• No results found

Composite main rotor blade of PZL-Sokol helicopter

N/A
N/A
Protected

Academic year: 2021

Share "Composite main rotor blade of PZL-Sokol helicopter"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

El..EVEl!ITII EUROPEAN ROT<mCIJA<"'' ron.tnq

COM!'OS!rE MAIN ROXOR lll.ADE OF PZL-iJOlWL I!EIJ:COP:rER

•rranaportation

Equil'!""nt Fact~ry •PZt...tlw!DNIK•

llw:ldnik;' Pol.e.ndo'

september

io-n;

1985 London>

Engla'nit·•

(2)

ETrata of remarked errors in paper No 46o

r·---,---r---,---·

l

J!!2_2£ ...

!!!:t;_!r2~--~

Th i

I

Sh

ld

b

f

?age }below : above

I

era s

1

ou e

t---~---r---~---~---·

:46-7 : : 11

tHI.

of pylon

J ••

of blade

l46-8 ; : li

l

/see Fig. 2/ : /see Fig. 3/

146-8 1 1 13 1 ••• was close to .t •• was close to 4x

no-: 46-11

l

2 :

f-

AT DECENT •••

1

..

AT DESCENT

(3)

ClD}1P081~E MATti H.C.TDR BLADE OF FZL-SOKDL HELICD~""TEH

Stanislnv Knr.t1.l'i.ski) H~sc"l, Eng:~·

Chie£ Design E:~gir.em.•

'1'X'1Hl31Jort.a"tion Equip-.&C>nt Fac1.;ory 0PZL,..gw1::inika S"Widnikj Poland~

:tnt.rodu.ction to thto. -pa:pcl." inclu:les: sumr., intN""flzting aventr, from til~ history of compcui-te rotor blades .in PZlr~widnik.., The .follQwing chapte:t'B ino2uiie the blade cross section ;:rl':nJ,~tw-a 1 blade geometry1 nr:d its mass aod st!:r.frw.ss distribu't;iorm.,a. Reson,cance dingrani.S) on>? of them 'VJlth pylon .t.lexibillt:.y iHcludedg are glven ~ Surveys. oi: ertattc, dynnm.ic; .fatigue and we:1t!~er egein.g te.sta; the :te.sta on u tied-down heJJ.co-ptcr) and. the flig:h·t tests ar\:! alao discunst~d. .here:.

Unique dyn..n:mio phenomenon

ot

low tors:tonal. stiffrma;j bhd.s:e stall. flutter and 11'J1on res~J.= .nanc.e £l.1'l,} discussed in the FLIGHT TESTS chapte:::.r,..'

R Ji1, JIR ~

"'

Nm

a

i!'s

p GIO

lliy

l!.'I" <&

'

t lt.b r

!l.

NOTATION'

rotor raditt'SG meters

$0 rotor ongula.r speed.;

radiqoo l}?l" second .,... rotor tip npdedi mate:rll

· per seC(Illd

- blade chord

.. blndc rnd.ial coordinate~

meters

... Newton per meter := 1 kg

x

~eter

2

7 aeconi2

"" zecond

tlirnoru:d.on.:.tezs blade radiua 0 a'i:; ·Pt'~ center oi' tho rotor itr.d 1 -..0 at the tip

·o'u per IJl..':l.ill rotor .r-evolu ...

tion.

..,. tor..sioHr'll atif1Dess fJ.f

blade section N ;z m2

- bend~ng-stiffnoss oi blade

section in chordwise plana

N X m2

~ oonding stJ.fi'Mss o:t blade section in flirtwise plana; N " m2

~ blade azauth

'f

n

.£.

t;

0 ~

-.han the !>lad,~ is 'abwe tl1e he llcopter tall boom and

increases in

too

direction of rotation, degrees ""' time;, seconds

~ flapping ""E;lD of th~ blade positive for blade axis up>

degrees

~ legg;lng engla of tl1e bledb positive far bJ.l!de C!X:i.s lag0 degrees

~ blade a:l.rfoU pl.tol:Wlg 1>0-~nt eoatt1o5~~t

46 ~ 1

l! t

""'helicopter airspeed.)

km/h

·- blade tab deflection angle

positive i'or traili.'1g edge up9 dt'~grees

- bl<.Mh root torsional moct::-r:t /fent.heri:o.g :moment ... pitch link J.oad x the arm relati-.:re to pitching a:t:..iz/ 11 !1m

=

b1nde sBction torsional moment .at F u: 0..,595 9 Um

"" pitch housing CendiP..g mon:ent approx:toately in tho plene of rotation, Nm

= pitch housing ben.ding momertt 2PlJI"'1CtL!J.ltaJy in the thrust

p.J.a,.'1e ft Nm

rotor sna:rt b!i!nd.lng morr:.ents in rotational coo1Uinate system; suitably Oo6 ID DP~

Oo2 m dclim .from tho plar.n

ot

rotat:lon.; Nm

S!·1J.II:r'"" 3rd harmonic component of Wld

N ~ rotor r~pom@

... nomL'lal rotor r •'P~tn,.. ... blade natural frequency 0

cycles vq;r minute

m.in

=

minute

OAT ~ outside a:l.r temperature in

rught; "c

H ""' :rllghi.! altitude, m.c-tel'i3 '"" 1-'..-elicoytor talroof'f maas.,

1-'.;5n

IlttllODUt-TIOII

The history o:t FZIPIIwiardk compo-site rotor blades ba!gan

.t:n

1959o In 1960 tl1e main :rotol:' bleden tol' ·Che

SM~ t@.tlziii ~l:l?oU~Elr wrc dsaigood

(4)

Almost at tha same tim<l; compo~

site msin rotor blades for tho Mi•1 helicopter were dflaignad·o!> They were based on tho room tempa>:atura curing tccbnolollY .;. Some of those blade seta had :flown up to 400 houn,..•

Composite main and toil rotor blades for the Mi-.2 helicopter were designed in i 966o Their tccbnolo/lY

was

based on two stage; high tam= perature our:l.ng1 preliminllrily in

6o

0

c;· and

then in

150°c.

Polinh certification for these blades

was

obtained in 1968; after complotioq

ot

the tull stand;

ground;

and fligbt tests prog>:am; IDYl then; five sets o:r these blades were assigne_d ..• £or operation under Aviation Au• thorit!es supervision;,·

So i'ar;

we

have an almost :Cit•

teen..years~long e>.parience with tho above bl.aa~s. At present; several. years after manufacturing; some sats

ot

these blades are still in opera. :·: · tion on a f'cw ?21,-Kania helleopters-o1

Parale lly e: a few typos

ot

large

9

3; 6e c.nd 8 n:oters diamcte:rf' indu-strial r.:'~tor blades \'J0ro deslgned

and roanufact.vred on the basis

ot

room temperature technology• After almost twenty years o:t their oper-a-tion, no serious problems arose? apart from leading edge and blade paint erosion';>'

On the ba.'31s o:t the experiences mentioned above f in the p;re liminary stages o£ the PZL-Sokol helicopter development it was decided to deSign

and d~velop comriDsite

rotor

blades. with low torsional stil.fru.lss; with no fibre layers angled at 45° to the blade axis<l

The rink of development

ot

the low torsional stiffness blades

was

undertaken on the basis of earl.ier difficulties in obtain:l.ng high to~

:aionnl Btiffness o£ a composite structure; elast.ic in its natura; and also because

ot

'the qualitative expectation that such a atruct'Ul"S design may improve the hellcoptor parfonuanc.e•o'

Obviously, the involvlllOnt ot composite materials such aa glase

fibre and :tabrios in tho design of

tho

blade necessitated the in-house staticQ f'atigu.ag and environmental tests& which were r-equired for

cer-tii1oationp• as 'roll, aa evaluation

of solar boating etfaot; natural moisture absorbtion etc• The light-ning tests a.."'<> almost complatcd by

nowo•

A short aU!'Vey of static; tat1-gne0 and natural ageing tests made for PZL-Sokol blade qualification

is

presented here·• The unique phe• nomonon·o£ stall flutter with pylon

resonance presence, which appeared in preliminat".f stages of the l'ZL~

Sokol. tlight testa; is diecu,aed in a more detailed

way.-BL\DE DESCRIPTION

The main rotor of the l'ZL~okol

helicopter consists

o!

four

blad~5

with a :t.'ully ttri::icu:tated hubo The bnsi.c airfoil o£ th0 blade

has 440 lllJil nominal C)lOrd I,!AC.\ 230Mt

with 16 to 9 par cent thickness :from root to tip~~ Lin.c!ar twist along the blade length i.e 10°39'·••

The blade consists of s, D-front

apal .. !io1 :l:fte.rbody :;kins stabilized by

a honeycomb core made o:f glass :f'ab-riot)' and a trailing edge stripoj>~ In the outboard aNa of the blado ~ the trailing edge skine are stretched out of. the nominal chord in ordar to forill 5 per cent trai2ing edge

tabse~ Fig~1

1 presents a typical Cl.*Ot:S section of the blade&' Fig,/ 2 pre• aents blade g<~OI!l'!!tries in particu-lar variants of' design~~ '1'he key structural components of the spar are sprtnulsely o~iented glass fib~~

res and glass .fabrics in an epoxy mat:rix.i The fibr-es are wrapped around a two-hole :taatenerg so

that

they form a loop joint o:f the two~ longitUdinally oriented; ottachm&nt

bolts~ No tor~lon p~a with 45° fibre oriDntation are used.,'

In the outlloard area of the blade a leading nose block provid.aa the necessary section balance &lid ~

(5)

tationol incri;ia~· The honeycomb co~

e:r:te.l'ld!J .fi'\>!11 the trailing edga of: the spar to the unidirectional blade

·trailing edga member to support tht~

ski:i"lo' The skin consi:Jta o:t thrao plica nade of glass fabric with 0°$

90° £lbreo orientation.

Electrical heater mats w!tb. the supply wir~s for the deicing syate~

are also glued to the blade leading edge sur.t:ace a

The deformable trim tab o.f. tho blade is rJade of duralumino'

Pig~ 3 presents blade

masat

cen-ter o:t gravity g and elont.:ic eenter"S

d:l.stributionn.

Fig,. 4 pl:'Csents f'la~risev chord.-'ilrise 9 ar'..d torsi.:mal stii':t"nesz dis ... ·tributions o

t:

t.'he blade o

Figs, 5 and 6 present diagrams o! natuw:.l blade :frequencies-.,' The diagram in Fig, 6 includes the in-tlueuce of pylon flexibility •

ULTIHATE AND PROOF TFSTS AND OTHER MEASURFilENTS

The static test

progrnm

consists of the follo'tring tests:

1$ Static tension tests of the blade .... ultimate .strength factor equal

4·o' Th1s load factor incJ:lldes; beside the basic safety tactoP. equal 211 an extra safety factor

equal 1 ,33 •. tradi ti~nal.ly ap.o roved for composites in PZL $ S't-Tidnik$1

2~ Blade ultisste bending teats for

the 11stop dumpu case of flapping

hinge;:.

3o' Root eud ultisste hending test in tlstwise and chordwise direc•

tions

/with tension/; and ulti-mate toraion tests /with tension/>' 4·.' Ultissto torsion tests of the

~~Thole blade·o' It should be streseed

here that the test resulted in blade failure at torsional moment equal 3670 Nm applied at

r

= O·o'9 and blade tip torslonal detlsc-·l.;ion equal to 146°·a'

5, Tenaion free ultinn te heudir>_g tests in chordwise direction in

order to determ.l.ns the !;'<lot <ll!d

•)

,·-·~·"· att~(3Mttellt fs-t.J.(htg~li ·ani.!

buci_-·

ling etroagt.h' of the bl.oc\m t~-. ling Ctdge ~

6.; :Slade tip proof loadi.ng in

!lop-wise awl chor.dwise direction. .... 7-Q' Determination of bend tng

stiff...-nesu in both planes and tors io-nal stiff'ness .

.-So Date:r.'llti.natio~ of blade tip de-fieution under own weicht; 9"'' Determ:inatlon of elnstic centers

location in trvicnl cross aec-tlona

or.

the blade~

iO~<' Determination of mass and center

ot

gravity distribution in typi-cal cross sectionB of the blnde and blade dynamic axis location

~ cuttL~ the blsde into seg-ments and W.11!)ropriate measttro-ments and c:alculo.tions ,·

DYNAMIC Tl!STS

Dynamic tests consisted in laadlng the blade root end into vibra:tiou with a dynamic sholmr- J.n order to de-ta.rn:dna the .firstJ seconu.~t and third flspJlso natural frequencies and mode- shapes; and thr2 first and second torsional natural :frequencies and mode shapes 6>'

The test cor..zisted in vibrating

the blade sinusoidally and vmying ti'te frequencies. until the blaC:e natural .frequencies were foundo

Measurements o:£ the .first tor ... aional natural :!'requency of the blades on an unoperating helicop-ter in order•to consider the influ-ence

ot

control system stiffness and blades coupling through the awa.sh plate were carried out inde-peudently,

T~ lowest .results. received were as follows:

- 3.1 P tor isolsted blade torsion vibration tests

•o3-,'6 P for blade torsion vibration test on an unoperatiag helicopter /It seems that these meespremanta

(6)

In t'wl course o:f tOO Mi•1 and · Hi-2 h&lioopte:!"& prototype bledes .. !fP-ve lopment"; tOO coupon :fatigua taeta """"' collductad 1n order to . build Wlfnler•s and !la1gll'a diagrams

which are not inclUded in current literatt1l'<>·o' On tllis basis tOO fa• tigua testa tol' the PZL...Sokol h&ll~

copter hledes were o~nduoted on 12

ihl!l'll'ltitfl•

a;f

Ji'l">t<>~pe bllld<>s

onl¥··'

Two

blade sectiono and root seg• ments involving root,retsntion .fitting were eY..amined'o' ·For ea.clt of these two blade secti-ons two se-g ... mento for each b<'llding plom were

~steda Identical tests mre car- .

l:'ied out up to 50 x 1 o6 cycles on each load level•'

There were three J.~a.d levels~ with tezmiJ.-2 oont-r.!:t:ugal

-tol"Ce··

Eaoh subsequent lovel of bending leads dii:fered from the preceeding one by

50 per cont at conctant tensile force.

In the course of :further testa the nUhlber of each type of blade segments is planned to- be increased to t, -a- 6., It provt!!d impossible to do.JT.:age the· blade spar in the course o:f: t1:m abO'"JC testa-.·

A .fe\'r blade segments that passed

t~ above -tests ur~erweut some extra fatigue. tests ("!; the tenwe:rature ot

80°C, and such tests with: a"l opera-ting deicing system. /Thin system

o~erated at 'limited electrical power

supply/...' An appropriate temperatUl"e' in the test c!Jnmller was kept by lamps

radi~:ting beat at: both up,PCl" and lo ... wer. skillS of the blade segme-nts·J

WEATHr:R1NG TESTS

!n order to check th& .fntl.uenee: o:l? 11 long-lasting exposition to tll:ia weaCher conditions upon the glass-epoxy composite strength; a

lot

of

small samples- we-re produce-di and subjected te- static:~: terufit:lni com.,.

pra~N.fon• and bend;litg ts:>tso: Th& tezrt.n: ~iC-"ttlar

zets ot

SaJnllli>a

11\9~ carried

out :ttf:er

2 .. 3

ye:tm~ of tOOm king G"'l)<!Sod to '""'~

t00>·1ng; Considerable <laet'l!ase 1n tll$ stl.'!ngth was nota<! in O!l!le o:t the t1llP

pa1ntad salnlllos .' Ill cu& of the samplols paints<'! ~lth an epoXy paint thin do~

·crease

was

oonsiderably amallero The

gNataot decrease and

scatter

ci:t: strength wall rwealold by samples subw

jecf:ed to OOml;tr<!as:!.on mats •

Fiw Mi-2 h&llcopter com,Podta blo.d~s 'l!ll:<'ll aloo exposed to "a"too~ l'ing,;

These

blades """" subjeci:od

to

sti:t::tmss maru~uremants and ultiui!!t& tiJir.s:!.cn testa each th:cae yeara O!

natural ageinft~ The

msts o:> swan

sa!llPlo.s were hold up to 10 year.li o£ natural ngeing;· and whoJ.e bl!ldos lllP ·to 15 years'!~-Tho mea:zurements of stii':l:mss and ultili!il't<> taooion t0sts o:t: aged blades

aitsr

15 years of M$ tura.l egei.J:J8 revealed satisfaototy statio .str£!ngthl and sop th~y v-;erc-approved :fOP. oporation tor such a

period of" tima.,'

1'h2 conclusions drtu·f.'3. .from the above tests trore uCiJ.ized iu 0.esig-ning the PZL-Solwl bl2,des 9 which ar-e made o:r al.I!.tost tm same mat.e.Lialc.,.

ThcGe tests nre beLDg carried out

by Warsaw Institute of Techl:to1orry;. and are alm>Jst completed by now .. '

All these testo gave basis :tot'

approving the blades .for te-sts on a tied""'Ciowri helico-p't:t:l"'"P and then :tOl"'

flight tests; with a zuggestion of' vpe:ra.t;ion on a ~rFA-IL SAFEif pri.ncip!h'a'

TIED~DO!IN HELICOPTER TESTS Those- ta.sts be-ga11 t1ith th~ measu:t"€1-ments of loads in

the

ehosen bla~e svc-tionsg rD-tor hubV rotor shaftu and, smwh plote - at !Ull 1'>\JW'Z of col.;, "' lective arlli <:-Jelic pitch

am

m1:1in ro-to:t· Z"o'PonloJ> :P:I:utter margin. had been. chetclr..ed earlier by 3- ptil'l"'" e-ant

d'if5P'laee-ment of the blode dymrllic llJl:is in di~

""'ction to the trailing edge; H had heeD. dono by placing appropriate

(7)

wights on the blade ·tra!line edge at 0'¢17 -> 0~75 of the blud$ rndiu.s.<

Thm~ different typo!s of blade

ga:rwJtr#stl t~~el'l! teatad,.' /See F1g·.1

2/ ~- '£hey c"~i:f'.fered in tipa and lo,.. cation of trailing tab.s,.

At tha beg inning val?i"-"t A bla"' den were Lestod-., These bl.fi4eJS caused a heG\'Y vihratl.on. o£ a tied-do-w

001.tooptsr~ which could be decr'?.HWIZ!d l1y i:':hang:Jng the- helicopter hu.rden

i:a. orrlor to dPtune jJ; from. the mairA £.mque .. 1csr transmitted through the bu'b, ;L.e, 4 Po' Gor>.z:tderablP- inr~Jre­

aR& in vibration wa.<; :1otlc.ed~

par-tic\.tlsrly at hjg}l collpctivc: and cycl.ic p11;ch, a~1d ~rt dccreas5.ng the m..1.in rotor I'".c',P .. m.

A simil!ar phonoruenou~ but con~

JSiderabl:V uJDl"e inte;n.se0 waa obset"Ved

on u full scale tr:msrnls::don r.ea't ::rtand,'

In spite o:f' an alarming beho.viour o:r a tiJ}d...Q.o"t<;n helicopter$ ;Lt. 'WaS decided to tes:t t.hQ blF .... dcs ;tn fligh.'l;;·o~

:r·t

was as.s.uood hern.; that the charao-tB:ric:tics

ot

t'11c pylon "" rotor sys ...

i::0'1l .i.s diffsrent in. flight than whtm

tied Llow.o. or on· a t.ra.nsmlssion sta.mh1 /;Jee chapter. concern:lng tests in

n{gnc/•

The endurance tied...Uown teats:- wre oattied ottt for ·10oo hrs ,· Each l.r.div1~

dual test lasted for 200 hrs, The

teats al'l> to be continlM>d up to 1500 hrsfJ- total.-.

Dur~ng the :t.ir.st 150 hrs·o'

ot

a tied...Q.O".m helicopter testa small. but esscntiul changes in blade construe,.. tion wero lle:l.ng tested., '1'ha variant C bludea

underwent

the tests atter first 200 hm o:t tr:-stingo.1

'Test load

measurements

in pa~tioular operatic~

ru.l sta(l()s

ot

200

hrs·,•

test """"'

~

out

ilt!:er the first

100

hrs•,'

of helicopter oPQration aXld then

bo foi'l> Blld e!ter -.ach 200 hm •'

peri0\1~'

A short maiden flight at limited zpo!ed was po!r;fol:'lJ!lld

on

thll halloopw.

ter Yb!eh wu to be used for tied"" dctru tosts; with tabluss blades; tapered at the

tips;

Piloting and handl.l.ng of the holico)iltor waa gc-ll<ll'<>lly good; but; fr<>m titue to t.ioo (,' some short. wa\l""es of vi bra ... ticn were observed in the tuselag,J even in h~ver: The meaaure~nts of

nu~a.n loada in the collective con ... trol nystem. roVthtkd too h.tgh valt!og·.,.' It was then decide'! that tho Vad.~nt A blad<2s; Fig.,.; 2f arc· to ~ tested on th~ :first flight. prototype he llcoptc.·!'·$' The variant A blades had 9 per cent tabs at Z:: :Q "0~29 e- 0.-7t and angles o.t def ....

leoti-en h 'l' m 15° + 4° UP'>'lUrd to the nominal aii~.foil chords .. ·

Fil•:Jt flights with the variHnt A blades revealed too high a hc:J.l~.~

copter vibl~ation; high hub ar;d controL Ejatom loads within the airspeed ra:ngt? .from 30 to 120 krn/h~

and UU.<Jafe Wl.luos at the a:trsp-2eda ovc::.• 120 kmjh·.,' Shortening the tab.a lrc:J 9 to 5 ~r cent resulted ln considerable improvement:, but did not soJve the whole pro'bleu-.· Tharc: ware- nlr:o certain difficulties .tn

b:k1.de tmcld.n.g.;

Th{! l'eCOrtta

ot

blade to:t•sional moments T1

o:t

X:

~ 0~59:) and. fea-thering moment T0 versu .. .:; blade azii:!Plth are shown in Fir;s$ 7 and 8

~or hover and level flight at V ~ 80

km/h•'

1\. hypothesis had been put

for-warn

that the oel:f....,Y..Citing vibra-tion !frovokcd by self-control o:f hydraulic booot~rs groro gear box body vibratl.on; way bo reeponziblu for theao probl('H'!ls~' In order to solve them~ the range of hydraulic

botJstors insehsivity 'had been ,in-a t)~asad..,' It appeared;· however' that

the problem rernnir..ed tmsolved •· Tba pilot had again hat! SOllllil probluw.ll Jn controlling the aallooptor; oven in hover-.. ·

Tbe situat:ton

was

critical ... tli..t?re ho.d OOen a he-licopte-r; but tl!ere ware no possibility to .fly it.

(8)

were rather depressed and cre:;rtfal,. leno Variou.rn hypotheses \'mre baing put :f'ol'Will'd. CheckL'lg them did not gl:;e any s'l-t:i.a:factory explanation of the Ifuenooonon.,

Nevertheless :it

was

s\l.I'C that there is some self-excited vibra-tion on tho helicopter,. The question. remained: by 'l'lha~ chmmaJ. and ..,.;t...ere

from the anergy 1z transmitted to the helicopter.systems· supporting l:ts vibration?

In this critical momen:t, the chie.f designer put for.·1ard a see..; mingly incredible hypotheol.st at very lovr .forward speeds 1 and

some-times in hover,. there appeal"S a · strong stall flutter phenomenon on the rotor blades .. This conclunion had been drasm from t.h.e records of blo.do to\"Bioual moments lJ.•1 and T

0

-Figs., 7 and 87 "Vrhere the notation 3

dcnotos suspected complete cycle of rJ.orucnt stall. 'Xhe records of tor-sion3.l moments T1 a·t ;(': = 0$595$ in

Figs. 7a and 8~, show an un.sta.ble behaviour of the outboard blade p~rt

oud it could 00 suspected that seve-ral stJll cycles exist there.

1'00 hypot.he3is was confirmed by T1

wavo~orm, Fig .. ec$' where evident calm-n.::ss o£ the wo.vcfoX'!1~11 au.:l a smaller amplitude a:ro observed·., Handling of the helicopter in descent, .fl~1;:;m the

very

beginning o:f the flight tests;

\'las suf.ficicmtly good and vibrati<?n \'IUS kept at a low level·$

It is t1orth to mention that the suspected moment stall spikes in the

fe.o.thering moment records /T

r/

ap~

pt"!arcd as cycles o.f tors.ional :ros-!JOT.Ze •::e 11 wlthin the basic 1 P

wave-formf Fig,. sa ..

Aiter receiving the above mentioMd results, tho work was conccntre.ted upon the bJnde., At tbe same tiiDn tl:t..e solution :for 'the pylon resonanco 1froblem was soug'ht. Among other things ~t o. pendulum vibration absor-ber, mounted on a hub head; :for tlre 3rd excitation i'requenc--y in the ro-tation pbne was '?onstructer.'Ll'

Sunpocting "chat the main Te.Json !or the stall flwtter was the

irn-proper characteristits of tho air-foil aerodynamio momant coefficient at

r

ru 0!')75

*'

11(!0; and the decroase

in CLmaX o:f tha airfoil at

r

=

0.29

~ 0,695 in result of tns trailing edge tabs defl.ected uxrwardfl:t ~

,. the tabs at

r

= 0,29 .- 0,695 ware removed, and 7.tJ;lor cent c chord tabs in the chord tJlane at

P

= Oo 75 i- 1(,0 11-erc illt:roducud o

The taos· f'ol'il'lhd extensions o! ·the catalogue_ airfoil chords except for one tah-segruent a t ; c o.S67 7 Oa925 deflected 8° upvm.rds .. In re-sul.t of these yllLU"..ges

p

variant B blndc

f!/20-metry was received,, Figa

2.,-With this blade variant installed the helicoptet' e.X'rived at: the t{SSt1med

for the test airspeod of 200 lm:/h, revealing considerably lov:er vib:t.•a.,•: -tion.,

r·t

becaoo cleo.r tf.!St tha -tra:I .... ling edge tabs·constitute an irJporn. tsmt :factor~ l'ihich influences tho

love~ o;f hBlicoptcr vibration .. T11.iil blade cottld c.l!;l(; be Gaslly tr.sJ.::Y..able,.. An experimental flight wao also per ....

formed.(,' with all the above mentioned tubs detl.ccted 4° upvrards - the level. of vibration increased conside~ably

again; so tho tab angles 11ere cortverbf ted to the former ones~

Hcvsver; because of tho high J11Ltan load On the Si'!BSh plater it \1(:1;5 de""' cidcd to try t.he variant C bladas /Fig~ 2/;; with tupe:rod tips 9 and

si-miliarly arrange.i tabs f but~ 5 v~r

cent c long-.

Since a set of bJ.ades, V&"!:"</ simi,... liar to variant c, was prepared L"l the ~6antime$ it was decided to ~4r­

fo:rm Gxperimental f:..ights \ii·th ·tben~ blades~· These blades were denoted a.s variant effie

This set o:f bladeS had 7 ..-5 per cent c tabs a1 .... :a.nged identically e.s variant Bi- hut had no tab at

r

=-0.,.925 t- 1

·"o"

To more detune the fuselage from the main excitation fraquoncy 4P9

(9)

'th;: ·top oi' ·thtl wain rotor -e1ta:ft·;\ The lmlioo'pter in th16

Uf£':1; ui~h tbil variant bladS!s ilk>'t&llzd; <'<~&Ciled 260 !r:El/h m;rll\rum

l@V¥JJ. _apo~d$' The recorda of eelr!!obld

mt-dB t""oior- are presented in

9i

<10,, .arrti 1:h 'T!wy shaw

th&t tha- e!wr:aoteri$tic stall mp:Lkk?z appea:t' u~l:: \1 u .2.60 .at. 20-'taw tip speed IL H ~ Zl2.5 m/s /F~.;

Ha/;

tlw.d confirm: t~ ymBence of pylon :t'0ZJ0llance vi th ::Jrd ilamon:to exci-tntW:r- :fnq_ooncy in chordwitlc p'l€ne

11 b/e ond with 9th har;JIDniO ezoitation freqtle:ncy in .tla.j?w.tse

plane~ /fligs' 1ic/4 /See a1Bo Figc' 6/',' I t !lllll'!'t !Je also noted t!Jet tlw 3rd hat'turmic of shaft: bending morr<0nt c:ons.tck:rahly in<:::t"eases; together· with t:he zop--oarnnce of ob.aractor.tg-tio stall. spilroa on T

0 plottir'ij.

rt can be seen in Figs.' 10d nnd 11d• wh0:re it i.s alnlost doubledo'

Sl,mili&:rly i it lla)!FOOO wit.h tlw :tlapp1ng ungles; Figa~ 10£' and 11!,;1

F1_g;~~ 12. presents :feattwrir:g mo~ 7il!JUts '1'0

tor

VO:I'iant C'fl. bledea with all th%1 5 pe1 ... cent taba de!leoted 4° up.., weight flf: 6100 kf!,s/ It

w,ay

be observed that t'hidtJe charac~rist1c

"pilros "~'"""" at 'I s 22.0 l!m/h, and

rr;tol'

tip SlJ'led ib fl. .; 200

!IJ/a>

/li'ils•'

12a/ ~ and they disau1p(!ar wi:th rotot' tip speed incn:-ease to Qt Ra 221 m/s& /IN,g. 12.b/. Tl121, aPll'l!U' again with the ll~licopter all't:llJ'led increase up '.to V rn 260 km/h Jli'ig;, 1'2.e{.

In 0.ach case tho stall a-pil",.os ~

11'!!!1:'6<1> tlw helicopter, v~bmt1on lJl.. on;aJJr::d.-&1 Vi& can say

that

tho: mre

,i,ataMe· apik!)fiiJ' the mo:t'EI intense th.e hlllioopt.er vibratio.nf;o1 Neve~las£.~.p'

tlw gene® opinion of tlll pilot;· oo w?l.l -as th-~ me~.Stt'l:'emont :recot'd.s ·bake~

flit

IIR '" 220 ro/Sl' ''"'""' ratlw:r podt:l:V<lb' ColllPL!ri&on of tho r&t§Ults of nigl:ti;

tosts. ot

var~ts !l and C~lllades sllowo:A 'blwt the swept back tl!.paw.d tip g!veB higher ro:san loarla 0.n

control

systamo· both in co:UeH.rl;in alld cycll.o pit®&'

mcreas5eng the lllean anti perticularl{f first hel1ll(Jnl.o

ot

tlla f@atll~X'ing

V1011Wll:1.:ci

if-<mJ.--1.r.ll1t c bla.do ncrnmtitut.es ~tne .final con:f'igurB'l:i!ln e;f PZL....Sokol ~in rotor blade; Tho 5 par cent tabn at

r

~ .04"l55 .lj< 'htl fom exb&n ..

tions o%. upper .and iowr sld.ns of' the bl.gd;z. u±td colnaide with the

oht,Jn'f.$ o:l nominal air.foil.'(l ~ eXC\?pt

at

r

<:1 o¢-f151 i?' 0;.:925,1 wham tl'i..e tab

ma~:nt is

dQf1eoted 4°

upwardA. ~d~ ditio1JH'l 9 ]JOI' cent o tab at 'r =

01b695 q. 0-~:>4152 is mudo of duralumin

and jJ3 used £or tMl"l"'>'Jd_ynaroic blade

iaiacking"'

· A:Cter introduct:.to.n cr.f th~ ubove blarl.esp md a hub mountvrt.;. Sa1.omon

i;y.pt;J& pendul1nn vibl"ation absorber fer 3tt'i. ha::wonic .fruqmm.cy in the rot:ation plane~ the helicopter rnacl'J.ed th& level speed mrer· 260 lnll/ht with

£.\

R

=

220 m/s.

It al'J?>Ol"'d that at .12 R ~ 21 0 m/a ·the hollcopt-ec IDo.y 112ach tJm o.ir-speed

at

240 km/b@' cmdt at fit R =

200 rn/s

tao

lrnl/h ,the level o:£ ~ibrution rGrnaining lowa

It """ l'ww1ct

out

that i:t

.ib

R i£1 not inOI'eB-£Hsd above tiu:wo vsluca :tt

leads to incrunsad

vib~~ton

and

cha-raotcri3tic spi~es in !oatharillg :mtJment :t'OC::Oxds: T

0;- and increo.se o!

"""'"" plate al:ternate JUO!l!ellts ; es~

Jli'Oi&:U;,r ll'ngi~udinal; in cyclic oontr':'l; lihich; as a 'Whole 1 may be 'treated as tl:ll'! evidence :for stall

tlutter~1

Tl-w recorda o! feathering moroortt J:or• final con:f&j!umtion of tho he:ll<oo>>tor with variaut c bli>des aru shotm in Fig¢ 13-.1 Figs' 1ft. presents

the ch811gos l.n svaoh plate control. loads ve!:'!lte• he:Ucoptcr a.ixslJ'lOd.'

!fox- economic:al. reasonst in :result iiJt.ilt :fllght ·tests ;• it """ doclt!ed to

pruso"""e the possiblJ:> range o! Jl R m

200 "' 22.0 m/8$' >tnl.eh !led been rulOU!'0d e!U'li<lr

1J:r

appropriate doaign o:i: the !X>Wt9:r:!'ltmt a:JEctro'"ll:jrdraullo :tui>l ccntZ"')l system;:,!

A:Uwa!Jlz rotor t:l.p SlJ'leds verntm hellco)ll;e>' &irspe•d and dell!lity alti~

(10)

1d The main reason fo~ the negative dynamic phenomena on the l'Z!PSol<lll helicopter in

the

preliminary

stage

o! :flight testa was the staU fiutJ:er o! the main rotor blades

0

which a!""

poared at very. low airapeedaf

and on a tied"'(].own hellcopterp· as 'tWll

as

on. a natural.transmisaion test standj)1 at high collective ruaior cyclic pitoh;,1

The second but not less important reason \'i'M that the so ... onlled pylon resonance frequancy 'i'ms close to no-minal main rotor rop~1n-· ueur.tngu the prob,em Uf elimination o! pylon re• sonance only woUld be a passiVe m~ thoo;· which would <Improve naither the

blade operation nor the helicopter

~rformonce;.· It also '\'!Ould not au£ ... :ficir::m-:1.y decrea.s€:: the hub and swash pL.l.i:O load!r,· An ac·Cive method of dru.ling with the problem \'1M to ;re ...

move ·tho .Ertall :flutter·,,' It decreased the loads on t.hc hub and SivMh plate;; the helicopter vibration; and 5..m"" proved its perforroru1co-.:. Neverthelesa;· with no hub mounted vibration absor..., bert it would be difficult to talk about a good helicopter,.

2o It ::!.i3 particularly iiDporta.ut

tor

the blade t·Tith loH torsional stif ... fncss to appropriately select the aerodynamic characteristics o:f the airfoils f especially s.~

.. ·

3 .. St:cpt back tapcre?- tip appeared. to be lc.ss e:tfec·tive than tapered tip in

the PZL-Soh.ol. blade configuration .. It t•Io.s responsible .for the increase of mean and 1st harmonic feathering

mo-ments-.. Ho1·revor1 a positive f'oatu_~ oi

thls tip should also be mentioned here - it increases ·the blade J?~ndulum

flutter margln ..

Lv., Upvani d(-:!.flection of the air-.foil trnili11G edge tnbs. in tM PZL...sokol. bhde config;trrotivn. decroaac-s the atall flutter mnrgin1 increases tho hub and

control system loads; and helicopter vibration(!

5 .. The PZL-Sokol. main rotor bladeV being a low tor!fional atif.ffl..oss bl!>.de has some features of tte

Aerocl&Jti-cally Confo:i:mablo Rotor Concept /ACRC/ bladeg- ns the airfoils pr~ssure centers are col'lGide-rably behind the olru.rtic . centerB'o1 /Se.e F'ig'o' 2/

6o' In the development of

the

ACRC blode aJ.imination of the stall flutter pJ_w.., noil'l!?nUn may appear a seriotLS. pr,fblemp which; as it seeDJS~ has not bet.m dis~~

cussed so .faro

REFERE!lCES

1·ol Fo-'Oo'Cartag' et$'al·"·o Detel"min..<1.thm of airfoil and rotor blade dynamic eta.11

~sponse.g· Journal o:f the Amel"ican Helicopter society; Vo·i 18, Ho. 4; 1973<;

2~· Rn-It:::Blackt.;e-11; et al-,;$- Wind tv.m:;.cl evaluation

ot

.aeroelazticr1lly com~-·

:f'ox'I!lable rotors;· Journal orf' the J';.me'"'

rican Helicopter Socie·ty; Vol., 2.6; Uoeo 2Q 1981-.,/

.3"-:.' R,.:fl,.Stroub; et al·,.1;: Roto:r blaG.C tiD shnpe effects on performanct? ond control loads ~rom full-scaln ~:T:!'.:rvl

tUD.llC'1 testing; Jour11al of Amnri.can Helicoptcu• SooiAty;' VoJ.~'- 2.lfv No·.,. 5~

1979o'

4o J·.,t·1.Hartin, et ul., t' An cxperintmtal analysis of dynamic stall on hn oz ... cill:lting ail•foil; Jourf!..al of th0 American Helicopter Society; Volo 195 No·,. 1; 1974-.,·

5·., R"R9Black"i:m1J.t et al· .. ·; The aeroeluo'"' tically coniormable P~otoi' Concept; Joul"''lal of ·the American Helicopter Society; Vol·9' 24j No., 4, 1979 .. Go F.:;J·.,Tarzanin, Jr .. ;: Prediction of

Control. Loads Due: to B1.t.rle Stall; Journal. of tho American Hc-L.copter Society; Vol. 17; llo. 2, 1972.

7·c'

'!'[.,'Johnson;' <::t al,,:;· On the LCJc-ha-nisn\ o:f dynamic stall.; Journal of the Aoori.can Helicopter .Soc.i.ety tl Vol·,; 17; No·e.; l~; 1972e

8·~- RnG-eoffray Ben.son:1 et al·,.T In.flu""' eilce of s.irfolls on otall .flutter· boundaries o:f articulated he licop+-: ter rotors .t JDurnal o:f tho Anmri~~

c-ru1 Heltcopter Society~ Vol,.' 'I S9

(11)

core

trailing

edqa:

tab

Figure 1. TlJpical

outboard section

of blade variant·

.,c''

geometry.

Tab

Blade's parametres:

~.

vqrtant:

A."

)

7

Radius

7,85m .. ·

Nominal chord O,'Hm

Tab

Airfoil

NACA

230M

~

vari.ant

.B".

)

ThicKness ratio:

7

16.;.

9~

from

root to tip.

Twist 40"39,

10

Tab

Tip

speed

wR=210-mfe.

i~

voris:mt,c•_.

-~

0.695

0,9.253

~--4---~---~*---~~~T

0,0 0,1036

t

UJ 0

ID

~

!5

:::!10

<(

~

5

0.29'!9

0,7526

1,0·

Figt..we2. Rotor blade

geometri~s.

_::L.-~Mfns

kqm

10

c.

a,

E ..

c

[mmJ

8

6

FEATERINC.

;:

ELASTIC CENTERS E.C.

Figure

3. Mass, centers of·gravitlj ·and elastic centera

di&tri buhons.

(12)

·~Cr:tlJo

1o·4

e~

16

3

£::k

[N

rr,

2]

(Nm")

,.50

40

30

l...______ff --

~'

~~---~

.

20

10

TORoiONAL 5TIFFNE55 C.;:Jo - --~

1---r---~---~~---~

T

~

2

A

~

B

1D

F'IC:.Uri.E

4.

Fl.APWI&E AND CHORDW15E BENDING STI FFNE&S Af.lD r0R510f'JA1-STIFFNESS DtsTRIBIVTION5.

P/Nnam

10

B~-+--4---~-+~~~~

7~-~~~~~~¥-~

6

1---:1-::s,.e:::.+----f-Hhl-i~~l

p

FIGURE

5.

CALCULATED .BlADE FREC.UENCY DIAGRAM WITHOUT T>!E INFlUANCE OF PYLON FLEXIBILITY.

HUB .REACTIONLE5S MODES.

4·6 -10

FIC,URE 6.CALCULATED BLADE FREGUt--JC( DIAGP.AM WITH THE IN

FLU-ANCE OF PYLO~J FLEXIBILITY. HUB REACTION CYCLIC N\ODES.

(13)

·o-=-140±140Nm

Or---~~-=~--~~~----~~---~-l~

~

~

..

'E

~.

..,_,~':=1

+i

z

'

.FIGURE.

7.

RECORD!\ OF

TOR~!ONAL

N\OMENTS

OF

THE

BLADE

".4

AT

f

=

O,tl95

AND

To AT ROoT

1 .

IN ONE Of' HOVERS. QR=210mjs.TOM ..

5410

kg

BLADES - VARIANT

A.

V"'80km/h

H=600m

~

o

t-+---¥-l---+-P~--+----,l..-,i--+----,r--~QR=212m/s

'X

!::

0

To=-134±316

Z

"l

Nm

9~---4·~+----+~~·~

~r---~-+---=~--hr---~-=---r---~-~

I

~~~~.

Nm

~~~~·hR~~t~-U~~b4~~A~A+-~~ru~~~~++4A~

'I(

~2

I

Cf

00"

A0°

J~

~~---~-~--~·~~~----~~~----~~_;-~~T~

0

0,2

0,8

l:

1 Decent

0

....

~ 0~--J~----+~--~--+-~~~

H=500m

V=90km/h

-f---1...-+---.f----41To=~a9:!:217

E

z

Nrn

~~--~~~.~-4~~~:=~--t~T=----~~-1~~1=~07149

1

Nm .

.

~---4~--~~~----~~--~--~~w

0.2

(44

0,6

0,8 '

t

1.0

FJOURE

8.

RECORDS OF TORSiONAL

.MOMENTS

OF

THE

BLAPE:

.

£.

AND

.Q.-

AT LEVEl- FLIGHI WITH V

=

00

l<.m{h

""-AT DECENT

WITH

V=90kmjh.

B!.APE!:>- VARIANT

A.

TOM "' 5410

1<.9.

(14)

M.t'"

150:!:661

~--~---~----~-h~---~~-+----~--~---4

Nm

o"

360°

SMd'"245~5650

Nm

ot

....

A

-

,.

I'

...

..

I

_!{

a

:7 -

,.

'

.0

.i

..;,

. .2

.3

.4

..5

.6

13

.9

1,0

'C

'

(15)

~r---~---·---a

I

y

b ' - - - H - , J - - - -

---i -

I

I

T

0

=-32t211

---1--1

Nm

Mr=20.5!958

Nm

SMd=-265!349..5

\

Nm

~;J~-+.~r-~+~~~~-4~-~r~7r~~-~~fl-~

\/ 5Mu=304:!:1725

Nm

5Mdnr~:t2220Nm

Figure 10. Records

of rotor

system parametres at level fliqht-

·

with V

=

206

kmfh.

.

. · ·

TOM"'

5410 kq, H =

562

m , OAT:::: 26°C, QR= 217

m/s. .

.Blade:.- variant

c~

vvi th

onetab8"'upfarr

=-0,6617-0,~25

(16)

'

~

"

·_g_

A

ts

n

I

. J

\,..To

.

I

\

/

• ' f\

'

\

.

{\

I

1\j

L

\J

' '

J

J'v'

r

5

i/,

I

\

':L

..

I

·l

!\

.A

.Q.

(\

2.~

t-

'{\

MY 1

'

.

/

0~

.,-)<

E

:zo

.

A

V'

I

V\

v

n

3

''v

V\

v

V\

-v

\

0

~

1:---1--fr---+----:-.--:-f~--.!1·1!-l!-..,..

X

E

0 f---1-=::-:r--IH+-''--'.1---HI--..-IH---+i K+f-\-f---"--4 z"'~"

v

-r

~

--v

I

----::--:;-11 ' •

-lll'\t"'447t497

1\lm

(17)

o.o

Y:

!P

1----.-+::;;;..

E

:z

...

8 '\

I

g.:l...

--..~!_

. .:..· __ _.

'

.6

.7

.2

/'") To=-160±2!"5.5·

1---1--.;.1

N m

I

\ s :

I t v , 'J I

.8

.9

1.0

To=-156:!:286

Nm

Flc;;.UP.E

12.

RECORDS OF TORSIONAL MOMENT$

To

OF

TH.E

BLAD!:

WITH Dl FFERENT ROTOR. TIP· SPEEDS.

.

TOM"' 6100

kg

1

H

=

650

m,

OAT= 25°C.

BLADES

-MODIFIED VARIANT C':ji.WITH.S

1o

C TABs,·

ALL DEFLECTED

4

°

up·

(18)

'

.9:.

oo

Hover

""'

H=58m

XCII

f.,..

Z l

To=-74:!:80

(;!q

....

oo

:5600

'Y

Nm

"'

A

"'

I

0

~2

.4-

.o

.B.

t

1.0

C\1

..,..

I

V=80km/h •

oo

-1

To==-84±163

...

·x

I

Nrn

Et:'l

zT

2!;

I

oo

360'

(J)-4>

+

....

"'

A

~0

.2

.4

.6

.8

1:

1,0

--+c

J

To

j-

\i

V=227km/h

,,

- t - -

--~

r;

-"o'j-<-

2'~4

I !

o-

..; -

?..

I

; .

N

n:

I

'

I j I

"i'

i

- - - i

I

~,

I

360°

'

I

!

<pj

0"

I

~-

+

4>

I

0

C'l

-'<:"

0

'<:"

)( 0

E

z

01

""

I

'+

q

-I

;;s

I Q

"'

+

4-.2

.6

,6

,l..

...

1:0

I

·-j

V:::265 km/h

To

I

___J

To=-116:!:.24-1

I

'

I

Nm

....

...

.z

t+-

.13

FIGURE 13. RECORDS OF TORSIONAL MO!Y\ENTS

To

OF

THE

Bl-ADE

IN

HOVER

AND AT DIFFERENT

LE:VEL

AIR!:>PEEDS

TOM =6100

kg,

H= 440m

j0AT=2"C

1

QR"'

220 m/s

E>l..ADES ·- VARIANT C.

(19)

LONGITUDINAL

MOMENT

·Nm

:roo

!ll

_...

.

\J5TEADY

I

..

400

..

3 ~ 200

ALTERNATE

100 0 Oo 0

~

C>

...,

0 0 0

lA:'>

0

--kmjh

100 120 140 160

180

200

2ZO

240

260

Nm

LATERAL MOMENT

200

ALTERNATE

100 4

-.

~

0

--A

...

"'

lAS

0 100 120

140

160

·lBO

200 220 240

-260

k.mfh

-100

-200

·500 -400

STEADY

-500

~

·600

1000

COLLECTIVE LOAD

0

IA5

100

120

140

160

180

200

220

240

.260

km/h

-1000

-2000

STEADY

~

"

"

~

-3000

N

FIGURE 14. SWASHPLATE LOADS VERSUS AIR5PEED

1

TOM

,.6100

kg.

QR=220mjl>.BLADES-VARIANT C.

.

.

(20)

~

i;;

E

I· Ul

A

·::l ;.. ~ <(

~

,ifi

z

llJ

A

5000

4000

.3000

.woo

1000

1--I

I

"'

'

'\

-10J INDICA1 ED

"\

"

-"'

---TC

f\11.

Fo6

oc

kq

-"'

... .s;>

"'

l\p

.. r

"'~'-" ~

R.,

~.--.

;y---~~- ~ ~

.

'~ ~-

I~ ~

~--

;JJ

---f-~·-I -

i'-..

1'....1\

I

I

r-.._

f'\

0

.5000

1---1--l--1

100

200

INDICATED AIR,;PEED -

>~mft,

-

1----

-

1-:;oo

FIGURE 15. MA'/.fMi.JM ALLOWA.BL.E AID5PEED VS r.ENS!TY

ALTITUDE

AND

QR, BlADES-

VARIANT

C.

Referenties

GERELATEERDE DOCUMENTEN

The studies presented in this thesis were financially supported by the Lung Foundation Netherlands (Longfonds; grant number: 3.2.12.044) and by the Australian National Health

In total, 27 functions were suggested by the panel members in addition to the 42 functions as mentioned on the list of predetermined neuropsycholo- gical functions

The parameters are interpolated along with the geometry similarly to how colour is interpolated in an ordinary gradient mesh, allowing for spatially varying noise pat- terns..

Natuurlijk de collega’s met wie ik inhoudelijk heb samengewerkt tijdens mijn onderzoek en de Experts PG voor hun kritische reflecties op het onderzoek en de leerlijn, maar zeker

theme is Living Labs, and it is my pleasure to introduce our guest editors, who have been regular contributors to the journal on this topic: Seppo Leminen (Pellervo Eco- nomic

If someone is assigned a humiliating set of liabilities in real life, say, a Central African Republic citizenship, instead of a noble and dem- ocratic status boosting one’s rights,

We present a sequence- to-sequence neural semantic parser that is able to produce Discourse Representation Structures (DRSs) for English sentences with high accuracy,

Hoe veel invloed het voorkeursbeen heeft, is echter niet bekend maar er bestaan wel enkele theorieën over de relatie tussen het voorkeursbeen en de voorkeurskant om de circulaire