• No results found

Precision holography and its applications to black holes - Bibliography

N/A
N/A
Protected

Academic year: 2021

Share "Precision holography and its applications to black holes - Bibliography"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Precision holography and its applications to black holes

Kanitscheider, I.

Publication date

2009

Link to publication

Citation for published version (APA):

Kanitscheider, I. (2009). Precision holography and its applications to black holes.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)

and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open

content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please

let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material

inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter

to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

will be contacted as soon as possible.

(2)

B

IBLIOGRAPHY

[1] I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP04

(2007) 023 [hep-th/0611171].

[2] I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP06

(2007) 056 [0704.0690].

[3] I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal

branes, JHEP09 (2008) 094 [0807.3324].

[4] I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes,

JHEP04 (2009) 062 [0901.1487].

[5] J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys.2 (1998) 231–252 [hep-th/9711200].

[6] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from

non-critical string theory, Phys. Lett.B428 (1998) 105–114 [hep-th/9802109].

[7] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998)

253–291 [hep-th/9802150].

[8] G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026; L. Susskind, The

World as a hologram, J. Math. Phys.36 (1995) 6377–6396 [hep-th/9409089].

[9] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories,

string theory and gravity, Phys. Rept.323 (2000) 183–386 [hep-th/9905111].

[10] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS/CFT

correspondence, hep-th/0201253.

[11] P. Breitenlohner and D. Z. Freedman, Stability in Gauged Extended Supergravity, Ann.

Phys.144 (1982) 249.

[12] I. R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl.

Phys.B556 (1999) 89–114 [hep-th/9905104].

(3)

[13] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023

[hep-th/9806087]; M. Henningson and K. Skenderis, Holography and the Weyl

anomaly, Fortsch. Phys.48 (2000) 125–128 [hep-th/9812032].

[14] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun.

Math. Phys.208 (1999) 413–428 [hep-th/9902121].

[15] S. de Haro, S. N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime

and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001)

595–622 [hep-th/0002230].

[16] K. Skenderis, Asymptotically anti-de Sitter spacetimes and their stress energy tensor, Int.

J. Mod. Phys.A16 (2001) 740–749 [hep-th/0010138].

[17] M. Bianchi, D. Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08

(2001) 041 [hep-th/0105276].

[18] M. Bianchi, D. Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys.

B631 (2002) 159–194 [hep-th/0112119].

[19] I. Papadimitriou and K. Skenderis, AdS / CFT correspondence and geometry, hep-th/0404176.

[20] I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP

10 (2004) 075 [hep-th/0407071].

[21] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19

(2002) 5849–5876 [hep-th/0209067].

[22] K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP05 (2006) 057

[hep-th/0603016].

[23] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three-point functions of chiral

operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys.2 (1998) 697–718

[hep-th/9806074].

[24] G. Arutyunov, A. Pankiewicz and S. Theisen, Cubic couplings in D = 6 N = 4b

supergravity on AdS(3) x S(3), Phys. Rev.D63 (2001) 044024 [hep-th/0007061].

[25] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975)

199–220.

[26] P. K. Townsend, Black holes, gr-qc/9707012.

[27] O. Lunin and S. D. Mathur, AdS/CFT duality and the black hole information paradox,

Nucl. Phys.B623 (2002) 342–394 [hep-th/0109154].

[28] O. Lunin, S. D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?,

(4)

[29] A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys.

Lett.B379 (1996) 99–104 [hep-th/9601029].

[30] J. D. Brown and M. Henneaux, Central Charges in the Canonical Realization of

Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207–226.

[31] J. L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl.

Phys.B270 (1986) 186–204.

[32] P. Kraus and F. Larsen, Microscopic Black Hole Entropy in Theories with Higher

Derivatives, JHEP09 (2005) 034 [hep-th/0506176].

[33] C. G. Callan, J. M. Maldacena and A. W. Peet, Extremal Black Holes As Fundamental

Strings, Nucl. Phys.B475 (1996) 645–678 [hep-th/9510134].

[34] A. Dabholkar, J. P. Gauntlett, J. A. Harvey and D. Waldram, Strings as Solitons & Black

Holes as Strings, Nucl. Phys.B474 (1996) 85–121 [hep-th/9511053].

[35] V. S. Rychkov, D1-D5 black hole microstate counting from supergravity, JHEP01 (2006)

063 [hep-th/0512053].

[36] V. Jejjala, O. Madden, S. F. Ross and G. Titchener, Non-supersymmetric smooth

geometries and D1-D5-P bound states, Phys. Rev.D71 (2005) 124030 [hep-th/0504181].

[37] E. G. Gimon, T. S. Levi and S. F. Ross, Geometry of non-supersymmetric three-charge

bound states, JHEP08 (2007) 055 [0705.1238].

[38] S. Giusto, S. F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK

system, JHEP12 (2007) 065 [0708.3845].

[39] M. Taylor, General 2 charge geometries, JHEP03 (2006) 009 [hep-th/0507223].

[40] O. Lunin, J. M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with

angular momentum, hep-th/0212210.

[41] B. C. Palmer and D. Marolf, Counting supertubes, JHEP06 (2004) 028

[hep-th/0403025].

[42] D. Bak, Y. Hyakutake and N. Ohta, Phase moduli space of supertubes, Nucl. Phys.B696

(2004) 251–262 [hep-th/0404104]; D. Bak, Y. Hyakutake, S. Kim and N. Ohta, A

geometric look on the microstates of supertubes, Nucl. Phys.B712 (2005) 115–138

[hep-th/0407253].

[43] K. Skenderis and M. Taylor, Fuzzball solutions and D1-D5 microstates, Phys. Rev. Lett.98

(2007) 071601 [hep-th/0609154].

[44] L. F. Alday, J. de Boer and I. Messamah, The gravitational description of coarse grained

(5)

[45] E. Witten, On the conformal field theory of the Higgs branch, JHEP07 (1997) 003

[hep-th/9707093].

[46] R. Dijkgraaf, Instanton strings and hyperKaehler geometry, Nucl. Phys.B543 (1999)

545–571 [hep-th/9810210].

[47] N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP04 (1999) 017

[hep-th/9903224].

[48] A. Pankiewicz, Six-dimensional supergravities and the AdS/CFT correspondence, diploma thesis, University of Munich, October 2000.

[49] L. F. Alday, J. de Boer and I. Messamah, What is the dual of a dipole?, Nucl. Phys.B746

(2006) 29–57 [hep-th/0511246].

[50] I. Bena and P. Kraus, Three Charge Supertubes and Black Hole Hair, Phys. Rev.D70

(2004) 046003 [hep-th/0402144]; O. Lunin, Adding momentum to D1-D5 system, JHEP

04 (2004) 054 [hep-th/0404006]; I. Bena, Splitting hairs of the three charge black hole,

Phys. Rev.D70 (2004) 105018 [hep-th/0404073]; S. Giusto, S. D. Mathur and

A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys.B701 (2004)

357–379 [hep-th/0405017]; S. Giusto, S. D. Mathur and A. Saxena, 3-charge

geometries and their CFT duals, Nucl. Phys.B710 (2005) 425–463 [hep-th/0406103];

A. Ashtekar and G. J. Galloway, Some uniqueness results for dynamical horizons, Adv.

Theor. Math. Phys.9 (2005) 1–30 [gr-qc/0503109]; I. Bena and N. P. Warner, One ring

to rule them all ... and in the darkness bind them?, Adv. Theor. Math. Phys.9 (2005)

667–701 [hep-th/0408106]; S. Giusto and S. D. Mathur, Geometry of D1-D5-P bound

states, Nucl. Phys.B729 (2005) 203–220 [hep-th/0409067]; I. Bena and P. Kraus,

Microstates of the D1-D5-KK system, Phys. Rev.D72 (2005) 025007 [hep-th/0503053];

P. Berglund, E. G. Gimon and T. S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP06 (2006) 007 [hep-th/0505167]; A. Saxena, G. Potvin, S. Giusto

and A. W. Peet, Smooth geometries with four charges in four dimensions, JHEP04 (2006)

010 [hep-th/0509214]; I. Bena, C.-W. Wang and N. P. Warner, Sliding rings and

spinning holes, JHEP05 (2006) 075 [hep-th/0512157]; S. Giusto, S. D. Mathur and

Y. K. Srivastava, A microstate for the 3-charge black ring, Nucl. Phys.B763 (2007) 60–90

[hep-th/0601193]; I. Bena, C.-W. Wang and N. P. Warner, The foaming three-charge

black hole, Phys. Rev.D75 (2007) 124026 [hep-th/0604110]; V. Balasubramanian,

E. G. Gimon and T. S. Levi, Four Dimensional Black Hole Microstates: From D-branes to

Spacetime Foam, JHEP01 (2008) 056 [hep-th/0606118]; S. Ferrara, E. G. Gimon and

R. Kallosh, Magic supergravities, N = 8 and black hole composites, Phys. Rev.D74 (2006)

125018 [hep-th/0606211]; I. Bena, C.-W. Wang and N. P. Warner, Mergers and Typical

Black Hole Microstates, JHEP11 (2006) 042 [hep-th/0608217]; Y. K. Srivastava, Bound

states of KK monopole and momentum, hep-th/0611124.

[51] V. Balasubramanian, P. Kraus and M. Shigemori, Massless black holes and black rings as

(6)

[hep-th/0508110].

[52] K. Skenderis and M. Taylor, Properties of branes in curved spacetimes, JHEP02 (2004)

030 [hep-th/0311079].

[53] O. Lunin and S. D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys.

B610 (2001) 49–76 [hep-th/0105136].

[54] L. J. Romans, SELFDUALITY FOR INTERACTING FIELDS: COVARIANT FIELD EQUATIONS

FOR SIX-DIMENSIONAL CHIRAL SUPERGRAVITIES, Nucl. Phys.B276 (1986) 71.

[55] S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on

AdS(3) x S(3), Nucl. Phys.B536 (1998) 110–140 [hep-th/9804166].

[56] J. Jackson, Classical Electrodynamics. Wiley, 2nd ed., 1975. See the discussion in section 3.6.

[57] K. Skenderis and M. Taylor, Holographic Coulomb branch vevs, JHEP08 (2006) 001

[hep-th/0604169].

[58] M. Banados, O. Miskovic and S. Theisen, Holographic currents in first order gravity and

finite Fefferman-Graham expansions, JHEP06 (2006) 025 [hep-th/0604148].

[59] J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP12 (2006) 009

[hep-th/0606230].

[60] E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Extremal

correlators in the AdS/CFT correspondence, hep-th/9908160.

[61] M. Mihailescu, Correlation functions for chiral primaries in D = 6 supergravity on

AdS(3) x S(3), JHEP02 (2000) 007 [hep-th/9910111].

[62] A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on S**N(X): Symmetries

and interactions, Nucl. Phys.B577 (2000) 47–72 [hep-th/9907144].

[63] O. Lunin and S. D. Mathur, Three-point functions for M(N)/S(N) orbifolds with N = 4

supersymmetry, Commun. Math. Phys.227 (2002) 385–419 [hep-th/0103169];

O. Lunin and S. D. Mathur, Correlation functions for M(N)/S(N) orbifolds, Commun.

Math. Phys.219 (2001) 399–442 [hep-th/0006196].

[64] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S. F. Ross, Supersymmetric conical

defects: Towards a string theoretic description of black hole formation, Phys. Rev.D64

(2001) 064011 [hep-th/0011217].

[65] J. M. Maldacena and L. Maoz, De-singularization by rotation, JHEP12 (2002) 055

[hep-th/0012025].

[66] J. de Boer, Six-dimensional supergravity on S**3 x AdS(3) and 2d conformal field theory,

(7)

[67] J. R. David, G. Mandal and S. R. Wadia, Microscopic formulation of black holes in string

theory, Phys. Rept.369 (2002) 549–686 [hep-th/0203048].

[68] A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes

in AdS/CFT, JHEP04 (2006) 015 [hep-th/0512125].

[69] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the

CFT(d)/AdS(d + 1) correspondence, Nucl. Phys.B546 (1999) 96–118 [hep-th/9804058].

[70] M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotically anti-de Sitter

spacetimes and scalar fields with a logarithmic branch, Phys. Rev.D70 (2004) 044034

[hep-th/0404236].

[71] A. Petkou and K. Skenderis, A non-renormalization theorem for conformal anomalies,

Nucl. Phys.B561 (1999) 100–116 [hep-th/9906030].

[72] M. Taylor, Matching of correlators in AdS3/CF T2, JHEP06 (2008) 010 [0709.1838].

[73] M. R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS(3)/CFT(2), JHEP04 (2007)

050 [hep-th/0703001]; A. Dabholkar and A. Pakman, Exact chiral ring of

AdS(3)/CFT(2), Adv. Theor. Math. Phys.13 (2009) 409–462 [hep-th/0703022];

A. Pakman and A. Sever, Exact N=4 correlators of AdS(3)/CFT(2), Phys. Lett.B652

(2007) 60–62 [0704.3040].

[74] J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, The chiral ring of AdS3/CFT2

and the attractor mechanism, JHEP03 (2009) 030 [0809.0507].

[75] E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest and A. Van Proeyen, New Formulations of

D=10 Supersymmetry and D8-O8 Domain Walls, Class. Quant. Grav.18 (2001)

3359–3382 [hep-th/0103233].

[76] A. Sen, Strong - weak coupling duality in four-dimensional string theory, Int. J. Mod.

Phys.A9 (1994) 3707–3750 [hep-th/9402002].

[77] J. Maharana and J. H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys.

B390 (1993) 3–32 [hep-th/9207016].

[78] D. Youm, Black holes and solitons in string theory, Phys. Rept.316 (1999) 1–232

[hep-th/9710046].

[79] A. Sen, String string duality conjecture in six-dimensions and charged solitonic strings,

Nucl. Phys.B450 (1995) 103–114 [hep-th/9504027].

[80] K. Behrndt, E. Bergshoeff and B. Janssen, Type II Duality Symmetries in Six Dimensions,

Nucl. Phys.B467 (1996) 100–126 [hep-th/9512152].

[81] E. Bergshoeff, H. J. Boonstra and T. Ortin, S duality and dyonic p-brane solutions in type

(8)

[82] F. Larsen and E. J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP06

(1999) 019 [hep-th/9905064].

[83] E. Bergshoeff, C. M. Hull and T. Ortin, Duality in the type II superstring effective action,

Nucl. Phys.B451 (1995) 547–578 [hep-th/9504081].

[84] M. J. Duff, J. T. Liu and R. Minasian, Eleven-dimensional origin of string / string duality:

A one-loop test, Nucl. Phys.B452 (1995) 261–282 [hep-th/9506126].

[85] P. K. Townsend, A NEW ANOMALY FREE CHIRAL SUPERGRAVITY THEORY FROM

COMPACTIFICATION ON K3, Phys. Lett.B139 (1984) 283.

[86] P. S. Aspinwall, K3 surfaces and string duality, hep-th/9611137.

[87] J. G. Russo and L. Susskind, Asymptotic level density in heterotic string theory and

rotating black holes, Nucl. Phys.B437 (1995) 611–626 [hep-th/9405117].

[88] N. Itzhaki, J. M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the

large N limit of theories with sixteen supercharges, Phys. Rev.D58 (1998) 046004

[hep-th/9802042].

[89] H. J. Boonstra, K. Skenderis and P. K. Townsend, The domain wall/QFT correspondence,

JHEP01 (1999) 003 [hep-th/9807137]; K. Skenderis, Field theory limit of branes and

gauged supergravities, Fortsch. Phys.48 (2000) 205–208 [hep-th/9903003].

[90] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge

theories, Adv. Theor. Math. Phys.2 (1998) 505–532 [hep-th/9803131].

[91] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor.

Phys.113 (2005) 843–882 [hep-th/0412141].

[92] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys.114

(2005) 1083–1118 [hep-th/0507073].

[93] A. Hashimoto and N. Itzhaki, A comment on the Zamolodchikov c-function and the black

string entropy, Phys. Lett.B454 (1999) 235–239 [hep-th/9903067].

[94] F. Antonuccio, A. Hashimoto, O. Lunin and S. Pinsky, Can DLCQ test the Maldacena

conjecture?, JHEP07 (1999) 029 [hep-th/9906087].

[95] J. R. Hiller, O. Lunin, S. Pinsky and U. Trittmann, Towards a SDLCQ test of the

Maldacena conjecture, Phys. Lett.B482 (2000) 409–416 [hep-th/0003249].

[96] J. F. Morales and H. Samtleben, Supergravity duals of matrix string theory, JHEP08

(2002) 042 [hep-th/0206247].

[97] A. Jevicki and T. Yoneya, Space-time uncertainty principle and conformal symmetry in

(9)

[98] A. Jevicki, Y. Kazama and T. Yoneya, Quantum metamorphosis of conformal

transformation in D3- brane Yang-Mills theory, Phys. Rev. Lett.81 (1998) 5072–5075

[hep-th/9808039].

[99] A. Jevicki, Y. Kazama and T. Yoneya, Generalized conformal symmetry in D-brane matrix

models, Phys. Rev.D59 (1999) 066001 [hep-th/9810146].

[100] S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to

black holes and hot strings, JHEP12 (2007) 104 [0706.3518]; S. Catterall and

T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory,

Phys. Rev.D78 (2008) 041502 [0803.4273]; M. Hanada, J. Nishimura and S. Takeuchi,

Non-lattice simulation for supersymmetric gauge theories in one dimension, Phys. Rev. Lett.99 (2007) 161602 [0706.1647]; K. N. Anagnostopoulos, M. Hanada, J. Nishimura

and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with

sixteen supercharges at finite temperature, Phys. Rev. Lett.100 (2008) 021601

[0707.4454].

[101] R.-G. Cai and N. Ohta, Surface counterterms and boundary stress-energy tensors for

asymptotically non-anti-de Sitter spaces, Phys. Rev.D62 (2000) 024006

[hep-th/9912013].

[102] Y. Sekino and T. Yoneya, Generalized AdS-CFT correspondence for matrix theory in the

large N limit, Nucl. Phys.B570 (2000) 174–206 [hep-th/9907029]; Y. Sekino,

Supercurrents in matrix theory and the generalized AdS/CFT correspondence, Nucl. Phys.

B602 (2001) 147–171 [hep-th/0011122].

[103] T. Gherghetta and Y. Oz, Supergravity, non-conformal field theories and brane- worlds,

Phys. Rev.D65 (2002) 046001 [hep-th/0106255].

[104] M. Asano, Y. Sekino and T. Yoneya, PP-wave holography for Dp-brane backgrounds, Nucl.

Phys.B678 (2004) 197–232 [hep-th/0308024].

[105] M. Asano and Y. Sekino, Large N limit of SYM theories with 16 supercharges from

superstrings on Dp-brane backgrounds, Nucl. Phys.B705 (2005) 33–59

[hep-th/0405203].

[106] K. Skenderis, Black holes and branes in string theory, Lect. Notes Phys.541 (2000)

325–364 [hep-th/9901050].

[107] M. J. Duff, G. W. Gibbons and P. K. Townsend, Macroscopic superstrings as interpolating

solitons, Phys. Lett.B332 (1994) 321–328 [hep-th/9405124].

[108] H. J. Boonstra, B. Peeters and K. Skenderis, Duality and asymptotic geometries, Phys.

Lett.B411 (1997) 59–67 [hep-th/9706192].

[109] H. J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter spacetimes

(10)

[110] A. W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev.D59 (1999)

065011 [hep-th/9809022].

[111] M. Cvetic, H. Lu, C. N. Pope, A. Sadrzadeh and T. A. Tran, S(3) and S(4) reductions of

type IIA supergravity, Nucl. Phys.B590 (2000) 233–251 [hep-th/0005137].

[112] D. Z. Freedman, K. Johnson and J. I. Latorre, Differential regularization and

renormalization: A New method of calculation in quantum field theory, Nucl. Phys.B371

(1992) 353–414.

[113] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS

spacetimes, JHEP08 (2005) 004 [hep-th/0505190].

[114] J. de Boer, E. P. Verlinde and H. L. Verlinde, On the holographic renormalization group,

JHEP08 (2000) 003 [hep-th/9912012].

[115] O. DeWolfe and D. Z. Freedman, Notes on fluctuations and correlation functions in

holographic renormalization group flows, hep-th/0002226.

[116] K. Skenderis and P. K. Townsend, Gravitational stability and renormalization-group

flow, Phys. Lett.B468 (1999) 46–51 [hep-th/9909070].

[117] O. DeWolfe, D. Z. Freedman, S. S. Gubser and A. Karch, Modeling the fifth dimension

with scalars and gravity, Phys. Rev.D62 (2000) 046008 [hep-th/9909134].

[118] K. Skenderis and P. K. Townsend, Hidden supersymmetry of domain walls and

cosmologies, Phys. Rev. Lett.96 (2006) 191301 [hep-th/0602260].

[119] I. R. Klebanov and A. A. Tseytlin, Entropy of Near-Extremal Black p-branes, Nucl. Phys.

B475 (1996) 164–178 [hep-th/9604089].

[120] A. Hashimoto and Y. Oz, Aspects of QCD dynamics from string theory, Nucl. Phys.B548

(1999) 167–179 [hep-th/9809106].

[121] G. T. Horowitz and R. C. Myers, The AdS/CFT Correspondence and a New Positive Energy

Conjecture for General Relativity, Phys. Rev.D59 (1998) 026005 [hep-th/9808079].

[122] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid

Dynamics from Gravity, JHEP02 (2008) 045 [0712.2456].

[123] M. Van Raamsdonk, Black Hole Dynamics From Atmospheric Science, JHEP05 (2008)

106 [0802.3224].

[124] S. Bhattacharyya et. al., Local Fluid Dynamical Entropy from Gravity, JHEP06 (2008)

055 [0803.2526].

[125] M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using

(11)

[126] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal

Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP12 (2008) 116

[0809.4272].

[127] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black

holes, JHEP01 (2009) 055 [0809.2488].

[128] N. Banerjee et. al., Hydrodynamics from charged black branes, 0809.2596. [129] M. Haack and A. Yarom, Universality of second order transport coefficients from the

gauge-string duality, 0811.1794.

[130] S. Bhattacharyya et. al., Forced Fluid Dynamics from Gravity, JHEP02 (2009) 018

[0806.0006].

[131] G. Policastro, D. T. Son and A. O. Starinets, The shear viscosity of strongly coupled N = 4

supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601

[hep-th/0104066].

[132] G. Policastro, D. T. Son and A. O. Starinets, From AdS/CFT correspondence to

hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052].

[133] P. Benincasa and A. Buchel, Hydrodynamics of Sakai-Sugimoto model in the quenched

approximation, Phys. Lett.B640 (2006) 108–115 [hep-th/0605076].

[134] J. Mas and J. Tarrio, Hydrodynamics from the Dp-brane, JHEP05 (2007) 036

[hep-th/0703093].

[135] A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling, Phys. Lett.B663

(2008) 286–289 [0708.3459].

[136] M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from

AdS/CFT duality, Phys. Rev.D77 (2008) 066014 [0712.2916].

[137] A. Parnachev and A. Starinets, The silence of the little strings, JHEP10 (2005) 027

[hep-th/0506144].

[138] P. Benincasa, A. Buchel and A. O. Starinets, Sound waves in strongly coupled

non-conformal gauge theory plasma, Nucl. Phys.B733 (2006) 160–187

[hep-th/0507026].

[139] S. S. Gubser, S. S. Pufu and F. D. Rocha, Bulk viscosity of strongly coupled plasmas with

holographic duals, JHEP08 (2008) 085 [0806.0407].

[140] P. Kovtun, D. T. Son and A. O. Starinets, Holography and hydrodynamics: Diffusion on

stretched horizons, JHEP10 (2003) 064 [hep-th/0309213]; P. Kovtun, D. T. Son and

A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole

(12)

[141] R. K. Gupta and A. Mukhopadhyay, On the universal hydrodynamics of strongly coupled

CFTs with gravity duals, 0810.4851.

[142] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic

viscous hydrodynamics, conformal invariance, and holography, JHEP04 (2008) 100

[0712.2451].

[143] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. Dover, New York, 1972. See p.559, 15.3.10.

[144] A. Buchel, Shear viscosity of boost invariant plasma at finite coupling, Nucl. Phys.B802

(2008) 281–306 [0801.4421]; A. Buchel, Resolving disagreement for eta/s in a CFT

plasma at finite coupling, Nucl. Phys.B803 (2008) 166–170 [0805.2683]; A. Buchel,

R. C. Myers, M. F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite

coupling, Phys. Lett.B669 (2008) 364–370 [0808.1837]; M. Brigante, H. Liu, R. C.

Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity,

Phys. Rev.D77 (2008) 126006 [0712.0805]; M. Brigante, H. Liu, R. C. Myers,

S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett.

100 (2008) 191601 [0802.3318]; Y. Kats and P. Petrov, Effect of curvature squared

corrections in AdS on the viscosity of the dual gauge theory, JHEP01 (2009) 044

[0712.0743].

[145] M. Rangamani, S. F. Ross, D. T. Son and E. G. Thompson, Conformal non-relativistic

Referenties

GERELATEERDE DOCUMENTEN

Among the Al-Sayyid Arab-Bedouin, the use of an indigenous sign language is widespread and provides the foundation of a signing community shared by hearing and deaf people.. Cases

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of

The mechanisms of the reactions of propargyl and allenyl halides with metal nucleophiles have not been proven rigorously, although it has been established by regio-

The adaptability of the terms I work with stems from the entangled worlds I have encountered in fieldwork, where scientists, policy makers, and activists all, in different ways,

gBP27 has no homology to known proteins, but gBP29 is the C.fasciculata orthologue of gBP21 from Trypanosoma brucei, a gRNA-binding protein that associates with active RNA

But when categories become harder to learn, as when Dutch listeners have to adjust how they process pitch information in order to learn Mandarin lexical tone

Le misure di sicurezza sociale – come la retribuzione delle assenze per ma- lattia e l’assicurazione sanitaria, i diritti previdenziali, i sussidi di disoccupa- zione e