e r t h e s ~ c o ~ d p e a k and n o n e w a s f o u n d a f t e r 48 h. A S E M (Fig. 8) of a p r e p a r a t i o n w i t h x = 0.25 h y d r a t e d for 50 m i n u t e s s h o w e d p a r t i c l e s c o a t e d w i t h t y p i c a l h e x a g o n a l p l a t e s . W h e n t h e s e N a 2 0 - c o n t a i n i n g p h a s e s h y d r a t e a l k a l i h y d r o x i d e a c c u m u l a t e s in t h e s o l u t i o n . T h e c o n c e n t r a t i o n d e p e n d s on x, the t i m e or d e g r e e _ o f h y d r a t i o n , a n d t h e a m o u n t of w a t e r left. A t w / s = I t h e OH c o n c e n t r a t i o n c o u l d e a s i l y r e a c h 0.5-I M; for e x a m p l e , if in a p a s t e of N^ ~.C~ ~5 A t h a t is 33% h y d r a t e d , a n d a s s u m i n g no c h a n g e in v o l u m ~ ' 6 ~ ~ l i q u i d p h a s e , t h e O H - c o n c e n t r a t i o n is a b o u t IM. T h e a l k a l i w i l l h a v e s i m i l a r e f f e c t s to t h o s e f o u n d o n h y d r a t i o n of p u r e C 3 A in N a O H s o l u t i o n s b u t the s i t u a t i o n is m o r e c o m p l e x b e c a u s e t h e a l k a l i h y d r o x i d e c o n c e n t r a t i o n in s o l u t i o n v a r i e s w i t h time. T h e f a c t t h a t t h e m i x t u r e of p r e p a r a t i o n s w i t h x = 0.05 a n d x = 0.25 b e h a v e s in m u c h t h e s a m e w a y as t h e p r e p a r a t i o n w i t h x =

(8)

T A B L E III X - r a y D a t a o n P a s t e H y d r a t i o n of N 0 . 2 5 C 2 . 7 5 A~

H y d r a t i o n

C3A C2AH

8 C3AH

6

t i m e (h) 0.83 vs m m 2.50 s w s 48 s - vs I C 4 A H x w a s not found. FIG. 8 SEM of N 0 . 2 5 C 2 . 7 5 A h y d r a t e d for 50 min. in wa~_r~=

0.15 i n d i c a t e s t h a t the e f f e c t s are d e t e r m i n e d by the a l k a l i h y d r o x i d e c o n c e n t r a t i o n in s o l u t i o n and not by any p a r t i c u l a r

p r o p e r t y of the s o l i d phase; this is c o n s i s t e n t w i t h the e a r l i e r

s t a t e m e n t s about the s e c o n d peak. A c k n o w l e d g e m e n t

One of the a u t h o r s (G.A.C.M. Spierings) g r a t e f u l l y a c k n o w l e d g e s f i n a n c i a l s u p p o r t g r a n t e d by the "ENCI J u b i l e u m f o n d s " .

R e f e r e n c es

I. L.E. C o p e l a n d and D.L. K a n t r o in H.F.W. Taylor, The C h e m i s t r y of Cements, Vol. I, p. 315, 333. A c a d e m i c Press, L o n d o n and New Y o r k (I 956) .

2. W.J. M c C o y and O.L. E s h e n o u r , Proc. 5th. Int. Symp. Chem. C e m e n t , Tokyo, 1968, Vol. II, p. 347.

3. M. R e g o u r d and A. G u i n i e r , Proc. 6th. Int. Symp. Chem. C e m e n t , M o s c o w , 1974 ( P r i n c i p a l Paper) .

4. I. Maki, Cem. Concr. Res., 3, 295 (1973). 5. F.T. V ~ z q u e s , Ion, 31, 372 (1971).

6. H. Mori, G. Sudoh, K. M i n i g i s h i and T. Ohta, Rev. 25th. Gen. M e e t i n g , Cem. Asoc. Japan, 1972, p. 52.

7. K. M u r a k a m i , T. H i r o b u m i and Y. Nakura, Chem. and Ind., 1968,

p. 1 769.

8. V.R. R y a z i n , Yu.S. M a l i n i n and K.G. K o l e n o v a , T s e m e n t , 1972, p. 20.

(9)

272 Vol. 6, No. 2 G. A. C. M. S p i e r i n g s , H. N. Stein

9. T.A. K h r y z h a n o v s k a y a , V.M. M i r a k ' y a n , B.G. S h o k o t o v a and A.G. Kholodnyi, Tsement, 3__!I, 10 (1965).

10. E.E. Pressler, S. B r u n a u e r and D.L. Kantro, Anal. Chem. 288, 894 (1956).

11. W.A. Corstanje, H.N. S t e i n and J.M. Stevels, Cem. Concr. Res., 3, 791 (1973).

12. H.N. Stein, J. Appl. Chem. (London), 11, 474 (1961) .

13. J.G.M. de Jong, H.N. S t e i n and J.M. Stevels, J. Appl. Chem.

(London) , 1 8 9 (1968) o

14. J. Slanina, P. Vermeer, G. Mook, H.E.R. R e i n d e r s and J. A g t e r d e n b o s , Z. Anal. Chem., 260, 354 (1972).

15. C.C. Swasey, Tappi, 53, 1692 (1970).

16. A°S. Berger, N.P. K o t s u p a l o and V.A. P u s h n y a k o v a , Proc. 6th. Int. Symp. Chem. Cement, Moscow, 1974, S e c t i o n III,

s u p l e m e n t a r y p a p e r III-4.

17. F.E. Jones, J. Phys. Chem., 48, 379 (1944).

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of