• No results found

Effect of chlorine on performance of Pd catalysts prepared via colloidal immobilization

N/A
N/A
Protected

Academic year: 2021

Share "Effect of chlorine on performance of Pd catalysts prepared via colloidal immobilization"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Catalysis

Today

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Effect

of

chlorine

on

performance

of

Pd

catalysts

prepared

via

colloidal

immobilization

Yingnan

Zhao

a,c

,

Wanwei

Liang

a

,

Yongdan

Li

b

,

Leon

Lefferts

a,∗

aCatalyticProcessesandMaterials,FacultyofScienceandTechnology,MESA+InstituteforNanotechnology,UniversityofTwente,Enschede,7500AE,

TheNetherlands

bSchoolofChemicalEngineering,TianjinUniversity,Tianjin,300072,China

cDepartmentofBiotechnologyandChemicalTechnology,SchoolofChemicalTechnology,AaltoUniversity,P.O.Box16100,00076Aalto,Finland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8November2016 Receivedinrevisedform 28December2016 Accepted17January2017 Availableonline22January2017 Keywords: Pdcatalysts Nitritehydrogenation Chlorine Colloid Selectivity

a

b

s

t

r

a

c

t

ThiscontributionshowstheeffectofresidualchlorineonthecatalyticperformanceofaPd-basedcatalyst

inthehydrogenationofnitriteforcleaningofdrinkingwater.Thecatalystwaspreparedvia

immobiliza-tionacolloidalPdnanoparticlesusingactivatedcarbonassupport.Differentamountofhydrochloric

acid(HCl)wasaddedtoimmobilizethePdcolloidonthecarbonsupport,facilitatingtheremovalof

theresidualstabilizer,polyvinylalcohol(PVA),fromthesurfaceofthePdnanoparticles(NPs).The

cat-alystswerecharacterizedbyTEM,CO-chemisorption,XRF,N2physisorption,UV–visspectroscopy,and

XPS.Theactivityandselectivityofthecatalystsweremeasuredfornitritehydrogenationinsemi-batch

operation.TheresultsshowthatPVAcanberemovedcompletelyatpHbelow2.Theresidualchlorine

onthecatalystscanberemovedbyreductioninH2/N2atamildtemperature,i.e.200◦C,regardlessthe

amountofHClused.Nevertheless,highconcentrationofHClduringimmobilization(pH1)causes

par-tialPdre-dissolutionaccordingtoUV–visspectroscopy,resultinginformationofhighlydispersedPd

clustersthatcouldnotbedetectedwithTEM.Reductionofthiscatalystwithhighchlorinecontentin

H2at200◦CisresultinginformationofrelativelylargePdparticlesviasintering.Withoutpre-reduction

at200◦C,residualchlorinecanalsoberemovedalmostcompletelyduringthehydrogenationreaction

atroomtemperature.TheactivityofthePdcatalystisinsensitivetothechlorineconcentrationbelow

30␮molL−1intheaqueousreactionmixture.Interestingly,theselectivitytoN2isimprovedbyadding

chlorinetothereactionmixture,independentofthewaychlorineisadded,i.e.viathecatalystoradded

directlytothereactionsolution.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Nitrateandnitritecontaminationingroundwaterhasbecome arisingriskforsupplyingofdrinkingwater,especiallyin agricul-turalareaswheresyntheticnitrogenfertilizersareextensivelyused [1–3].Catalytichydrogenationofnitrate/nitrite(Eqs.(1)–(3))using Pd-basedcatalystshasbeendevelopedsincethelate1980s,asa highlyefficientmethodoperatedundermildconditions(typically around25◦Candambientpressure)[4,5].Thismethodprevents formationofanycontaminatingbrinesasinion-exchange

proce-∗ Correspondingauthor.

E-mailaddress:l.lefferts@utwente.nl(L.Lefferts).

dures,andisabletoconvertnitrateandnitriteinwaterlackingany organiccontamination,asisrequiredforbiologicaltreatment[6,7]. 2NO3-+2H2 Pd-Cu −−−−→ 2NO2+2H2O (1) 2NO2-+3H2+2H+ Pd −→ N2+4H2O (2) NO2-+3H2+2H+ Pd −→ NH4++2H2O (3)

Colloidalmethodhasbeendevelopedextensivelyfor prepara-tionofmetalnanoparticles(NPs)forcatalytic applicationinthe lastfewdecades[8,9].Theadvantageofthemethodiswell-known: thesizesoftheNPscanbewellcontrolledandmanipulated, facil-itatingstudiesonstructure-performancerelationships.Advanced methodsallowformationofNPswithwell-definedshapes, offer-inginterestingopportunitiesonevenmoredetailedstudiesonthe influenceofsurfacestructureoncatalysis[10,11].

http://dx.doi.org/10.1016/j.cattod.2017.01.028

(2)

Pdbasedcatalystsfornitrate/nitritehydrogenationhavebeen studiedusingcolloidpreparationmethods[11–16],reportingthat therateofnitritehydrogenationisindependentonPdparticlesize [14,17,18].Nevertheless,itisalsowellreportedthatresidual sta-bilizers,suchaspolyvinylalcohol(PVA)andpolyvinylpyrrolidone (PVP),can blockpartoftheactivesitesby coveringthe major-ityofthemetalsurface[14,19–22].Stabilizersandcappingagents canalsomanipulateadsorbedreactivespeciesonmetalsurface, influencingtheactivityaswellastheselectivityofPdcatalysts [14,22–25].Asaresult,itisgenerallypreferredtoremovethe resid-ualstabilizersonmetalsurface.

Removal of the residual stabilizers is challenging, normally includingoxidationandthermaltreatment,makingitdifficultto maintainparticlesizeandcrystalstructureoftheNPs,andstill,the removalcanbeincomplete[26–30].Inourpreviouswork[13],the Pdcolloidwasimmobilizedonactivated-carbon(AC)inaqueous HClsolutionatpH2.ItwasobservedthatPVAcouldbecompletely removedfromthePdsurface,accordingtoTEMandCO chemisorp-tionresults.ItwasproposedthatextensivechemisorptionofClon thePdsurface,promotedbythepresenceofO2accordingto

reac-tionsinEqs.(4)and(5),isweakeningtheinteractionbetweenPVA andtheNPs[13].

2Pd+O2→2PdO

G=−186.82kJ (4)

PdO+2Cl−+2H+PdCl2+H2O(l)

G=−41.38kJ (5)

AfterthePVA removal,thecatalystswerereduced mildlyin H2/N2 atmosphere at 200◦C, in order to reduce PdCl2 to Pd0,

removingchlorinefromthePdsurface.Ontheotherhand, chlo-rineremovalisnotcompleteandasmallbutsignificantamountof chlorineremainsoncatalystsupporti.e.activatedcarbon.

ThiscontributionaimsatoptimizationoftheHClconcentration duringimmobilizationofPd-PVAcolloidonactivatedcarbon.The effectofresidualchlorineinfluencingtheactivityandtheselectivity innitritehydrogenationwillalsobeshown.

2. Experimental

2.1. Chemicals

Sodium tetrachloropalladate(II) (Na2PdCl4≥99.995% (metal

basis)), polyvinyl alcohol (PVA, average MW=13000–23000, 87%–89% hydrolyzed), sodium borohydride (NaBH4,≥96%

(gas-volumetric)),andformic acid(98%–100%)werepurchasedfrom Sigma-Aldrich.Sodiumnitrite(>99%)waspurchasedfromMerck. Activatedcarbon(AC,SBET=1000m2g−1)wassuppliedbyNorit.

ACwassievedintherangeof38–45␮mindiameterbeforeused ascatalystsupport.Alltheaqueoussolutionswerepreparedusing ultrapurifiedwaterobtained(Millipore,Synergy).

2.2. Pdcolloidpreparation

Thepreparationofpalladiumnanoparticlesviacolloidalmethod hasbeendescribedpreviously,whichcanbesummarizedasfollows [13].PVAwasdissolvedinwaterat70◦Cwithstirringforatleast2h. Thesolution(2wt%)wasthencooleddowntoroomtemperature. AqueoussolutionofNa2PdCl4(20mL,containing0.086mmolPd)

and1.76mLoffreshlypreparedPVAsolutionwereaddedto240mL water,obtainingayellow-brownsolution.After3min,NaBH4

solu-tion(1.72mL,0.172mmol)wasaddedundervigorousstirring.The

brownPdcolloidsolutionwasimmediatelyformed.ThefinalpH wastypically8–8.5.

2.3. Colloidimmobilization

Typically,0.75gACorgraphitewasaddedtothePdcolloid solu-tion (260mL,3.3×10−4molL−1)immediatelyafterpreparation. Hydrochloricacid(HCl)wasaddedtoadjustpHtoeither1,2or 3.Theslurrywasstirredinairwithamechanical6-blade-stirrer (␾44mm,1000rpm)withthepropellerpositionedatthecentreof liquidfor2hatroomtemperature,filteredandthoroughlywashed withwater.Afterthat,thecatalystsweredriedinvacuumat40◦C overnight.

2.4. Catalystreduction

Catalystspreparedasdescribedabovewerecarefullytreatedin atubefurnace.Inatypicalprocedure,thetemperaturewasraised to200◦Catarateof5◦Cmin−1,thenkeptfor1hat200◦C,in10 vol%H2/90vol%N2.ThenthesamplewasflushedinN2for30min

at200◦C,andcooleddownatarateof20◦Cmin−1toroom temper-atureinthesameatmosphere.ThecatalystswereflushedinN2for

24hbeforeexposuretoair.Inthefollowing,thesamplenotation willbeusedasshowninTable1.

2.5. Characterization

PdparticlesizedistributionwasdeterminedusingTEM(Philips CM300ST-FEG)allowingreliabledetectionofmetalnanoparticles of1nmandlageronAC.TheACsupportedcatalystswerefirstly groundintosub-micronfragmentsanddispersedinethanol.Then thesuspensionwasdroppedonacoppergridcoveredwithhollow carbonforTEMimagetaking.Atleastfiveofthesefragmentswere randomlyselectedfordeterminationofPdparticlesizes,and typi-cally300Pdparticlesweremeasured.Notethatinformationonthe spatialdistributionofnanoparticlesthroughthesupportcannotbe obtainedasthesampleswereground.Themetalloadingonthe sup-portswereanalyzedbyXRF.Thetotalsurfaceareaofsampleswere calculatedbasedonN2physisorptiondata,usingtheBETmethod

forp/p0valuesbetween0.03and0.13forcatalystspreparedwith

ACfollowingtherecommendationsofRouqueroletal.[31],witha typicalerrormarginof5%.

Re-dissolutionofPdbyHClwasmeasuredwithUV–vis spec-troscopyofthecolloidalsuspensioninaUV-spectrometer(Perkin Elmer Lambda 850, wavelength from 200 to 800nm, scanning speed266.75nmmin−1)atroomtemperature.ThepHoffreshly prepared unsupportedPd-PVA colloidsuspension wasadjusted to 1, 2 and 3 by adding HCl solution,followed by stirring the suspensioninairatmospherefor2h.Then500␮Lofthetreated suspensionwasintroducedinaquartzcell(QS1000)forperforming themeasurement.

COchemisorptionatroomtemperaturewasusedtodetermine themetalsurfaceareathatis accessibleingasphase.Typically, thesample waspre-reducedat roomtemperature in hydrogen and thenflushed inHeat thesametemperature.ThenCO was Table1

Samplenotationsanddetailsofcorrespondingpreparationprocedure.

Sample PreparationProcedure

PdAC1A Pd-PVAcolloidimmobilizedonACusingHCltoadjustpHto1 PdAC2A Pd-PVAcolloidimmobilizedonACusingHCltoadjustpHto2 PdAC3A Pd-PVAcolloidimmobilizedonACusingHCltoadjustpHto3 PdAC1R PdAC1AreducedinH2/N2at200◦C

PdAC2R PdAC2AreducedinH2/N2at200◦C

(3)

introducedaspulsesandtheresponsewasrecordedusingaTCD detector.Weassumedthatthestoichiometricratioofnumberof adsorbedCOmoleculesandnumberofaccessiblePdsurfaceatoms is1:1.ThePddispersion(Pddisp.)wasdefinedas

Pddisp.=numbernumberofPdatomsofPdatomsinthesurfaceintotalofNPs (6) The surface composition of the catalysts was analyzed by X-ray photoelectron spectroscopy (XPS, Quantera SXM, Al K␣ (1486.6eV)). The powder samples were stored in air without anyfurtherpretreatmentbeforeanalysis.Typically,afew micro-gram sample was pressed into an indium foil, and four spots (600×300␮m2)onthesamplewererandomlyselectedfor

mea-surementstoaverageoutanyinhomogeneityinthecatalysts.The accuracyof theresultingpeak positionswaswithin 0.2eV.The spectrawerefittedusingthesoftware“Multipakv.9.4.0.7”. Typi-cally,thebindingenergyinallspectrawasfirstcalibratedusing thecarbon1speakat284.8eVasaninternalreference.The spec-tradetectedatfourspotsofonesamplewereaveragedinorder toimprovethesignal-to-noiseratio,followedwithShirley back-groundsubtraction.ThePdpeakswerefittedusinganasymmetric model,necessarybecauseofinteractionofthephotoelectronswith thevalencebandelectrons[32],whereastheSandClpeakswere fittedusing mixed Gaussian-Lorentzianmodel, assuggested by HandbookofX-rayPhotoelectronSpectroscopy[33].Thepeaksfor eachsample(Pd5d,Cl2pandS2p)werefittedwithsetsofdoublets withidenticalFHWM.Bothwidthandpeakpositionwereallowed tooptimize.Thedistancewithinthedoubletswasfixed,according tothedatasuggestedinthehandbook[33].

2.6. Nitritehydrogenation

Thereactionwasperformedinahome-buildapparatus includ-ingaglasstankreactor(␾98mmwithfour5mmbaffles),equipped withamechanical6-blade-stirrer(␾44mm,1000rpm)withthe propellerpositionedatthecentreofliquid.Typically,50mg cat-alystwasaddedto300mLH2O.Themixedsuspensionwasthen

stirredvigorously,whileaH2/He/CO2gasmixturewasintroduced

viaadippedpipe(H2/He/CO2=6/3/1byvolumeflowrate,totalflow

rate=100mLmin−1,totalpressure=1bar)foratleast1h.CO2was

usedasabufferaccordingtoreactionshowninEqs.(7)and(8)to partlycompensatefortheprotonsconsumedbynitrite hydrogena-tion.

CO2+H2O→HCO3−+H+ (7)

Table2

SummaryofXRFelementalanalysis,TEMandCOchemisorption.

Sample CCl(wt%)a dTEM(nm) Pddisp.(%)

CO chemisorptionb TEMc PdAC1A 1.1 3.0±1.2 12±3 30 Pd AC 2 A 0.8 2.8±0.9 12±2 32 Pd AC3A 0.6 3.1±1.2 8±2 29 PdAC1R n.d.d 4.1±1.1 32±5 22 PdAC2R n.d. 3.0±1.0 30±4 30 PdAC3R n.d. 3.2±1.2 18±4 28

aChlorinecontentinthecatalystsaccordingtoXRF.

bCOchemisorptioningasphase.ThesamplesreducedinH

2flowfor1hat

21±1◦C.

c EstimatedassumingcleansphericalPdNPs.

d ThecontentisunderXRFdetectivelimitation(<0.05wt%).

HCO3−+H2O→CO32−+H+ (8)

Then3mL4.2mmolL−1NaNO2solutionwasintroduced,

start-ingthereaction.Samplesof1mLweretakenwithasyringeevery 5min.Catalystswereremovedusingasyringefilter(PTFE,0.2␮m) beforeinjecting intoion chromatograph(DIONEX,ICS 1000)to determinethecontentofnitriteandammonium.

3. Results

3.1. Elementalanalysisandphysicalproperties

XRFresultsin Table2shows thatthechlorineconcentration decreased with increasing pH (less HCl used) for as-prepared catalysts. Chlorine content was below the XRF detection limit (<0.05wt%)afterreductioninH2/N2at200◦C.ThePdcontentof

allcatalystswas1.2±0.1wt%.

TEMresultsinTable2andFig.1andS-1showPdparticlesizes ofabout3nmonaverageinallcatalysts,exceptforPdAC1Rwith 4nmaveragedparticlesize,preparedusingthehighestHCl con-centrationandreducedat200◦C.

COchemisorptionwasusedtodeterminetheaccessibilityof Pdsurfaceingasphase.AsshowninTable2,theapparent disper-sionswereaslowas10%forallas-preparedcatalysts.Notethatthe sampleswerefirstreducedinH2flowatroomtemperaturebefore

CO waschemisorbed fromgas phase. Afterreduction in H2/N2

at 200◦C, the apparent dispersion was significantly increased, agreeingwithourpreviousobservations[13].Nevertheless,the

(4)

200

250

300

350

400

450

500

278

236

222

Absorbance (a. u.)

Wavelength (nm)

pH =

1

pH =

2

pH =

3

As-prepared (pH = 8.3)

207

Fig.2.UV–visspectraofunsupportedPd-PVAcolloidsuspensionafterstirringinair for2hatdifferentpHadjustedwithHCl.Theabsorptionpeaksat207nmand236nm canbeattributedto[PdCl3(H2O)]−andpeaksat222nmand278nmto[PdCl4]2−

[34,35].Notethereisnoactivatedcarbonsupportaddedinthecolloidsuspension.

Table3

XPSresultsofPdandCloxidation-statesandsurfaceconcentration.

Sample Pd2+/Pd Cl(Pd)/Cla Cl(Pd)/Pd2+ PdAC1A 0.38 0.75±0.04 1.7 PdAC2A 0.38 0.79±0.05 1.8 PdAC3A 0.07 0.72±0.04 3.0 Pd AC 1R 0.12 0.37±0.11 2.1 PdAC2R 0.03 0.43±0.12 3.1 PdAC3R 0.03 0.36±0.11 1.7

aCl(Pd)standsforchlorinebondedonPdsurface.

persionofthecatalystpreparedwithpH3wasonly18%afterthe reduction,muchlowerascomparedwithcatalystspreparedwith pH1and2(about30%).

FigureS-2showsthatPVAisblockingmicro-poresexclusively inallcatalysts,withoutinfluencingmeso-poreswherethePdNPs aremostprobablylocated,agreeingwiththepreviousstudy[13]. 3.2. UV–visspectroscopy

Fig.2showspartialre-dissolutionofPdforunsupportedPd-PVA colloidstirredinairatdifferentpHcontrolledbyHClconcentration. NoPd-Clcomplexwasdetectedinas-preparedcolloidsuspension, indicatingnoPd-containingionsexistrightaftercolloid prepara-tion.Afterstirringinairfor2h,[PdCl3(H2O)]−(207nmand236nm)

wastheonlydetectedPd-Clcomplexinthecolloidsuspensionat lowHClconcentration(pH3).Incontrast,[PdCl4]2−(278nm)is

detectedinthesuspensionatpH2,becomingthemajorityPd-Cl complex(222nmand278nm)whenthepHwasfurtherdecreased to1byaddingmoreHCl.

3.3. XPS

XPSresultsaresummarizedinTable3,andtypicalspectraare shown in Fig.3 and Figure S-3 in SupportingInformation.The resultsagreewithpreviousobservationsingeneral:thesurfaceof PdNPswasoxidizedbyformationofPdCl2; reductioninH2/N2

at200◦C reducesPd2+toPd0,while removingchlorine[13].In

addition,theresultsshowthattheseeffectdependontheHCl con-centration:whileonly7%Pdisoxidizedintheas-preparedcatalyst preparedwithlowHClconcentration(pH3),muchhighervalues areobserved(upto38%)forcatalystspreparedwithlowerpH.Itis

alsoshownthatashighas12%Pdisoxidizedincatalystprepared withpH1afterreductioninH2/N2at200◦C.

Ontheotherhand,twotypesofchlorineweredetectedwith formalchargeCl−,asshowninFig.3andTable3,whichcanbe attributedtoClbondedtoPd(ca.198eV)andClinorganic com-poundspresumablypresentonAC(ca.200eV),respectively[36]. Theamountsofbothtypesofchlorinedecreasedsignificantlyafter reduction at 200◦C in H2/N2, whereasthe signalofchlorine in

organiccompoundsdecreasedtolesserextentascomparedto chlo-rineonPd.Furthermore,themolarratioofCl(Pd)/Pd2+wasinthe

rangeof2–3forallsamples,bothbeforeandafterreduction.

3.4. Nitritehydrogenation

Fig.4(a)and(b)presentconcentrationsofnitriteand ammo-nium as function of time. The initial rate per total Pd can be estimatedusingthePdloadingasdeterminedbyXRFinTable1,as showninFig.4(c).Alternatively,Fig.4(d)showstheinitialrateper surfacePd,wheretheamountofsurfacePdwasdeterminedbyXRF resultstogetherwithCOchemisorptionresultsinTable2.Inboth cases,thereactionrateshowednosignificantchangewithvariation ofthepHduringcolloidimmobilizationforas-preparedPd-PVA/AC catalystsinFig.4(d).Forthereducedcatalysts,anincreaseof reac-tionratewasobservedwithincreasingthepH-value.Additionally, ammoniumformationcontinuedafternitritewasconverted com-pletely.Thiswasexplainedinpreviousworkbythepresenceof residual N-containing species on Pd surface, probably nitrogen atoms,reactingveryslowlywithhydrogenatclose-to-complete conversionlevel[15].Consequently,theselectivityofthecatalysts toammoniumcanonlybecomparedatconversionlevelsbelow 100%.

Fig. 5 shows that selectivity to ammonium decreased with increasingpHduringcolloidimmobilization,forbothas-prepared andreducedcatalysts.Thereductiontreatmentat200◦CinH2/N2

resultedinhigherselectivitytoammonium,regardlesstheamount ofHClusedforimmobilization.

The amountof Cl introducedby adding thecatalyststo the batchreactor(MCl,cata)canbecalculatedusingtheXRFresultsin

Table2,asshowninTable4.Cl−isreleasedfromthecatalysttothe solutionduringthe1hpre-reductiontreatment,beforethe reac-tionisinitiatedbyinjectionofthenitritesolution.Theamounts ofCl−inaqueousphasedetectedbyIC(MCl,solu)arealsoshownin

Table4.Inallcases,thevaluesofMCl,cataandMCl,soluareingood

agreement,indicatingthatchlorineonthecatalystindeeddissolves completely.InordertorevealtheinfluenceofthefreeCl−inthe reactionsolutiononcatalystperformance,NaClwasaddedtothe reactionslurrywithPdAC3R,asshowninTable4.Thecatalyst activityremainedconstantwithinexperimentalerrorasaresultof addingNaCl;surprisingly,theselectivitytoammoniumdecreased significantly.

4. Discussion

4.1. InfluenceofHClontheaccessibilityofPdsurface

COchemisorptionresultsinTable2showsignificantincrease ofaccessiblePdsurfaceafterreductioninH2/N2at200◦Cforthe

catalystpreparedatpH1and2,resultinginPddispersions sim-ilartotheobservationswithTEM.ThisconfirmsthatPVAcanbe removedcompletelyusingHClatpH2inthepresenceofair,as reportedpreviously[13].AfterPVAremovalviawashingand sub-sequentdrying,H2reductionat200◦Cremovedchlorinefromthe

PdsurfaceviaformationofgaseousHCl,asconfirmedbyXRFresults inTable2.

(5)

210 208 206 204 202 200 198 196 194

(eV)

Banding energy

Inte

nsity (a. u.)

Pd_

AC

_2_A

350

348

346

344

342

340

338

336

334

332

330

Banding energy (eV)

Intensity (a. u.)

Pd_

AC

_2_A

Pd_

AC

_2_R

Pd_

AC

_2_R

Pd

0

Pd

2+

Cl (C) Cl (Pd)

(a)

(b)

Fig.3. XPSspectraofactivatedcarbonsupportedPd-PVAcolloidspreparedatpH2:(a)Pd3dspectra,(b)Cl2pspectra.Originaldata(hollowdots)wassubtractedwithShirley background(blackline)andfittedusingmethoddescribedinSection2.5.ThefittedPd3d5/2peaks,andCl2p3/2peaksarehighlighted(blueandorange)forcomparison.The fittedPd3d3/2peaksandCl2p1/2peaksarekeptingray.Thesumofallfittedpeaksshowedasredlinewitherrorshowedasdashline.Cl(C)andCl(Pd)standforchlorine inorganiccompoundsandchlorinebondedonPdsurface,respectively.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Table4

Summaryofreactionrateandselectivitytoammoniumrelatedtochlorineconcentration.

Sample MCl,cata

(␮mol)a

MCl,solu

(␮mol)b

Initial ratepertotalPd

(molnitritemolPd−1L−1min−1)

Initialrateper surfacePd

(molnitritemolPd−1L−1min−1)

NH4+selectivityat80% conversion(%) Pd AC1A 16 16 7.7±1.5 62.6±12.5 9.1±0.5 PdAC2A 11 11 6.0±1.5 51.3±12.8 3.6±0.4 PdAC3A 8.4 8.0 4.2±1.5 50.7±17.8 0.8±0.2 PdAC3R – 0.3 12.6±1.5 71.9±8.5 2.3±0.3

PdAC3RwithextraNaCl 9.2 13.3±1.5 76.1±8.5 1.1±0.2

aAmountofClintroducedbyaddingthecatalystinthereactor,accordingtoXRFresultsinTable2. b AmountofClinaqueousphaseduringreactiondetectedbyIC.

Ontheotherhand,COchemisorptiondatainTable2alsoshow arelativelylowPddispersionof18%onthereducedcatalyst pre-paredwithlowHClconcentration(pH3).Thisapparentdispersion islowerthanwhatwouldbeexpectedbasedonTEMandwe sug-gestthatthisiscausedbythepresenceofPVA.XRFresultsinTable2 showarelativelylowchlorineconcentrationintheas-prepared cat-alyst,inagreementwithXPSresultsinTable3.Inthisas-prepared catalystsonly 7%ofthePdis oxidizedascanbeseen inFigure S-3(a);furthermore,thePd2+:Cl(Pd)molarratiois1:2,

indicat-ingthatthechlorinecoverageiswellbelowonemonolayer(about 30%),muchlowerascomparedtocatalystpreparedusinghigher HClconcentration(pH1and2).Obviously,boththelowchlorine andPd2+contentarecausedbythelowHClconcentrationused

dur-ingthepreparation.WesuggestthatthesmallamountofCl−isnot sufficienttoinducedesorptionofPVAtothesameextentathigh Cl−concentration.

Interestingly,thedatainTable4revealsthatalmostall chlo-rinepresent onthecatalyst desorbedand dissolvedduringthe reaction,basedonthesimilaritybetweentheamountofCl− intro-duced,according XRF,and Cl− contentinaqueousphase inthe

batchreactorasdetectedbyIC.Apparently,themajorityof chlo-rinecanberemovedfromthecatalystsurfaceduringreductionin H2inaqueousphase,beforenitritewasintroduced,byreducingthe

PdClxspeciestoPdmetalandproducingHCl.However,thisdoes

notruleoutsmallamountofchlorineonPdcanstillinfluencethe catalyticreactions,asdiscussedbelowinSection4.3and4.4. Addi-tionally,theproducedHClisinsuchalowconcentration(lower than54␮molL−1ascalculatedbasedondatainTable4),and can-notinfluencethepHinthereactorsignificantly,especiallyinthe presenceofCO2.

In short, a critical amount of chlorine is necessary for PVA removalfromthePdsurface.Thechlorineconcentrationinthe cat-alystisdeterminedbytheHClconcentrationintheaqueousphase duringimmobilizationofPd-colloidonthecarbonsupport. 4.2. InfluenceofHClonPdoxidationstateandparticlesize

UV-visspectrainFig.2showthepresenceofCl-containingPd complexanionsintheunsupportedcolloidsuspensionafter stir-ringin airwithdifferentHCl concentration,and thecomplexes

(6)

Fig.4.ActivityofPd-PVAsupportedonACbeforeandafterreductionat200◦CinH2/N2:concentrationofnitrite(solidsymbols)andammonium(opensymbols)with(a)as

preparedand(b)reducedcatalysts;initialreactionrate(c)pertotalPdor(d)persurfacePd(inunitofmolnitritemolPd−1L−1min−1)withcatalystspreparedatdifferentpH.

Theerrorbarsrepresentstandarddeviation.

converted from[PdCl3(H2O)]− to[PdCl4]2− withincreasing HCl

concentration(i.e.,decreasingpH).Apparently,thesePdcomplex anionsoriginatefrompartiallyre-dissolutionofthePdNPs, accord-ingtoEq.(9). Pd+Cl→− O2H+ PdCl2 +Cl− → +H2O [PdCl3(H2O)]− +Cl − → -H2O [PdCl4]2− (9)

XRFresultsinTable2clearlyshowverysimilarPdloadingsfor allthecatalystsupportedonAC,independentoftheHCl concen-tration.ThisindicatesthatthemajorityofdissolvedPdClx·(H2O)4-x

anions(2<x≤4)re-adsorbonAC.Inthisstudy,thePddispersion determinedbyCOchemisorption,afterreductionat200◦Cfor2h inordertoremovechlorinefromthePdnanoparticles,is32%forthe catalystpreparedwiththehighestHClconcentration(pH1), signif-icantlyhigherthanthedispersionestimatedbasedonTEM(22%). ThisindicatestheexistenceofextremelysmallPdNPs,which can-notbedetectedwiththeTEMusedinthisstudy.Simonovetal. reportedthat[PdCl4]−caneitherform␲-complexesofPdCl2with

C C fragments of thecarbonmatrix, or bereduced tometallic Pdparticlesbyspontaneousreductiononcarboninthepresence ofHCl[36–38].Probably,extremelysmallPdandPdCl2particles

areformedinthesamewayhere.Ontheotherhand,TEMshows evenlargerPdparticleswithanaveragesizeof4nminthesample PdAC1R,indicatingsomesinteringduringreductioninH2/N2at

200◦C.

Surprisingly,ashighas12%ofPdatomsremainedoxidizedafter reductioninH2/N2at200◦Cfor2hwithcatalystpreparedwith

thehighestHClconcentration(pH1),accordingtoXPSresultsin Table3andFigureS-3.Ascomparison,only3%ofPdwasoxidized inreducedcatalystspreparedatpH2and3.Allcatalystswerekept

inambientovernightbeforeXPSperformed.Thehighamountof oxidizedPdinthereducedcatalystpreparedwithpH1is support-ingthesuggestionthatverysmallPdparticlesarepresent,asthese aremoresusceptibleforoxidationinambient.

Insummary,excessamountofHClcausespartialre-dissolution ofPdNPs,causingincreasingPdparticlesizesaswellasresidual PdCl2afterreductionbyH2.ThusamoderateamountofHClshould

beusedtoremovePVAfromPdsurfacecompletely,atthesame timeminimizingside-effectscausedbyextraHCl.

4.3. InfluenceofHClonactivity

4.3.1. Influenceofchlorineontheactivityofas-preparedcatalysts AsshowninFig.4(c)and(d),allas-preparedcatalystsshowed similaractivitywithinexperimentalerror,regardlessthedifferent chlorineconcentrations.Accordingly,XRFresultsinTable2and ICresultsinTable4 showthemajorityof chlorinere-dissolved inaqueousphaseduringthereductiontreatmentinthereactor, immediatelybeforethecatalyticexperiment,cleaningthePd sur-face and making thesurface Pd atoms accessible for reactants. Furthermore,nosignificantchangeinactivityforPdAC3Rwas foundwhenaddingchlorineupto9.2␮mol(30␮molL−1)asshown inTable4.Apparently,chlorinedissolvedinthereactionmixture attheconcentrationsinthisstudyhasnosignificantinfluenceon theapparentactivity.

Atfirstsightthisseemstodisagreewithresultsreportedby Pintar,etal.onnitratehydrogenationonPd/Al2O3[39]andChaplin

etal.onnitritehydrogenation[40].Inbothstudiesreactionrates decreasewithchlorineaddition;itshouldbenotedthoughthat thechlorineconcentrationinthisstudyis atleasttwoorderof

(7)

0

20

40

60

80

100

0

10

20

30

40

(a)

As-prepared catalysts

Pd_AC_1_A

Pd_AC_2_A

Pd_AC_3_A

NH

Selectivity (%

)

4 +

Conversion (%)

0

20

40

60

80

100

0

10

20

30

40

(b) Reduced catalysts

Pd_AC_1_R

Pd_AC_2_R

Pd_AC_3_R

NH

Selectivity (%

)

4 +

Conversion (%)

1

2

3

0 4 8 12 16 As-prepared Reduced

NH4+ selectivity

at 80% conversion (

%

)

pH

(c)

Fig.5.SelectivitytoammoniumfornitritehydrogenationwithPd-PVAsupportedonAC:(a)selectivitytoammoniumasfunctionofnitriteconversionwithas-prepared catalysts;(b)selectivitytoammoniumasfunctionofnitriteconversionwithcatalystsreducedat200◦CinH2/N2;(c)comparisonofammoniumselectivityat80%nitrite

conversionwithcatalystpreparedatdifferentpH.

magnitudelower,explainingwhytheeffectoncatalystactivityis negligible.

4.3.2. Activityafterreduction

TheactivityofthecatalystsafterreductioninH2/N2 at200◦C

iscomparedinFig.4(c)and(d).Theinitialratesofthereaction increasewithincreasingpH,usinglessHClduringimmobilization ofthecolloid.Itisclearfromthediscussionabovethatdissolution andre-depositionofPdislikely tooccurduringimmobilization ofthecolloid,probablyinfluencingtheparticlesizedistributionof PdNPsonthesupport,especiallyinthecaseofhighHCl concentra-tion(lowpH).Possibly,extremelysmallPdparticlesinducealower activityperactivesite,asparticlesizeeffecthavebeen experimen-tallyexcludedexclusivelyformetalparticleslargerthan 2.5nm [14,17,18].Thishypothesisneedstobefurthertestedusingcatalyst withnarrowparticlesizedistributionbelow2nmtoevenatomic level.

Insummary,catalystpreparedwithlowestHClconcentration (pH 3) resultsin the highest activity afterreduction in H2/N2,

despiteincompleteremovalofPVAfromthePdsurface.Instead, there-dissolutionofPdinpresenceofhighHClconcentrationinair maycausethedecreaseoftheactivitydespitecompleteremovalof thepolymer.

4.4. EffectofHClontheselectivitytoammonium

ReductioninH2/N2at200◦Cincreasestheselectivityto

ammo-nium as shown in Fig. 5(c), together with removal of chlorine contentasdetectedbyXRFinTable2andXPSinTable3.Onthe otherhand,Table4showstheselectivitydecreaseswithadding extraNaClinPdAC3Rcatalyst.Clearly,Cl−decreasesthe selec-tivitytoammonium,nomatterwhetherCl−isreleasedfromthe catalystduringthereactionorisaddedtotheaqueousphase

reac-tionmixture.Areliablecomparisontosimilareffectsreportedin literatureisnotpossible,againbecausetheconcentrationof chlo-rineinthisstudyismuchlowerthaninliterature[39,40].

Surprisingly, the selectivity to ammonium increased with increasingHCl concentrationduring colloidimmobilization, for bothas-preparedandreducedcatalysts,asshowninFig.5.Table4 confirms thatcatalysts preparedwithhigher HClconcentration inducedhigherchlorineconcentrationduringthecatalytic reac-tion.Clearly,thisdisagreeswiththeeffectoftheCl−concentration inthereactionmixtureasdiscussedaboveandthereforeanother effectonselectivityapparentlycontributes.

Itwasfoundinourpreviouswork[14]thatPVAisnot influenc-ingtheselectivitywhereastheselectivitytoammoniumincreases withincreasingPd particlesize.Therefore, wesuggest thatthe selectivityisinfluencedviathemetalparticlesizeastheparticle size distributions might bedifferent,as discussed above, influ-encedbythedissolution andre-depositionofPd inpresenceof HCl.Clearly,moreworkwouldbeneededtotestthishypothesis.

Inshort,theselectivitytoammoniumdecreaseswithadding lowconcentrationofchlorineinthereactionmixture,whereasthe selectivitytoammoniumincreaseswithincreasingconcentration ofHClduringcolloidimmobilization.

5. Conclusion

Pd-PVAcolloidshavebeenimmobilizedonACwithdifferent HClconcentrationinthepresenceofair.HighconcentrationofHCl (pH1)usedduringcolloidimmobilizationcausespartialdissolution ofPd,decreasingactivityfornitritehydrogenationandincreasing selectivitytoammonium.Incontrast,highactivityandlow selec-tivitytoammoniumcanbeachievedbyusinglowconcentrationof HCl(pH3)duringcolloidimmobilization,despitethefactthatPVA canonlybepartlyremovedfromthePdparticles.Finally,low

(8)

con-centrationoffreeCl−inthereactionmixtureinducesadecreasing selectivitytoammonium,withoutinfluencingthereactionrate.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2017.01. 028.

References

[1]EuropeanEnvironmentAgency(EEA), http://www.eea.europa.eu/data-and-maps/figures/nitrate-concentration-in-groundwater(Lastupdated01Jan 2002).

[2]B.Gu,Y.Ge,S.X.Chang,W.Luo,J.Chang,Glob.Environ.Change23(2013) 1112–1121.

[3]A.Scheidleder,J.Grath,G.Winkler,U.Stärk,C.Koreimann,C.Gmeiner,S. Nixon,J.Casillas,P.Gravesen,J.Leonard,M.Elvira,Eur.Environ.Agency(EEA) (1999).

[4]K.-D.Vorlop,T.Tacke,Chem.Ing.Tech.61(1989)836–837.

[5]T.Tacke,Dissertation,TechnischenUniversitätCarolo-Wilhelmina,1991.

[6]A.Kapoor,T.Viraraghavan,J.Environ.Eng.123(1997)371–380.

[7]N.Barrabés,J.Sá,Appl.Catal.B104(2011)1–5.

[8]Y.Xia,Y.Xiong,B.Lim,S.E.Skrabalak,Angew.Chem.Int.Ed.48(2009)60–103.

[9]G.Somorjai,J.Park,Top.Catal.49(2008)126–135.

[10]B.RoldanCuenya,Acc.Chem.Res.46(2013)1682–1691.

[11]D.Shuai,D.C.McCalman,J.K.Choe,J.R.Shapley,W.F.Schneider,C.J.Werth, ACSCatal.3(2013)453–463.

[12]K.A.Guy,H.Xu,J.C.Yang,C.J.Werth,J.R.Shapley,J.Phys.Chem.C113(2009) 8177–8185.

[13]Y.Zhao,L.Jia,J.A.Medrano,J.R.H.Ross,L.Lefferts,ACSCatal.3(2013) 2341–2352.

[14]Y.Zhao,J.A.Baeza,N.KoteswaraRao,L.Calvo,M.A.Gilarranz,Y.D.Li,L. Lefferts,J.Catal.318(2014)162–169.

[15]Y.Zhao,N.KoteswaraRao,L.Lefferts,J.Catal.337(2016)102–110.

[16]J.K.Chinthaginjala,A.Villa,D.S.Su,B.L.Mojet,L.Lefferts,Catal.Today183 (2012)119–123.

[17]D.Shuai,J.K.Choe,J.R.Shapley,C.J.Werth,Environ.Sci.Technol.46(2012) 2847–2855.

[18]J.K.Chinthaginjala,J.H.Bitter,L.Lefferts,Appl.Catal.A383(2010)24–32.

[19]A.Villa,D.Wang,D.S.Su,L.Prati,Chemcatchem1(2009)510–514.

[20]A.Quintanilla,V.C.L.Butselaar-Orthlieb,C.Kwakernaak,W.G.Sloof,M.T. Kreutzer,F.Kapteijn,J.Catal.271(2010)104–114.

[21]X.Wang,P.Sonström,D.Arndt,J.Stöver,V.Zielasek,H.Borchert,K.Thiel,K. Al-Shamery,M.Bäumer,J.Catal.278(2011)143–152.

[22]J.N.Kuhn,C.-K.Tsung,W.Huang,G.A.Somorjai,J.Catal.265(2009)209–215.

[23]B.Feng,Z.Hou,H.Yang,X.Wang,Y.Hu,H.Li,Y.Qiao,X.Zhao,Q.Huang, Langmuir26(2010)2505–2513.

[24]Z.Niu,Y.Li,Chem.Mater.26(2014)72–83.

[25]S.Campisi,D.Ferri,A.Villa,W.Wang,D.Wang,O.Kröcher,L.Prati,J.Phys. Chem.C120(2016)14027–14033.

[26]J.A.Lopez-Sanchez,N.Dimitratos,C.Hammond,G.L.Brett,L.Kesavan,S. White,P.Miedziak,R.Tiruvalam,R.L.Jenkins,A.F.Carley,D.Knight,C.J.Kiely, G.J.Hutchings,Nat.Chem.3(2011)551–556.

[27]M.Crespo-Quesada,J.-M.Andanson,A.Yarulin,B.Lim,Y.Xia,L.Kiwi-Minsker, Langmuir27(2011)7909–7916.

[28]Y.Borodko,H.S.Lee,S.H.Joo,Y.Zhang,G.Somorjai,J.Phys.Chem.C114 (2009)1117–1126.

[29]C.Aliaga,J.Y.Park,Y.Yamada,H.S.Lee,C.-K.Tsung,P.Yang,G.A.Somorjai,J. Phys.Chem.C113(2009)6150–6155.

[30]A.M.Venezia,V.LaParola,G.Deganello,B.Pawelec,J.L.G.Fierro,J.Catal.215 (2003)317–325.

[31]F.Rouquerol,J.Rouquerol,K.Sing,AdsorptionbyPowdersandPorousSolids, AcademicPressLondon,1999,pp.237–285.

[32]DavidBriggs,J.T.Grant,SurfaceAnalysisbyAugerandX-RayPhotoelectron Spectroscopy,IMPublications,Chichester,2003.

[33]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomben,HandbookofX-ray PhotoelectronSpectroscopy,Perkin-ElmerCorporation,EdenPrairie,1992.

[34]L.I.Elding,Inorg.Chim.Acta6(1972)647–651.

[35]C.DrewTait,D.R.Janecky,P.S.Z.Rogers,GeochimicaetCosmochimicaActa55 (1991)1253–1264.

[36]P.A.Simonov,A.V.Romanenko,I.P.Prosvirin,E.M.Moroz,A.I.Boronin,A.L. Chuvilin,V.A.Likholobov,Carbon35(1997)73–82.

[37]P.Simonov,S.Troitskii,V.Likholobov,Kinet.Catal.41(2000)255–269.

[38]H.Chu,J.Wang,L.Ding,D.Yuan,Y.Zhang,J.Liu,Y.Li,J.Am.Chem.Soc.131 (2009)14310–14316.

[39]A.Pintar,M.vetinc,J.Levec,J.Catal.174(1998)72–87.

[40]B.P.Chaplin,E.Roundy,K.A.Guy,J.R.Shapley,C.J.Werth,Environ.Sci. Technol.40(2006)3075–3081.

Referenties

GERELATEERDE DOCUMENTEN

Previous investigations focussed on the preparation and application of latexes as phase transfer agents and supports for electrostatic immobilization in the

Moreover, asymptomatic PE can be found in about half the patients presenting with deep venous thrombosis (DVT) 5. For this reason many consider DVT and PE as a

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

The work described in this thesis was performed at the department of clinical epidemiology, Leiden University Medical Center, Leiden, the Netherlands, and the Cardiovascular

However, performing sports activities also increases the risk of injuries 19 which may result in immobilization and lead to venous thrombosis.. Up till now not much was known on

65-67 However, similar to studies performed in the beginning of the twentieth century, women who are obligatorily bedridden most often have a lesser health status, which results in

We previously showed a beneficial effect of sports activities involving the legs on the risk of venous thrombosis of the arm [16], and one case-control study noted a reduced risk of

Injuries are common; the National Center for Injury Prevention and Control estimated that in 2000, 7.5% of people aged 65 and older suffered from an unintentional nonfatal