• No results found

Some abbreviations in the input language for Automath

N/A
N/A
Protected

Academic year: 2021

Share "Some abbreviations in the input language for Automath"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Some abbreviations in the input language for Automath

Citation for published version (APA):

de Bruijn, N. G. (1972). Some abbreviations in the input language for Automath. Eindhoven University of Technology.

Document status and date: Published: 01/01/1972

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

T e c h n o l o g i c a l U n i v e r s i t y , Eindhoven Department of Mathematics N o t i t i e 15,

17

A p r i l 1 9 7 2 . Some a b b r e v i a t i o n s i n t h e i n p u t l a n g u a g e f o r AUTOMATH by N . G . d e B r u i j n . Q u i t e o f t e n w r i t i n g t e x t s i n AUTONXTH c a n b e t e d i o u s b e c a u s e o f t h e n e c e s s i t y t o w r i t e and r e - w r i t e t h i n g s t h a t had b e e n w r i t t e n b e f o r e . Ad- m i t t e d l y , t h i s c a n , a t l e a s t t o some e x t e n t , b e c i r c u m v e n t e d i f we w r i t e e x t r a l i n e s : t h e s e e n a b l e us t o a b b r e v i a t e e x p r e s s i o n s by s i n g l e i d e n t i - f i e r s . U n f o r t u n a t e l y we o f t e n do n o t know b e f o r e h a n d w h e t h e r a c e r t a i n e x p r e s s i o n w i l l b e u s e d a g a i n . I f i t does t u r n up l a t e r , we s t i l l h a v e t o w r i t e i t a s e c o n d t i m e i f we w a n t t o i n t r o d u c e t h e a b b r e v i a t i o n , and we w i l l do t h i s u n l e s s we d e c i d e t h a t i t i s n o t l i k e l y t o t u r n up a t h i r d t i m e ,

A l l t h i s may mean t h a t i t m i g h t come i n handy t o h a v e a s y s t e m f o r r e f e r r i n g t o e x p r e s s i o n s by i n d i c a t i n g t h e i r p o s i t i o n i n t h e p r e v i o u s t e x t s . A t p r e s e n t we o n l y e x p l a i n a s i n g l e d e v i c e o f t h i s k i n d , t h a t can b e a p p l i e d

i f t h e e x p r e s s i o n i s t h e f u l l e n t r y of t h e c a t e g o r y of one o f t h e p r e v i o u s l i n e s .

Assume we h a v e i n t h e p r e v i o u s t e x t a l i n e l i k e

where

X

i s t h e c o n t e x t i n d i c a t o r and where - A i s a 2 - e x p r e s s i o n ( l . e . a n e x p r e s s i o n whose c a t e g o r y i s t y p e ) . Then we s h a l l t a k e t h e l i b e r t y t o r e f e r t o

-

A by means of c a t b . To b e p r e c i s e , we a c t a s i f c a t b

-

-

i s a g a i n a n i d e n t i - f i e r , and a s i f t h e r e had b e e n two l i n e s i n t h e book, v i z .

-

c a t b

-

T h i s c a t b c a n b e used f r e e l y a s i f

-

i t had b e e n d e f i n e d i n t h e book, s o w e a l s o admit t h i n g s l i k e c a t b (

,

,

) and o t h e r AUTOMATH c o n s t r u c t i o n s .

We do t h e same i f

-

C

i s n o t a n e x p r e s s i o n , b u t PN. I f we h a v e a b l o c k o p e n e r ( w i t h -

A

$

-

t y p e )

w e admit t h e u s e of c a t x a s i f t h e r e had b e e n two l i n e s

(3)

(Note t h a t c a t x i s n o t a v a r i a b l e ; x can b e u s e 3 o n l y i n i t s b l o c k , f o r c a t x t h e r e i s no s u c h r e s t r i c t i o n ) . We emphasize t h a t

-

c a t a l w a y s b e l o n g s t o t h e i d e n t i f i e r f o l l o w i n g i t ; t o g e t h e r t h e y form a s i n g l e i d e n t i f i e r . We a l s o p r o p o s e a n a b b r e v i a t i o n of a d i f f e r e n t n a t u r e . F l a t h a p p e n s q u i t e o f t e n i n AUTOMATH i s t h i s . We h a v e Assuming t h a t C L 2 , i g ,

2

a r e n o t t y p e , we may w r i t e h e r e

- - -

Wewant t o a b b r e v i a t e t h e s e e x p r e s s i o n s a s I f

n

= cype we c a n s t i l l u s e @ p b u t we do n o t u s e

The e n c i r c l e d i n t e g e r ( h e r e 3) i n d i c a t e s how many b l o c k s we h a v e l e f t . Note t h a t

O p

i s t o b e c r e a t e d a s a new i d e n t i f i e r , and t h a t we a c t a s i f i t had b e e n d e f i n e d i n t h e c o n t e x t 1, i m n e d i a t e l y a f t e r t h e l i n e of p, by NOW t h a t @ p i s a n i d e n t i f i e r , we c a n a g r e e t h a t c a t o p i s a g a i n a n i d e n t - n

-

i f i e r ; o b v i o u s l y

-

c a t Q) p and

@

-

c a t p a r e d e f i n e d by t h e same e x p r e s s i o n . As examples we s h a l l r e w r i t e a p i e c e of t e x t w r i t t e n p r e v i o u s l y ( D e f i n i t i o n of l i m i t s i o AUTOMATH, I n t e r n a l R e p o r t , T e c h n o l o g i c a l U n i v e r s i t y , Eindhoven, t h e N e t h e r l a n d s , 1968).

(4)

1.

Introduction to mathematics.

1.10

P

1.11 v

1.12 ass

I

1.13 P

1.14

P

1.15 0

1.16

a

1.17 b

1.18 b

boo1

.

= 3

i

: =

m e m p

ty

.

=

a

.

.

-

-

then 2

.

=

nxis

ts

: =

ass 1

: =

*

t h e n 1 3

:= ALL

.

.

-

-

ai

1

.

= PN

Cu,ksilTRUE

({u)P)

nonemp

ty

(ALL)

CU,TI~UE

(a) ITRUE

(b)

nonempty (IMPL)

type

bool

type

tY

Pe

bool

ks

i

TRUE

(nonempty)

[u,ksilbool

bool

ks

i

TRUE

({VIP)

TRUE(exists)

type

bool

bool

bool

type

bool

(5)

2 . ~ e f i n i t i o n of l i m i t . r e a l

lrl

r 2 d i s t a n c e l e s s n u l l n a t s e q u e n c e 1 k i? l e s s n a t PN

PN

Cn,

n a t l r e a l PN

l

t y p e r e a l e p s m 0 m W Z Y iq r e a l r e a l b o o l

I

) ~ . i m conv r e a l t Y Pe t y p e n a t n a t n a t b o o l s e q u e n c e r e a l r e a l n a t n a t i m p l ( l e s s n a t ( r n o , m ) , boo1 l e s s ( d i s t a n c e ( { m } a , a )

,

e p s ) ) a l l ( n a t ,

O w )

boo1 e x i s t r ( n a t ,

@

z ) boo1 i m p l ( l e s s ( n u l l , e p s ) , y ) b o o l a l l ( r e a l ,

($

q ) boo1 e x i s t s ( r e a l ,

@

l i m ) boo1

(6)

(Section 3 of the 196C version is superfluous in the present version.)

4.

How to show convergence of a sequence.

4.1

o

i

P

:=

----

4.2

P

4.3

C

4.4

Mo

4.5

DAN

4.6

E

4.7

assu

4.8

assu

4.9

m

4.10 als

4.11 m

4.12 assu

4.13 assu

4.14

E

4.15

DAN

4.16

DAN

.=

-

SSU :=

-

sequence

real

[G,realllh,TRUE(less(nu11,6))~

nat

[G,reaP][~,TR~E(less(null,Sj)l

[M,nat][w,TRUE(iessnat

( i A l { d } N O , E I ) ) !

TRUE(less(distance({M}P,C),6))

real

TRUE

(less

(null,

E))

nat

nat

TRUE

(les

snat

(mo

,m)

)

Idan

:=

ialsj

{mliassu:

{EIDAN

TRUE(1ess (dis

tance({m}P,C)

, E ) )

b :=

then 2

(cat

-

@

dan,

@

dan)

TRUE

(w (P

,

C,

E

,mo

,m) )

L :=

then 2(cat@b,@b)

TRUE(Z(P,C,E,K))

0

*

! :=

then 13 (nar,

@

z(P,C,~),m~,h)

TRUE(y(P,C,&))

:=

hen ?(cat

@

d,

@

d)

TRUE(q(P,C,&))

?orem1

:=

then

2(cat

-

@

e,

3

e )

TRUE(lim(P,C))

*

?oren2

:=

ther. 13 (real,

@

lim(P) ,C,lheorem

I )

(7)

5 . An a p p l i c a t i o n .

Assume we h a v e t h e f o l l o w i n g p i e c e of t e x t i n some c o n t e x t A ( i t i s t h e s t a n d a r d p a t t e r n by which we show t h a t a s e q u e n c e c o n v e r g e s t o a num- b e r ) .

X

X

A E 1 assume a s s ume n 2 a l s 1 C i =

.

.

.

.

.

r e a l P 1

.

=

...

s e q u e n c e E 1

.=

-

r e a l assume :=

-

T R U E ( l e s s ( n u l 1 , ~ l ) ) n l

.

=

...

n a t n2 .=

----

n a t a l s l :=

-

T R U E ( l e s s n a t ( n l , n 2 ) ) d a n l :=

. .

.

. .

TRUE(less(di~tance({n2}~l

, C l ) , E l ) ) Now we c a n w r i t e i n a s i n g l e l i n e 5 . 9 A c o n c l := Theorem I ( p ~ , ~ ~ , @ n l , O d a n l ) TRUE(lim(p1

,CI))

6 . Comments on u s e of q u a n t i f i e r s .

As may b e s e e n from t h e p r e v i o u s t e x t s , t h e r e i s a s t r o n g a n a l o g y be- tween " a l l " and "impl" ( l i n e s 1 . 1 4 and 1 . 1 8 ) . Yet t h e t r e a t m e n t was d i f f e r - e n t (compare l i n e 2.21 w i t h 2 . 2 2 ) . The r e a s o n i s t h a t IMPL ( l i n e 1.17) i s s i m p l e r t h a n ALL ( l i n e 1.13) s i n c e u i s c o n t a i n e d i n TRUE({u}P) b u t n o t i n TRUE ( b )

.

However, i f we w l s h , we c a n e n f o r c e t h e p a r a l l e l i s m . L e t u s t a k e a f o r m u l a l i k e

(where A may depend on x ; B and C may depend on x and Y ) .

We

can

p u t

this

as f o l l o w s

i n

AUTOMATH

(assuming

t h a t

5

and

n

h a v e b e e n i n t r o d u c e d p r e v i o u s l y a s t y p e , al,u A, B and C a s b o o l ) :

(8)

.=

TRUE (A) ? :=

-

rl :=

-

TRUE (B) v := C boo1 a := a l l ( c a t $ ,

@

v) boo1 := a l l ( c a t y ,

-

a

a ) boo1

-

:= a l l ( c a t c p ,

-

@

b ) boo1 := a l l ( c a t x ,

@

c ) boo1 i n s t e a d of t h e s h o r t e r form X :=

---

F

I

Y

:=

---

n

e

.

.

= imp1 (B, C) boo1 f := a l l ( n , @ e ) boo1 g : = imp1 ( A , f ) b oo 1

Now assume we h a v e a p i e c e of t e x t l i k e t h i s ( i n some c o n t e x t A ) :

Then w e c a n d e s c e n d t o t h e t r u t h of d a s f o l l o w s : 6 . 1 6

X

1

.

- x**

.-

-

5

k

*

6 . 2 1 y* \ I j i * := t h e n 2 ( c a t @ k * , @ k * ) TRUE(a(x , p ; y * ) )

*

: _

*

6 . 2 2 q* t h e n 2 ( c a t

@

L*,

@

L*) TRUE(b ( x

,

cp*) )

*

*

6 . 2 3 x

I

'I : = t h e n 2 ( c a t

@

m*,

@

m*) TRUE ( c (x*) ) I * 6 . 2 h

X

cC, : = tiler. 2 ( c a t L

G)

n*

,

@

r,*) TRUE ( G )

*

6 . 1 7 x 6 . 1 8

cp*

6. 19 y* CP :=

-

TRUE (A)

*

:=

-

n

1

*

I +

:=

-

TRUE

(B) 6.20 i* I l k * : =

...

TRUE (C)

(9)

The descent to the truth of h (which has the same interpretation

as

the

truth of d) is not shorter at all; actually it is entirely equivalent:

The difference between the two treatments lies mainly in the block

openers 6.2 and 6.4; for the rest, the text 6.1-6.9

+

6.21-6.24 is the

simpler one.

6.25 y*

6.26

cp*

The combination

( A 3

)

occurs very often, and therefore there is

X

use for a shortcut. We shall introduce "allimpl" for this purpose. We ex-

/ q *

:=

then 2

(cat

@

k*,

@

k*)

TRUE(~(X*, y*))

*

r

: =

then 2

(cat

@

q*,

@

q*)

TRUE(^

(x*)

)

plain the machinery for deriving the truth of allimpl, but we omit the text

6.27

r*

is*

: =

then 2

(cat

@

r*,

@

r*) TRUE

( g

(x*)

)

6.28

X

t*

:=

then 2

(cat

@

s*,

@

s*)

TRUE(h)

.

needed for the use of that truth.

I

IQ

.=

-

Cx,

Slbool

allimpl

:=

all

(5,

@

a)

boo1

4

.

-

-

--

[ x , 5 1 [ ~ , T R U E i { x ~ P ) l T R U E ( C x ) Q )

5

6.37 y

:=

Iy}a

C~,TRUE(CY

~P>ITRUE({YIQ)

: =

then 2

(catb,

-

b)

TRUE(a(y))

*

(10)

NOW assume w e have, in a certain context

A ,

a piece of text like this:

Then w e can conclude in a single line

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of