• No results found

Preventing lightning damage in bearings by using mechanical preloading

N/A
N/A
Protected

Academic year: 2021

Share "Preventing lightning damage in bearings by using mechanical preloading"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ElectricPowerSystemsResearch153(2017)152–158

ContentslistsavailableatScienceDirect

Electric

Power

Systems

Research

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / e p s r

Preventing

lightning

damage

in

bearings

by

using

mechanical

preloading

Frank

Leferink

a,b,∗

aUniversityofTwente,Enschede,TheNetherlands bTHALES,Hengelo,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9May2016

Receivedinrevisedform30July2016 Accepted3October2016

Availableonline13October2016 Keywords: Lightning Arcing Bearing Boundaryfilmlubrication

a

b

s

t

r

a

c

t

Highpositionedsystemssuchaswindturbinesorradarsystemonboardashipcanbeeasilystruckby

lightning.Thelightningcurrenthastobeconductedviadefinedpathstopreventdamage.Akeyelement

toprotectisthebearingsystembetweentherotatingandstationarypart.Providingabypasscurrent

pathviaadditionalmeasuressuchasaslipringistheconventionalwayofprotectingbearing.Thearcing

duetohighvoltagedifferencebetweenrollersandracewayishoweverthemaincauseofdamagetothe

bearingsystem.Itiscommonlyassumedthat,ifthewindturbineblades,ortheradar,isrotating,the

lubricationbetweentherollingelementsandtheracewayisanon-electricalconductinghydrodynamic

lubricationlayer,andthushighvoltagescanbedeveloped.Butifthebearingissufficientlypreloaded

itisstillprovidingaconductivepathviaboundarylubrication.Noarcingoccurs,andnodamage.The

conceptofpre-loadingthebearingsystemhasbeenevaluatedusingmanyexperimentsonstationary

androtatingbearings,andafterperformingendurancetesting.

©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Windturbinescanbeeasilystruckbylightning[1–7].Themost commondamageistheelectroniccontrolsystem,whilethemost visibledamageisthelightningdamagetothecompositeblades. Thebearingsystemisalsoavulnerablepart[8–11],althoughless investigated.Theriskofradar equipmentbeingstruckby light-ningismuchhigherinthelittoral,i.e.watersnearthecoast,than inthebluewaterareas,farawayfromthecoast[12].Naval ves-selswereoperatinginthebluewaterbutthisischangingrapidly tothelittoral.Radarsystemsareoftenlocatedatahighposition andarethereforealsovulnerabletobestruckbylightning.Alsofor rotatingradarsystemsthebearingsystemisthekeycomponent betweentherotatingandstationarypartsofaradar system.No publicdatawasfoundonlightningdamagetoradarbearings,but theproblemcanbecomparedwiththatofbearingsonwind tur-bines[12].Themain-shaftbearingisoneofthemostinvolvedparts [8],andlightningdamagestothesebearingscanresultinhighcosts ofmaintenance.InthemainstandardIEC61400-24[1]onlyvery genericinformationcanbefound,suchasthatthebearingshould beprotected.InRef.[13]lightningtestsonanelectricvehicleare

∗ Correspondenceto:UniversityofTwente,EWIFaculty,P.O.Box217,7500AE Enschede,TheNetherlands.

E-mailaddress:frank.leferink@utwente.nl

describedshowingthatthelightningcurrentpathflowsbetween themetalalloyofthewheelandground.Nofurtherinvestigation onthebearingisreported.InRefs.[2–4,8]itissuggestedthatthe damageofthemain-shaftbearingiscausedbyflashoverswithin thebearinglubricant,orarcing,resultinginpitting.Thepossibly following highcurrent afterthearc couldresultin overheating andwelding,butthislatterphenomenonisnotdescribedin lit-erature.Ina conventional system,slip ringsareconductingthe lightningaroundthebearing,in ordertopreventarcing.Thisis alsotheconventionalapproachprotectingarcinginradarsystem bearings.Theslipringconsistsofaseriesofcarbonbrushelements dividedoverthecircumferenceoftheradarantennadrivecreating anelectrical conductivepathfor thelightningcurrent.The dis-advantageofthesebrushelementsisthewear,resultinginvery regularmaintenance,forinstanceonceperyear.Furthermorethe weariscausingdust,thuspollution.Aslipringaroundthemain shaftisalsothegenericmeanstoprotectthebearingofwind tur-binesagainstlubricantflashovers,sincethebearingisaverycritical componenttoexchange.Becauseofthisprotection,practical expe-riencewithlightningdamagetowindturbinebearingsisscarce, windturbine bearingsarenot normallycheckedafterlightning strikes[2,3].Fewinvestigationsofthedamagingeffectoflightning currentonbearingshavebeencarriedout.InRef.[11],thetests wereexaggeratedbyreducingthenumberofrollingelements,to forcethecurrentthroughonly1or2suchelements.Butit was

http://dx.doi.org/10.1016/j.epsr.2016.10.004

(2)

Fig.1. Electricalimpedancesofthereducedscalebearingmodel,from[10].

alsoconcludedthatthedamagesproducedbyanarccanbebigger thanthecurrentconductiondamage.Inthefollowingsectionsthe stationarybearing,boundarylubricationandrotatingbearing,and lightningexperimentsonarotatingpreloadedbearingsolutions arediscussed,showingtheadvantagesofmechanicalpreloadingof bearingtopreventdamageduetolightningcurrents.

2. Stationarybearing

Anewtrendinarchitectureduringthelastfewyearsistheuse ofretractableroofsinstadiums.Theseroofstructureshavenofixed connectionstoground;insteadtheyhavethousandsofmoving con-tactpoints.Traditionally, forabuildingorafixed-roof stadium, lightningrodsaregroundedtotheroofsteel,theroofsteel con-nectedtocolumns,andthecolumnsconnectedtoagroundgrid. Butforaretractableroofitislikelythatthecurrentwillfindits waytogroundviabearings.ThisproblemisdescribedinRef.[14]. Lightningcurrenttestshavebeenperformedonagreasedbearingin stationarycondition,anditwasfoundthatnodamageoccurredto rollingelementsandraceways.Theretractableroofhasbeenused inmanyareaswherelightninghashitthestructurewithout damag-ingthestructure.Thissituationiscomparabletoastationaryradar, i.e.aradarwhichisnormallyrotatingbutisinanon-activemode. Theweightoftheradarinaparkedpositionispressingthroughthe lubricantanda directcontactbetweenrollingelementsandthe racewayismade.Thennoarcingispossible,andnopittingresults. ComparableconclusionshavebeendrawninRef.[11]where light-ningcurrentswereconductedthroughbearings.Theidenticaltests toarotatingandastationarybearingonlyresultedindamagetothe rotatingbearing.Itwasconcludedthatthecauseofdamageisarcing betweenrollingelementsandracewaysatthebreakdownpoints throughtheinsulatinghydrodynamiclubricationlayerpresentin therotatingbearing.ThiswasalsoconcludedinRef.[15],and con-firmstheassumptionthatthearcingresultinginpittingisthecause ofdamage,andnotthecurrentwhichmightcauselocallyheating. Ofcourse,incasenearlyallrollingelementsareremoved,suchasin Ref.[11],thenonlyonerollerhastoconductthecurrentresulting inaveryhighlocalcurrentdensity,andinevitablydamage.

In Refs.[9,10] modelsfor thebearing impedance havebeen developed,basedonextensivemeasurementsofa1:20reduced scalemodeloftypicalmainshaftwindturbinebearings.To repli-catethemechanicalloadconditions,alsoscaledmechanicalforces, tilt-momentandrotationspeedthatappearsinrealscalemainshaft bearingswereused.Fig.1showsthemeasuredimpedancesofthe

reducedscalebearingmodel,forparked,idling,partialloadandfull (wind)load.Intheparked-standingmode,thebearingimpedance showsalowimpedance(ohmic)behaviorthatcanbejustified con-sideringthatthebearingelementsareinmetalliccontactdueto thenullrotationspeedthatdoesnotallowfortheformationofthe lubricantfilm.Butintheidling,partialandfullwindload condi-tions,thebearingcanbemodelledbyacapacitancesuggestingthat thereisfilmlubricationbetweentherollerandtheraceway.This isinlinewiththeassumptioninRef.[5],whichassumesafilmof 50␮mthicknessattheoperationalspeedofawindturbine(20–30 RPM).

3. Boundarylubrication

Ifaradarantennaisrotatingahydrodynamiclayeroflubricant isdevelopedinthebearingwhichwillresultinaninsulatinglayer. Ifalightningstrikestheantenna,ahighvoltageisdeveloped,and flashoverwilloccur,causingaspark,whichwillultimatelyresult inpittingontheraceandrollersevenatrelativelylowcurrent lev-els.Topreventdamage,carbonbrushesinaslipringareoftenused toprovidealowimpedancecurrentpath.Preloadedbearingshave beenusedmanytimestoreducethevariationsinmovements,to attaintherequiredbuilt-instiffnessandrunningaccuracy. Experi-mentswithanelectrostaticdischargegunonbearingsshowedthat stationarybearingswereconducting(asexpected),rotating bear-ingswerenotconductingduetotheoilfilm(asexpected),butthat rotatingpreloadedbearingswerealsoconducting.Thislasteffect isagainsttheconventionalknowledgeandunexpected.However, theactualfrictionregimesforslidinglubricatedsurfaceshavebeen broadlycategorizedintosolid/boundary,mixed,orfluidfriction, onthebasis oftheStribeckcurve[16–18].In general, unbreak-able lubricating films are required to preventintimate contact betweenmatingsurfaces,whichareproducedbyfluidfilm lubrica-tion.Inpractice,however,thetransitionfromfluidfilmlubrication toboundarylubricationoccurswithincreasingloadordecreasing relativevelocity,whichleadstoanincreaseinthecoefficientof fric-tion.Stribeck,andothers,studiedthevariationoffrictionbetween twoliquidlubricatedsurfacesasafunctionofadimensionless lubri-cationparameterN/P,whereisthedynamicviscosity(Ns/m2),

Ntheslidingspeed(m/s)andPtheloadprojectedontothe geo-metricalsurfacewhichisusuallyloadperunitlengthofbearingin N/m.AnexampleisshowninFig.2.Inthefilmlubricationregime therollingelementsandracewayarecompletelyisolatedviaathin layeroflubricationoil.Intheboundarylubricationregimethefilm

(3)

154 F.Leferink/ElectricPowerSystemsResearch153(2017)152–158

Fig.2.Stribeckcurve.

thicknessformedissignificantlysmallerandtheloadwillbecarried bytheasperities,ratherthanbythelubricant.

TheStribeckcurve providesa qualitative explanationof the transitionbutitsquantitativeevaluationmethodshavenotbeen establishedyet.InRefs.[19,20]thecompleximpedanceofa bear-ingsystemwasmeasured,withtheobjectivetocalculatethefilm thicknessandbreakdownratio.Itwasconcludedthatinthefull fluidfilmlubricationregime,thefilmseparatesthetwosurfaces, andtheimpedanceisveryhighandcapacitive,likeasshowninRefs. [9,10].Whentheoilfilmstartstobreakdown,i.e.isapproaching boundarylubricationtheimpedanceshowsalowvalueintheorder oflessthan1.Thisresultconfirmsourexperimentsperformed onpreloadedbearing,whereitwasimpossibletocreateasparkgap becausethepreloadingpreventedfullfluidfilmlubrication. 4. Resistanceandlightningtestsonbearing

Theanalysis and experiments described before suggest that preloadedbearingscanconductlightningcurrentswithout dam-age,andcarbonbrushelementsarethusnotneeded.Resistance measurementsandlightningcurrentexperimentshavebeen car-riedoutonnormalandpreloadedbearingstodeterminetheeffect ofpreloading.

Theresistancebetween thetwo bearing raceways, withthe rollingelementsinbetween,wasmeasuredonanormalbearing usingamilli-ohmmeter.Theresistancewaslessthan1mforthe staticbearing,i.e.notrotating.Thislowimpedanceisachievedasa resultofthedirectcontactbetweenrollingelementsandthe

race-Table1

Lightningpulseparameters.

Pulsename Peakcurrent Risetime Timetohalfvalue Duration

A 100kA 9␮s 240␮s 700␮s

B 2kA 200␮s 500␮s 3ms

C 300A – 10ms 200ms

way.Whenthebearingwasrotatingtheresistanceincreasedto morethan1000duetothefilmlubrication.Thesametestwas performedonamechanicalpreloadedbearing,asusedforaradar system.Radarsystems areusingpreloadedbearings toprevent wigglingandassureaccuratetrackingofobjects.Thispreloaded bearingshowedaresistanceoflessthan1m,forstaticand rotat-ingconditions.

Lightningcurrenttests,includingthefastApulse,theBpulse, andthehigh-energyCpulse,havebeenperformedonnormalroller bearingsandpreloadedrollerbearings[21].Thelightningcurrent generatorisdescribedinRef.[22]andconsistsofaseriesofthree pulsesasdescribedinRefs.[23,24]:

• A-pulsetestsetupforhighcurrent,consistingofacascade capac-itorbank,forshortstrokeelectricalcurrentsof100kA,

• B-pulseartificiallineintermediatecurrenttestsetup, capacitor-coilcircuit,forcurrentsof2kA,

• C-pulsecontinuingcurrenttestsetup,3-phasediodebridge cir-cuitforDCcurrentsof,inthistest,300A.

Theparameters forthetestsare listedinTable1.Theseare measuredvaluesforthetestsonthebearingandthedifferences betweenthevariousexperimentswaswithin±5%.

Toperformacompletelightningtest,thetestsetupis subse-quentlyconnectedtoeachofthetestsetupsandloadedwiththe maximumoutput.

4.1. Conventionalbearing

Asinglelightningcurrenttestwasperformedonthefirst, nor-mal,bearing.OnlytheA-pulsewasusedforthestaticbearing.No changesinrotationandresistancewasobserved.Thenthenormal bearingwasrotatingatnormalspeed,infilmlubricationcondition, andthelightningA-pulsetestwasrepeated.Severedamagetothe bearingwasobserved.Mechanicalvibrationincreasedandacoustic

(4)

Fig.4.Pittingintheinnerandouterracewayduetothelightningcurrent.

Fig.5.Testsetupfortestingarotatingpreloadedbearing.

noiseincreased.Afterdismantlingthenormalbearing,thedamage couldbeobservedontherollingelement,asshowninFig.3.The damagedinnerandouterracewayisshowninFig.4.

4.2. Preloadedbearing

Highvoltagetestshavebeenperformedtotestthe effective-nessofsparkgapsmountedexternaltoaradarsystem.Using a mechanicalpreloadedbearingit wasnotpossibletogeneratea spark,becausethebearingwascreatingacontinuousconductive path.Althoughtheconceptofboundarylubricationisknown,this resultwasnotexpectedbecausethecommonassumptionwasthat evenatlow speedthere isfilmlubrication,creatinganisolated layer.Theconceptofusing asufficientlypreloadedbearing has beenfiledinapatent[25].Aspecialtestsetupwasbuilttotest atypicalpreloadedbearingconfigurationundernormaloperating conditions,rotatingatapproximately25RPM,asshowninFig.5. Tosimulatethecurrentstypicalforalightningstroke,thesetup wassubjectedtoanA,BandClightningpulseasmentionedin Table1.Theaxialpreloadonthebearing-systemwasthesameas thepreloadingwiththeradarsysteminstalled.Measurementsof thebearingresistancebeforeandaftereachlightningcurrenttest showedvaluesbelow1m,typicalbetween300and700␮.

Tomonitortheconditionofthebearingsystem,axial,radialand tangentialaccelerationshavebeenmeasuredbeforeandaftereach lightningpulsetest.Thisisaverywellknowntechniqueto

esti-mateifthereissomedeviation,e.g.pitting,intherollingelement and/orraceway.Thevibrationshavebeenmeasuredwithasample frequencyof2kHzandarecordlengthof10s.Fromthisrawdata andFFTspectrum,theRMSvalueofthevibration(acceleration)was calculated,asshowninFig.6.

Thedifferencesbetweenthesubsequentmeasurementsareof thesameorderofmagnitudeasthestandarddeviationoftheset ofmeasurements,sonochangeinvibrationbeforeandafterthe lightningtestwasobserved.

Totesttheremainingoperationallifeofthebearingsystem,an endurancetestwasalsoperformed.Assumingthatwearis equiv-alenttothetotalnumberofrevolutions,thebearingsystemwas settorotateatamuchhigherspeedthantheoperationalspeedin ordertocompressthetotaltesttime.Thebearingtemperaturewas monitoredtoassurenormaloperatingconditions.Theendurance testwasstoppedafter4weeksathighrotationalspeed, represent-ingmanyyearsofnormaloperation.Therootmeansquare(RMS) valuesofthemeasuredvibrationsduringtheendurancetestare showninFig.7andTable2.

Thedifferencesbetweenthesubsequentmeasurementsareof thesameorderofmagnitudeasthestandarddeviationofthesetof measurementresults.Therearenodifferencesintheshapeofthe spectrathatindicateanydeteriorationofthebearingsystem.

Since theresultsof thevibration measurementsindicate no deviationsandthatbearingsystemisnotdamaged,onlytheupper bearingofthetestsetupwasdisassembledfollowingtheendurance

(5)

156 F.Leferink/ElectricPowerSystemsResearch153(2017)152–158

Fig.6.Resultsofvibrationmeasurementsduringthelightningtests.

Table2

RMSvaluesofmeasuredvibrationsduringtheendurancetest.

Duration[h] 0:31 0:58 2:04 3:37 5:52 29:52 29:52 53:52 53:52 170:58

Axial 0.79 0.78 0.77 0.81 0.80 0.78 0.83 0.79 0.74 0.71

Radial 0.40 0.41 0.42 0.64 0.61 0.63 0.51 0.50 0.46 0.43

Tangential 0.62 0.63 0.66 0.68 0.69 0.73 0.91 0.76 0.70 0.67

test.TheresultsareshowninFig.8.Itisclearthatthetestedbearing isfreeofpittingorweldingspots

5. Conclusion

Therollingelementandracewayofa bearingsystemcanbe damagedbylightning.Theprimarycauseispittingcausedbythe arcingbetweentherollingelementsandracewayatthebreakdown pointsthroughtheinsulatinglubricationlayerpresentinarotating

bearing.Ifabearingisstationaryandloadedwithsomemass,then thisweightissufficienttopressthroughthelubricantsuchthata directcontactbetweenrollingelementsandtheracewayismade. Nodamagehasbeenobservedbymanyresearchers,andthe pre-sumedweldingisnotfoundtobeadominantfactor,ifmanyrolling elementsare,inparallel,incontactwiththeraceway.

Experimentswithanelectrostatic dischargegunonbearings showedthat stationary bearingswere conducting,and rotating unloadedbearings were not conducting due tothe oilfilm, as

(6)

Fig.7.Resultsofvibrationmeasurementsduringtheendurancetestwithincreasedrotationalspeed.Note:thegraphshavebeenshiftedslightlytogivea3Dimpression. Thescalesshouldbereadasifeverylinestartsonthebottom-leftcorner.

expected.However,rotatingpreloadedbearingswerealso conduct-ing,whichisagainsttheconventionalideasthatthereisalwaysa lubricatingfilmpresent.TheStribeckcurveshowsthatthe tran-sition from solid/boundary lubrication to fluid film lubrication occurs,dependingofthedynamicviscosityandslidingspeedand inversetotheload.Radarsystemsareusingpreloadedbearings topreventwigglingandassureaccuratetrackingofobjects. Var-ious resistancemeasurements and lightning current tests have beencarriedout todeterminetheeffectof preloadedbearings. Theboundarylubricationispresentifthebearingissufficiently preloaded,whichassuresacontinuouselectricalcontactbetween rollingelementsandracewayandresistancemeasurementsshow

valueslessthan1m.Thelightningexperimentsperformedshow noincreaseofvibration,whichis ameasureofpossiblepitting. Endurancetestshavebeenperformedtoensurethatevensmall pittingwasnotpresent.Aftertheendurancetestthebearingwas dismantledandinspectedvisually.Nodamagewasfound,while acomparablenormalbearing,withoutpreloading,show consider-abledamage.Thelackofdamageforthepreloadedbearingproves thevalidityofthepreloadingconcept,toprotectabearingsystem againsttheriskoflightningdamage.

Furtherresearchcouldbeperformedontheinfluenceof light-ningcurrent amplitudes, includingthe extremecurrents found insomeregionsintheworld,onpossibledamage.Alsothe

(7)

rela-158 F.Leferink/ElectricPowerSystemsResearch153(2017)152–158

Fig.8.Ballbearingsandbearingofthedrive,usingthenormalpreloadedsituation:nodamage.

tionbetweenthevariousparametersintheStribeckcurveandthe resultingresistanceisaninterestingtopicforfurtherresearch. References

[1]IEC61400-24,Windturbinegeneratorsystems—Part24:LightningProtection forwindturbines,2010.

[2]T.Sorensen,I.Cotton,B.McNiff,W.Zischank,P.Christiansen,M. Hoppe-Kilpper,E.Muljadi,S.Ramaakers,P.Petersson,LightningProtection forWindTurbines,AWEA2001(2001).

[3]T.Sorensen,F.V.Jensen,N.Raben,J.Lykkegaard,J.Saxov,Lightningprotection foroffshorewindturbines,ProceedingsCIRED16thInternationalConference &ExhibitiononElectricityDistribution(IEEConf.Publ.No.482)vol.4(2001) 1–5.

[4]T.S.Sorensen,etal.,TheupdateofIEC61400-24lightningprotectionofwind turbines,in:Proceedingsofthe29thInternationalConferenceonLightning Protection,ICLP,Uppsala,Sweden,June23–26,2008.

[5]DaleDolan,CharlesSao,PeterLehn,Lightningexposureofwindturbines,in: 2006CanadianConferenceonElectricalandComputerEngineering,May, 2006,pp.486–489.

[6]M.I.Lorentzou,N.D.Hatziargyriou,I.Cotton,Keyissuesinlightningprotection ofwindturbines,in:WSEASConferenceOnCircuits,Greece,2004.

[7]BruceGlushakow,Effectivelightningprotectionforwindturbinegenerators, IEEETrans.EnergyConvers.22(March(1))(2007)214–222,ISSN0885-8969.

[8]G.I.Cotton,N.Jenkins,K.Pandiaraj,Lightningprotectionforwindturbines bladesandbearings,WindEnergy4(2001)1–5.

[9]F.Napolitano,M.Paolone,A.Borghetti,C.Nucci,A.Cristofolini,C.Mazzetti,F. Fiamingo,M.Marzinotto,Modelsofwind-turbinemain-shaftbearingsforthe developmentofspecificlightningprotectionsystems,IEEETrans.

Electromagn.Compat.53(February(1))(2011)99–107.

[10]M.Paolone,F.Napolitano,A.Borghetti,C.A.Nucci,M.Marzinotto,F.Fiamingo, C.Mazzetti,H.Dellago,Modelsofwind-turbinemainshaftbearingsforthe developmentofspecificlightningprotectionsystems,in:PowerTech conference2007,Lausanne,1–5July,2007,pp.783–789.

[11]O.Celi,A.Pigini,E.Garbagnati,Evaluationofthedamagescausedbylightning currentflowingthroughbearings,pp.38-1–38-10,report,viahttp://ntrs.nasa. gov/.

[12]A.Blaj,ProtectingElectronicEquipmentinCompositeStructuresAgainst Lightning,PhDThesis,UniversityofTwente,2015,ISBN978-90-365-3858-9.

[13]YutaNaito,ShunichiYanagawa,KazuoYamamoto,Highvoltageimpulse experimentonelectricautomobilesanditsverification,in:2014International ConferenceonLightningProtection(ICLP),Shanghai,China,2014,pp. 1503–1507.

[14]AndrewCheng,Lightningplaysthestadium,MechEng.Mag.(February) (2002).

[15]Technicalnote,Lightningeffectsonrotatinggearboxrollerbearingsunder hydrodynamicconditions,RTDProgrammeJOR3-CT95-0052,“Lightning protectionofwindturbines”,26February1998.

[16]R.Stribeck,KugellagerfürbeliebigeBelastungen,Z.Ver.Dtsch.Ing.45(1901).

[17]R.Stribeck,DiewesentlichenEigenschaftenderGleit-undRollenlager,Z.Ver. Dtsch.Ing.46(36)(1902)541–560.

[18]R.Bosman,Mildmicroscopicwearintheboundarylubricationregime, Materialwiss.Werkstofftech.41(January(1))(2010)29–32.

[19]KazayoshiManabe,KenNakano,Thebreakdownprocessofhexadecanefilms inducedbyquali-staticloading,J.Adv.Mech.Des.Syst.Manuf.1(1)(2007) 640–648.

[20]KazuyoshiManabe,EvaluationofLubricationConditionsbyIn-situ Time-resolvedMeasurementsUsinganElectricalImpedanceMethod,PhD Thesis,YokohamaNationalUniversity,Japan,2011.

[21]FrankLeferink,AlexBlaj,EdwinHogeman,RobStorck,Usingpreloadingto protectbearingsagainstlightningdamage,in:2015InternationalSymposium onLightningProtection(XIIISIPDA),BalnearioCamboriu,28September–2 October,2015,pp.358–361.

[22]M.A.Blaj,F.Wagenaar,F.J.K.Buesink,G.C.Damstra,F.B.J.Leferink,Lightning currenttestonradarsystem,in:InternationalSymposiumonEMC2008,8–12 September,Hamburg,Germany,2008,pp.281–284.

[23]MIL-STD-464A,Electromagneticenvironmentaleffectsrequirementsfor systems,19December2002.

[24]NATOStandardAECTP-250,Electricalandelectromagneticenvironmental conditions,EditionC,Version1,2015,Leaflet254,Atmosphericelectricity andlightning.

[25]EP2607727A1,EuropeanpatentApplication,Pivotlinkingdevicewith bearingscomprisingmeansforprotectionagainsthighvoltagetransients,21 December2011.

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Als een ouder een hoge score heeft op ego-vermijd oriëntatie dan scoort het kind hoog op de perceptie van ouderlijke druk van de vader.. Tussen ego- vermijd oriëntatie en

Voor de verdeling van het landelijk budget voor Meerzorg over de regio’s gaat het Zorginstituut bij de voorlopige vaststelling uit van de verdeling van het werkelijke

Rekenkundig onderzoek omtrent de bepaling van de verstevigingsparameters en het verband met andere materiaalgegevens.. Citation for published

  BAAC  Vlaanderen  Rapport  235     Figuur 14: Detailplan perceel 373d met aangetroffen sporen 27

Hierbij werd een spoor aangesneden (vermoedelijk te interpreteren als een gracht of kuil) dat enkele scherfjes.. handgemaakt Romeins

An engineering student organization (IEEE student branch Leuven) was approached by faculty staff to organize a Kinderuniversiteit workshop on efficient use of energy. IEEE

b. Bij het derde, vierde en vijfde bordje zijn er resp.. Nederlands, Engels en Zweeds kunnen in willekeurige volgorde geplaatst worden. Je moet nog twee andere talen kiezen uit 9.