• No results found

Kinetic Analysis of the Thermal Processing of Silica and Organosilica

N/A
N/A
Protected

Academic year: 2021

Share "Kinetic Analysis of the Thermal Processing of Silica and Organosilica"

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

S1

Supplementary information for:

Kinetic analysis of the thermal processing of

silica and organosilica

Emiel J. Kappert, Henny J.M. Bouwmeester, Nieck E. Benes*, Arian Nijmeijer

1 Overview of all recorded MS-data

These figures give the full overview of the MS-data, of which a selection is given in the main article figures 1-4. In the main article, the following m/z-ratios were assigned to specific compounds (where ‘sim’ indicates ‘recorded simultaneous with’ and [O2] and [N2] implies that signal may be masked by O2 or N2 from atmosphere): 2 to hydrogen, 16 to oxygen (sim 32, [O2]), 17 to water (sim 18, 19), 26 to acetylene (sim 25), 30 to NOx (or, when sim 46 for NO2), 31 to ethanol (sim 45, 46), 41 to unknown, 42 to C2H4O, 43 to acetaldehyde (when sim 29 and 44), 44 to C2H4O (when sim with 41, 42, 43, acetylene and/or 29 [N2]) or to carbon dioxide (when sim with 12 or 28 [N2]).

(2)

S2 Figure S1: Overview of all recorded MS-signals for silica under nitrogen, the numbers in the legend denote the m/z-signal.

0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 17 19 18 2 Ion cur rent ( a. u. ) 0 250 500 750 1000 1E-12 1E-11 12 44 0 250 500 750 1000 5E-12 1E-11 15 0 250 500 750 1000 1E-12 1E-11 1E-10 30 31 43 45 46 Ion cur rent ( a. u. ) Temperature (°C) 0 500 1000 5E-13 1E-12 1.5E-12 2E-12 25 26 42 Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 16 32 Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 1E-8 14 28 29 40 Ion cur rent ( a. u. ) Temperature (°C) 0 250 500 750 1000 1E-12 13 41 Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)

(3)

S3 Figure S2: Overview of all recorded MS-signals for silica under air, the numbers in the legend denote the m/z-signal.

0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 2 17 18 19 Ion cur rent ( a. u. ) 0 250 500 750 1000 1E-12 1E-11 12 44 0 250 500 750 1000 1E-12 1E-11 1E-10 13 15 0 250 500 750 1000 1E-12 26 31 43 45 Ion cur rent ( a. u. ) Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 30 46 Temperature (°C) 0 250 500 750 1000 1E-9 32 16 Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 1E-8 14 28 29 40 Ion cur rent ( a. u. ) Temperature (°C) 0 250 500 750 1000 1E-12 25 41 42 Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)

(4)

S4 Figure S3: Overview of all recorded MS-signals for BTESE under nitrogen, the numbers in the legend denote the m/z-signal.

0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 17 18 19 32 Ion cur rent ( ar b. uni t.) 0 250 500 750 1000 1E-12 1E-11 44 0 250 500 750 1000 1E-12 1E-11 1E-10 2 12 13 15 16 0 250 500 750 1000 1E-12 1E-11 25 26 42 Ion cur rent ( ar b. uni t.) Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 30 44 46 Temperature (°C) 0 250 500 750 1000 1E-13 1E-12 31 41 43 45 Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 1E-8 14 28 29 40 Ion cur rent ( ar b. uni t.) Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)

(5)

S5 Figure S4: Overview of all recorded MS-signals for BTESE under air, the numbers in the legend denote the m/z-signal.

0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 17 18 19 Ion cur rent ( a. u. ) 0 250 500 750 1000 1E-12 1E-11 1E-10 12 44 45 0 250 500 750 1000 1E-12 1E-11 2 13 15 0 250 500 750 1000 1E-12 1E-11 25 26 Ion cur rent ( a. u. ) Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 30 46 Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 31 41 42 43 Temperature (°C) 0 250 500 750 1000 1E-10 1.5E-10 2E-10 29 Ion cur rent ( a. u. ) Temperature (°C) 0 250 500 750 1000 1E-12 1E-11 1E-10 1E-9 1E-8 14 16 28 32 40 Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)

(6)

S6

2 Mass loss data

These figures give the mass loss data and the corresponding conversion curves for silica and organosilica under N2 and air for all heating rates.

Figure S5: TGA-graphs for the thermal treatment of silica under N2 at heating rates β of 5, 10, 15, and 20 °C min-1. 0 250 500 750 1000 80 90 100  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1 R e la tive ma ss (% ) Temperature (°C)

(7)

S7 Figure S6: Conversion of the mass loss of silica under N2 at heating rates β of 5, 10, 15, and 20 °C min-1. 0 250 500 750 1000 0.0 0.5 1.0  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1

C

o

n

ve

rsi

o

n

(-)

Temperature (°C)

(8)

S8 Figure S7: TGA-graphs for the thermal treatment of silica under air at heating rates β of 5, 10, 15, and 20 °C min-1. 0 250 500 750 1000 80 90 100  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1

R

e

la

tive

ma

ss

(%

)

Temperature (°C)

(9)

S9 Figure S8: Conversion of the mass loss of silica under air at heating rates β of 5, 10, 15, and 20 °C min-1. 0 250 500 750 1000 0.0 0.5 1.0  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1

C

o

n

ve

rsi

o

n

(-)

Temperature (°C)

(10)

S10 Figure S9: TGA-graphs for the thermal treatment of organosilica under N2 at heating rates β of 5, 10, 15, and 20 °C min-1.

0 250 500 750 1000 90 100  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1

R

e

la

tive

ma

ss

(%

)

Temperature (°C)

(11)

S11 Figure S10: Conversion of the mass loss of organosilica under N2 at heating rates β of 5, 10, 15, and 20 °C min-1. 0 250 500 750 1000 0.0 0.5 1.0  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1

C

o

n

ve

rsi

o

n

(-)

Temperature (°C)

(12)

S12 Figure S11: TGA-graphs for the thermal treatment of organosilica under air at heating rates β of 5, 10, 15, and 20 °C min-1.

0 250 500 750 1000 80 90 100  = 5 °C min-1  = 10 °C min-1  = 15 °C min-1  = 20 °C min-1

Relative

ma

ss (%)

Temperature (°C)

(13)

S13 Figure S12: Conversion of the mass loss of organosilica under air at heating rates β of 5, 10, 15, and 20 °C min-1. 0 250 500 750 1000 0.0 0.5 1.0

 = 5 °C min

-1

 = 10 °C min

-1

 = 15 °C min

-1

 = 20 °C min

-1

Conve

rsion

(-)

Temperature (°C)

unexpected acceleration

(14)

S14

3 Activation energy from isoconversional analysis

This figure shows the full data of figure 5b in the manuscript (see the explanation in the manuscript).

Figure S13: Apparent activation energy for calcination of silica (a) and organosilica (b) under nitrogen (●) and air (□). See Figure 5 in the paper.

0.0

0.2

0.4

0.6

0.8

1.0

0

100

200

300

400

500

Organosilica, N

2

Organosilica, air

Appa

re

nt

activa

tion

en

er

gy (

kJ mo

l

-1

)

Alpha (-)

scatter because of low weight loss rate

Referenties

GERELATEERDE DOCUMENTEN

Een biologische veehouder moet door het leveren van gezond voedsel met zijn bedrijf binnen de regels voor biologische veehouderij de kost verdienen met gezonde dieren die lang

Als zowel de directe omgeving (ouderlijk huis: gebruik auto of fiets) als de meer indirecte omgeving (buurt, vriendenkring e.d.) van het opgroeiende kind in de

A comparable pattern was observed in a case study in which a young female candidate driver was observed during driver training and also a few months after she had

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

On minimal two-letter propositional logic with disjunction Citation for published version (APA):.. Bruijn,

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

0 transition of formaldehyde with the ABO set indicates that this molecule belongs to the so-called resonance case; this means that an excited state level couples with so few levels

It start with religion as sacred text and film, moving to the value of film for religious education, followed by a focus on how the act of watching film creates an opportunity