• No results found

Assessing a multilevel causality model in the evolution of cognition

N/A
N/A
Protected

Academic year: 2021

Share "Assessing a multilevel causality model in the evolution of cognition"

Copied!
42
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

   

 

 

“ASSESSING  A  MULTILEVEL  CAUSALITY  MODEL  

IN  THE  EVOLUTION  OF  COGNITION”  

   

MSc  in  Brain  and  Cognitive  Sciences  

Behavioral  Neuroscience  track    

 

 

By:  Vanessa  Del  Pozo  Sánchez  

Student  no:  11104066    

 

First  assessor:    

mw.  dr.  Federica  Russo  

Second  assessor:  

dhr.  dr.  Hein  van  den  Berg  

   

Date:  28/June/2017  

(2)

 

Abstract  

 

Cognition   is   the   mechanism   by   which   an   organism   is   able   to   acquire,   process,   and   retain   information  through  senses  and  experiences.  To  this  day,  there  is  no  agreement  regarding  its   evolutionary   explanation.   The   literature   describes   a   wide   range   of   methods   in   order   to   understand   components   such   as   motor   behavior,   thought,   consciousness,   memory,   perception,   and   language,   among   others.   This   is   done   with   the   aim   of   complementing   the   origin   of   the   evolutionary   processes   of   cognition.   However,   none   of   these   approaches   has   considered   the   evolution   of   cognition   as   a   result   of   a   network   of   complex   interactions   at   different  levels  of  organization.  In  this  thesis,  we  introduce  a  multilevel  causality  model  for  the   understanding   of   the   adaptationist   idea   of   cognition.   The   model   is   built   by   integrating   three   evolutionary  processes:  ontogeny,  phylogeny,  and  Evo-­devo.  The  model  allowed  us  to  fill  the   failures   that   evolutionary   processes   presented.   Thus,   we   can   conclude   that   with   more   detailed  studies  of  multilevel  causality  in  the  biological  systems  of  cognition,  we  can  develop   complete   explanations   of   evolutionary   mechanisms   that   occur   at  certain   level,   and   observe   their  consequences  at  other  levels.  

 

 

 

 

 

 

 

 

 

 

 

(3)

Index  

 

General  introduction      3  

1.   Historicity  of  cognition  and  Dennett’s  adaptationist  approach  of  cognition      4  

1.1   History  of  cognition  from  Lamarck  onwards      5  

1.2   Cognition:  an  adaptationist  property  according  to  Daniel  Dennett      10      

1.3.1      Evolution  of  simple  entities  by  Dennett      11  

1.3.2      From  simple  replicators  to  the  nervous  system      11  

1.3.3      Phenotypic  variation  and  the  understanding  of  cognition      13  

2.   Ontogeny  and  the  “theory  of  neuronal  group  selection”  in  the  understanding  of  cognition.      15  

2.1   Introduction      15  

2.2   Edelman  and  the  variation  and  selection  within  neural  populations      15  

2.2.1   The  three  main  tenets  of  the  theory  of  neuronal  group  selection.      16  

2.2.2   Degeneracy  and  value      18  

2.3   Edelman’s  theory  applied  to  the  immune  system      19  

3.   Evo-­Devo:  an  extension  to  cognition      20  

3.1  Introduction      20  

3.2  Evolutionary  developmental  biology  theory      21  

 3.2.1  The  neural  system  from  an  Evo-­Devo  perspective.      22  

   3.2.1.1  Types  of  constraints      23  

3.3  Evo-­devo  and  cognition      24  

4.   Multilevel  causality  models  and  cognition      26  

4.1   Introduction      26  

4.2   The  understanding  of  adaptation      26  

4.3   Difficulties  in  the  explanation  of  cognition  by  the  adaptationist  approach.      27  

4.3.1   Difficulties  in  Dennett’s  approach  and  ontogeny      27  

4.3.2   Analysis  of  Edelman  and  Dennett’s  theories:  differences  and  similarities.      30  

4.4   Multilevel  causality      31  

4,4,1  Types  of  multilevel  causality      31  

4.4.1.1   Bottom-­up  causality  for  the  understanding  cognition.      32  

4.4.1.2   Top-­Down  causality  and  cognition      34  

4.5   Integration  of  types  of  multilevel  causality  model  to  understand  cognition      36  

Conclusions      38  

References      40    

 

(4)

Introduction  

 

Evolution  refers  to  the  process  by  which  species  respond  and  adapt  to  the  environment  as  a   result   of   maximizing   their   fitness.   Changes   occur   at   all   levels   -­from   protein   synthesis   to   behavior-­  in  order  to  predict  and  even  manipulate  environmental  regularities.  One  category   of   such   mechanisms   of   response   and   adaptation   is   cognition:   the   process   by   which   an   organism   is   capable   to   acquire,   process,   and   retain   information   through   senses   and   experiences.  Therefore,  cognitive  capacities  in  animals  -­including  the  human  being-­  can  be   studied  as  phenotypic  traits  within  evolutionary  biology.    

 

The   general   objective   of   this   work   is   both   to   show   how   cognition   develops   and   to   address   those   of   its   elements   that   allow   an   adaptive   explanation.   We   focus   on   evolutionary   processes   through   ontogeny,   phylogeny,   and   evolutionary   developmental   biology,   all   of   which   deal   with   the   development   of   cognition   in   animals   with   a   central   nervous   system.   Then,  by  combining  the  study  of  these  evolutionary  processes,  we  can  apply  the  multilevel   causality   model   as   a   tool   to   understand   the   evolution   of   cognition   in   the   adaptational   approach.  

 

This  work  will  be  structured  in  the  following  manner:      

-­   To  identify  the  epistemically  significant  features  of  cognition,  it  is  necessary  to  know   the   philosophical   and   historical   approaches   by   which   it   has   been   studied.   In   the   Chapter   1,   we   present   how   the   understanding   of   cognition   has   developed   trough   time,  and  then  we  include  an  analysis  of  the  main  ideas  of  one  of  the  ultra-­Darwinian   authors  in  adaptation  of  cognition:  Daniel  Dennett.  

 

-­   In   Chapter   2,   we   describe   an   evolutionary   take   on   cognition   from   the   ontogenetic   perspective.  We  analyze  the  theoretical  arguments  of  neural  Darwinism  given  by  the   neurobiologist   Gerald   Edelman,   the   essence   of   whose   argument   is   based   on   an   analogy   of   evolution   by   Darwinian   natural   selection   at   the   cellular   level.   Edelman   argues   that   a   selection   process   is   carried   out   at   the   level   of   neural   groups   in   the   nervous   system   of   some   mammals.   With   this,   he   explains   the   emergence   of   such   cognitive  phenomena  as  perception,  memory,  and  consciousness.  

(5)

-­   In   Chapter   3,   we   review   the   explanations   from   developmental   evolutionary   biology   (Evo-­Devo)  regarding  the  origin  of  the  variations  for  which  natural  selection  applies.   In  order  to  understand  the  weight  those  variations  have  in  an  adaptive  explanation  of   cognition,  we  also  examine  the  role  of  natural  selection  itself  in  the  arguments  of  the   Evo-­Devo.  

 

-­   In   Chapter   4,   we   develop   a   multilevel   causality   model.   To   do   this,   it   is   essential   to   understand  what  a  multilevel  causality  model  is  and  how  does  it  work.  After  that,  we   construct  a  model  of  cognition  that  integrates  ontogeny,  phylogeny,  and  evolutionary   developmental   biology.   Our   motivation   stems   from   the   idea   that   biological   systems   are   organized   hierarchically   in   levels,   which   range   from   molecules   to   ecosystems.   Lower   levels   limit   the   higher   ones,   but   these   in   turn   also   influence   the   first   in   a   reciprocal  causal  dependence.  Finally,  in  the  last  section,  we  present  the  conclusions   of  our  work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(6)

1.  Historicity  of  cognition  and  Dennett’s  adaptationist  

approach  of  cognition  

 

1.1  

History  of  cognition  from  Lamarck  onwards    

 

Even   though   there   have   been   many   attempts   to   categorize   living   beings,   from   Aristotle   to   Cuvier,   it   was   not   until   the   early   nineteenth   century   that   the   French   naturalist   Jean   B.   Lamarck  –in  his  work  Philosophie  Zoologique  (1809)–  created  a  classification  of  the  animal   kingdom   based   on   the   degree   of   intelligence   that   each   animal   presents.   As   such,   Lamarck   can  be  seen  as  the  first  one  to  study  cognition  with  an  evolutionary  approach  (Atran  1993).   The   classification   proposed   by   Lamarck   was   based   on   functional   correlations   of   brain   structure,  and  it  rendered  three  large  groups:  apathetic,  sensitive,  and  intelligent.  Within  the   apathetic   group,   we   could   find   cnidarians,   sponges,   and   worms.   Crustacean   mollusks,   insects,  arachnids,  echinoderms,  and  myriapods  were  part  of  the  sensitive  group.  Finally,  the   intelligent  class  was  made  up  of  all  vertebrates.  

 

Based  on  his  classification,  Lamarck  divided  the  animals  into  evolutive  stages.  He  devised  a   new   system   –the   system   of   “perfection”–,   where   the   simplest   existing   animals   rose   progressively   to   the   most   complex   or   “perfect”   animals.   Just   as   in   the   “Scala   naturae”   of   Aristotle,   the   highest   level   in   this   stepwise   process   was   occupied   by   humans.   Only   at   the   highest  level  did  the  organisms  display  psychological  functions  such  as  memory,  judgment,   attention,  and  thinking  (Papini  2009).  

 

In   the   1870’s,   Charles   Darwin,   another   revolutionary   figure   of   the   natural   world,   published   two   books   that   referred   to   the   evolution   of   the   mind.   His   work   “The   Descent   of   Man   and   Selection  in  Relation  to  Sex”  (1871)  established  that  mental  characteristics  –including  moral   and  social  instincts  in  humans–  are  inherited  in  the  same  manner  as  physical  characteristics,   namely  by  variation  and  Natural  Selection  (NS).  In  the  other  book,  entitled  “The  Expression   of   Emotion   in   Man   and   Animal”   (1872),   Darwin   brought   into   discussion   the   concept   of   emotion.   He   claimed   that   emotions   are   just   like   any   other   characteristic,   so   that   they   too   undergo  adaptations  and  evolve.  He  compared  facial  expressions  of  some  primates  against   humans’   facial   expressions,   finding   out   that   facial   expressions   were   sometimes   caused   by   desires  and  sensations  unleashed  by  the  nervous  system.  

(7)

Lamarck   and   Darwin   were   revolutionary   naturalists   that   both   gave   way   to   a   new   paradigm   that   featured   ideas   we   now   associate   with   cognition.   In   fact,   Alfred   Giard,   an   important   zoologist   who   published   his   findings   during   the   1880’s,   considered   that   Lamarckism   and   Darwinism  were  actually  complementary  theories,  and  he  supported  this  idea  with  studies  on   evolutive  convergence.  For  example,  he  put  forward  a  classification  of  organisms  based  on   their  behavior  in  their  natural  environment,  and  did  this  with  a  Lamarckian  approach  (Peláez   del  Hierro  et  al.,  2002).    

 

Carrying   on   with   our   chronological   review,   we   must   mention   Douglas   Spalding,   who   is   regarded   as   one   of   the   founders   of   ethology   and   who   published   his   first   work,   entitled   “On   instinct”,  in  1872.  His  overall  studies  brought  him  to  the  conclusion  that  instincts  are  a  guide   for   learning   and   for   inherited   capacities   (Thorpe,   1979;;   Gray,   1967).   Similarly,   George   Romanes,  an  evolutionary  biologist  and  psychologist  who  set  the  foundations  of  comparative   psychology,  proposed  general  principles  for  the  evolution  of  the  mind  based  on  psychological   capacities   rather   than   physical   relationships   between   animals.   He   presented   them   in   his   book  “Animal  Intelligence”  (1882).

 

Karl   Lashley,   a   behaviorist   from   Virginia,   carried   out   studies   on   intelligence,   behavior,   and   the   neuronal   basis   of   certain   cognitive   processes   as   of   the   1920’s.   He   focused   on   brain   physiology   and   psychology,   trying   both   to   find   the   locus   of   specific   memory   traces   and   to   describe  the  behavior  of  the  mind  with  mathematical  and  physical  concepts.  His  contributions   to  the  study  of  cognition  were  based  on  the  different  types  of  tests  that  he  ran  throughout  his   life.  He  sought  to  understand  the  inconsistencies  between  different  types  of  learning  tests  for   a  variety  of  different  animals,  which  spanned  from  rats  to  monkeys  (Lashley,  1929;;  Lashley,   1950;;  Lashley  1951).  

 

In  the  middle  of  the  20th  century,  authors  such  as  Niko  Tinbergen  and  Konrad  Lorenz,  Nobel   Prize  winners  for  their  work  in  organization  and  elicitation  of  individual  and  social  behavior,   rewrote   the   concepts   of   ethology.   Tinbergen   introduced   four   basic   questions   in   order   to   characterize   an   evolutionary   approach   of   behavior   (Bateson   and   Laland,   2013):   I)   What   is   the  objective  of  a  given  behavior?  II)  How  did  it  develop  during  the  lifetime  of  the  individual?   III)  How  did  it  evolve  over  the  history  of  the  species?  and  IV)  How  does  it  work?  Lorenz,  in   turn,  studied  behavioral  phylogenies  –for  which  Natural  Selection  also  takes  place–,  as  being   guidelines   for   animals’   instincts   (Papini,   2009).   Both   authors   worked   under   the   scope   of   Darwinism,   and   they   brought   it   about   that   evolution   of   behavior   was   treated   as   part   of   the   process  of  NS.  Following  this  approach,  William  Hamilton,  a  theoretical  evolutionary  biologist   considered   as   one   of   the   biggest   influences   of   the   20th   century, conceived   a   mathematical  

(8)

model  of  genetics  that  incorporated  both  the  “coefficient  of  relationship”  –a  concept  defined   by   Wright–   and   the   maximizing   property   of   “Darwinian   fitness”.   The   combination   of   these   theories   allowed   him   to   model   the   link   between   the   fitness   of   species   and   the   evolution   of   behavior,  based  on  the  interactions  among  such  species  (Hamilton,  1964).  Shortly  after,  and   as   a   follow-­up   of   his   previous   work,   Hamilton   published   an   article   that   used   neo-­Darwinian   principles  to  explain  the  behavior  of  a  society  as  based  on  paternal  care  (Hamilton,  1964).      

In  1975,  Edward  Wilson,  an  evolutionary  and  socio-­biologist,  defined  the  systematic  study  of   social   behavior   by   the   integration   of   three   different   factors:   population’s   genetics,   evolutive   ecology,   and   demography.   With   this,   Wilson   tried   to   extend   the   focus   to   other   forces   that   could  be  guiding  behavior  as  well,  and  did  so  with  a  neo-­Darwinian  approach.  

 

In  1971,  Daniel  Dennett,  one  of  the  most  outstanding  philosophers  of  science  due  to  his  work   in   the   cognitive   sciences,   proposed   that   animals   have   beliefs.   He   considered   beliefs   as   “cognitive   states   that   suffice   to   account   for   the   perceptualocomotory   prowess   of   animals”   (Dennett,   1971).   With   such   ideas,   one   would   be   able   to   predict   behavior   by   adopting   an   intentional  stance1.      

 

In   his   book   “The   Architecture   of   Cognition”   (1983),   the   natural   philosopher   John   Anderson   tried  to  explain  what  is  referred  to  as  the  modular  approach  to  cognition.  He  considered  that   cognition  is  a  process  built  by  quasi-­independent  modules  that  become  associated  with  each   other  in  order  to  construct  a  higher  function.  In  this  multi-­module  and  multi-­level  process,  the   degree   of   complexity   for   said   construction   is   determined   by   the   size   of   the   brain,   a   hypothesis   commonly   known   as   “encephalization   hypothesis”.   His   theory   established   that   there   is   an   allometric   relationship   between   body   mass   and   brain   in   all   mammals.   The   hypothesis   also   states   that   mammals   with   brain   size   bigger   than   “normal”,   where   the   term   “normal”  depends  on  their  body  mass  ratio,  also  have  enhanced  cognitive  abilities  (Boddy  et   al.,  2012).  

 

Patricia   Churchland,   a   philosopher   contemporary   of   Anderson   who   has   contributed   to   the   fields   of   neurophilosophy   and   philosophy   of   mind,   studied   the   relation   between   mind   and   brain,  focusing  on  the  role  of  neuroscience  in  cognitive  science  within  a  philosophical  context   (Churchland,  1984;;  Churchland,  1989).    She  argued  that  in  order  to  have  an  understanding  

1According   to   Dennett,   there   are   three   different   strategies   that   we   might   use   when   confronted   with   objects   or   systems:   the  

physical,  the  designs  and  the  intentional  stance.  We  use  each  of  these  strategies  to  predict  and  thereby  to  explain  the  behavior   of  the  entity  in  question.  Particularly,  when  he  refers  to  an  intentional  state,  he  refers  to  the  mental  states  such  as  beliefs  and   desires   which   have   the   property   of   “aboutness,”that   is,   they   are   about   or   directed   at,   objects   or   states   of   affair   in   the   world   (Jones,  2013).

(9)

of  the  mind,  we  first  needed  to  understand  the  brain.  For  her,  consciousness  does  not  exist;;   it  is  just  an  epiphenomenon  of  a  cerebral  function  and  should  be  considered  only  as  term  that   humans  have  developed  with  aims  of  understanding  such  a  function.  According  to  her,  such   a  term  will  eventually  disappear  from  science.  

 

None  of  the  authors  mentioned  above  studied  cognition  from  a  truly  biological  standpoint.  For   example,   Daniel   Dennett   used   to   refer   to   “cognition”   as   the   process   of   manipulation   of   information.   As   opposed   to   these   takes,   then,   Fiddick   and   Barrett   (2001)   aimed   to   give   a   suitable   explanation   of   cognition   as   ensuing   from   the   concept   of   Natural   Selection.   They   considered   that   adaptive   cognition   should   be   studied   by   taking   into   account   a)   natural   history,   b)   evolutionary   changes,   and   c)   an   ecological,   functionalist   perspective.   Thus,   they   advocated   for   an   interdisciplinary   study   that   included   different   methods,   laboratory   studies,   phylogenetic   and   comparative   approaches,   developmental   studies,   and   neurophysiological   dissociations.    

 

Supporting  Fiddick’s  and  Barret’s  ideas,  Daniel  Dennett  himself suggested  to  study  cognition   from  a  different  angle,  since  up  until  the  20th  such  a  study  had  been  confined  to  an  ideology   and  methodology  based  on  old-­fashioned  experimental  psychology.  In  turn,  he  proposed  that   in   order   to   complement   the   biological   studies   of   cognition,   science   should   also   tackle   both   the   concept   of   “the   mind”   and   the   mental   states   commonly   known   as   desires   and   beliefs.   With   this   wide-­reaching   approach,   it   would   be   possible   to   develop   models,   theories,   and   explanations   that   could   prove   useful   in   the   understanding   of   rational   agents.   This   new   approach   is   nowadays   known   as   “cognitivism”.   Cognitive   authors   do   not   believe   in   the   existence  of  a  soul  or  ego  that  rules  someone’s  behavior.  They  rather  interpret  the  mind  and   mental  states  as  ensuing  purely  from  the  physical  qualities  of  the  brain,  and  have  concluded   that  there  should  be  no  distinction  between  mind  and  brain.    

 

For   authors   like   Merlin   Donald,   a   Canadian  psychologist,   cognitive   neuroscientist,   and   neuroanthropologist,   cognition   is   “the   mediator   between   brain   and   culture”.   In   this   case,   human  cognition  is  seen  as  having  emerged  from  the  primate  mind  during  the  earlier  stages   of   human   evolution.   As   for   the   rest   of   species,   he   considers   that   they   can   show   some   relatable  characteristics  as  reflexes,  instinct,  curiosity,  behavior,  and  memory,  among  others.   However,  his  thesis  does  not  support  the  idea  that  there  is  any  continuity  of  these  aspects   from  the  less  complex  organisms  to  the  most  complex  ones.  

 

From   a   genetic   approach,   Richard   Lewontin,  an   evolutionary   biologist   and   geneticist   who   opposes   genetic   determinism,   explains   how   although   genetic   mechanisms   are   usually  

(10)

considered   in   the   study   of   behavior,   the   precise   paths   of   such   genetic   mechanisms   for   cognition  are  still  unsolved.  One  assumption  of  his  work  is  that,  instead  of  the  analysis  of  the   biochemistry   of   genetic   mechanisms   in   cognition,   we   could   study   these   changes   through   Natural  Selection.  He  also  argues  that  the  evolutionary  questions  of  cognition  are  not  related   just   to   the   evolution   of   cognition   itself,   but   also   to   the   effects   of   cognition   on   evolution   (Lewontin,  1998).  Thus,  he  became  a  pioneer  in  this  track  of  the  study  of  cognition.  

 

Moving  forward,  we  mention  the  philosopher  and  linguist  Karen  Neander,  who  introduced  a   different   definition   of   cognitive   systems:   “systems   adapted   for   producing   and   processing   internal  states  that  carry  information,  and  for  using  these  states  to  adapt  the  bodies  in  which   they   are   situated   to   the   environments   in   which   they,   in   turn,   are   situated   and   vice   versa”.   From  her  perspective,  there  is  indeed  a  distinction  between  mind  and  brain,  and  moreover,   the  environment  will  also  play  an  independent  role  (Neander  2007).  

 

For  Neander  and  Dennett,  cognition  is  a  characteristic  that  can  be  found  in  all  organisms.  For   example,  they  support  the  notion  that  organisms  such  as  plants  or  fungus  can  in  fact  receive   information   from   the   environment,   process   it,   and   respond   to   it.   This   issue   had   previously   been  questioned  by  philosopher  of  biology  Peter  Godfrey-­Smith,  who  coined  the  term  “proto-­ cognition”  in  order  to  refer  to  the  cognition  of  plants  and  bacteria;;  “capacities  for  controlling   individual  growth,  development,  metabolism,  and  behavior  by  means  of  adaptive  response  to   environmental   information”   (Godfery-­Smith,   2002).   However,   two   objections   can   be   made:   firstly,   this   description   of   proto-­cognition   does   not   take   into   consideration   evolutionary   changes,  and  secondly,  the  definition  implies  that  the  proto-­cognitive  characters  may  well  be   seen  just  as  an  extended  part  of  behavior  or  development.    

 

Based  on  the  controversy  that  the  differentiation  between  “proto-­cognition”  and  cognition  was   causing,  the  American  philosopher  Hilary  Kornblith  tried  to  come  up  with  a  solution  in  2007,   arguing  that  the  term  “cognitive  organism”  should  be  used  for  those  organisms  that  not  only   receive   and   process   information,   but   that   can   also   make   a   representation   of   such   information.  

 

Dieguez  tried  to  find  a  different  solution  to  this  problem  and  thus  divided  the  organisms  into   two   different   categories:   on   one   hand,   organisms   with   internal   representations,   and   on   the   other,  organisms  with  mental  representations.  The  first  group  of  organisms  is  comprised  by   those  that,  after  a  stimulus,  are  capable  of  responding,  and  such  a  response  may  or  may  not   cause  a  deterministic  change  of  behavior.  Internal  representation  is  something  that  all  known   types   of   organisms   present   during   their   life.   For   the   second   kind   of   organisms   –the  

(11)

organisms  with  mental  representations–  the  representations  have  a  neural  basis,  and  can  be   evoked  without  a  stimulus:  both  the  production  of  a  new  memory  and  the  remembrance  of  an   old  one  can  activate  neural  activity.  Thus,  this  kind  of  representation  is  found  only  in  animals   with  a  complex  nervous  system  (Diéguez,  2011).  

 

Horik  and  Emery,  a  duo  of  psychologists,  analyzed  the  possibility  of  a  link  between  cognition   and   specific   aspects   of   species’   lives.   In   this   case,   cognition   is   not   related   only   to   the   organism  itself,  but  to  sociality,  culture,  tool  use,  and  behavioral  flexibility,  among  others.  As   such,   cognition   influences   more   than   just   one   environmental   selection   pressure   at   a   given   time.   It   is   important   to   mention   that   Horik   and   Emery   side   with   the   view   that   all   organisms   possess   cognitive   characters.   For   them,   it   is   likely   that   different   species   who   shared   analogous   environmental   selection   pressures   evolved   with   similar   cognitive   abilities.   This   explained  the  wide  variety  of  cognitive  characteristics  and,  at  the  same  time,  implied  that  all   animals  share  many  fundamental  cognitive  abilities,  but  with  a  different  development  of  them   (Horik  &  Emery,  2011).    

 

Recently,   Dennett   offered   a   description   of   the   origin   and   evolution   of   cognition   with   a   phylogenetic  and  functionalist  angle.  From  his  perspective,  NS  is  the  main  protagonist  of  the   story.  His  explanation  goes  from  the  origin  of  cognition  in  the  first  replicating  organisms,  to   the  origin  and  evolution  of  the  nervous  system  and  its  function.  He  stresses  the  importance   of   brain   plasticity   for   cognitive   abilities   such   as   learning.   In   this   way,   Dennett's   arguments   lend  themselves  adequately  to  the  treatment  of  how  a  phylogenetic  and  adaptive  account  of   cognition  is  constructed.  Due  to  this,  in  the  following  section  we  focus  on  Dennett’s  theory.    

 

1.2  

Cognition:  an  adaptationist  property  according  to  Daniel  Dennett  

 

In   1993,   Daniel   Dennett   described   an   adaptationist   approach   of   cognition   in   his   work   titled   “Consciousness   Explained”.   His   work,   opened   a   new   tendency   in   the   comprehension   of   cognition   under   the   Ultra-­Darwinism   scope,   explaining   that   cognitive   properties,   as   consciousness,   are   also   subjected   to   natural   selection   processes.   In   order   to   support   his   work,   he   proposes   a   phylogenetic   hypothesis   of   the   phenomenon   by   which   cognition   could   give   rise,   describing   a   series   of   events   that   could   occur   through   populations   of   different   organisms.  In  the  next  section  we  will  explain  in  detail  his  hypothesis.    

       

(12)

1.3.1      Evolution  of  simple  entities  by  Dennett  

 

For   Dennett,   the   extremely   rudimentary   lifeforms   are   called   “replicators”,   and   probably   the   earliest   ones   in   the   history   of   life   on   this   planet,   were   even   simpler   than   actual   viruses   (Zawisizki,  2014).  Then,  for  the  simplest  replicators,  the  only  way  to  continue  replicating,  the   replicators  had  to  take  the  good  things,  repel  the  bad  ones,  and  ignore  the  neutral  ones  that   the  environment  offered.  (Dennet,  1993).  

 

The   variability   of   the   replicators   was   given   by   faults   during   replication.   The   copies   of   faults   propagated,   and   the   ones   that   survived   were   the   ones   that   presented   a   higher   fitness2.   In  

these  terms,  we  will  be  talking  about  NS  and  mutation,  given  by  a  genotypic  variation.  Thus,   the  evolution  by  NS  will  lead  to  particular  types  of  changes  in  the  population  of  replicators,   given  by  the  maintenance  of  the  characteristics  that  increase  fitness.    

 

According  to  Soberón,  an  ecologist  interested  in  evolutive  biology,  in  the  study  of  evolution   there   are   a   series   of   properties   that   an   entity   has   to   have   in   order   to   be   considered   as   an   “Evolution  Unit”  (EU):  i)  the  replicator  has  to  have  a  phenotypic  variability,  ii)  at  least  a  part  of   that  phenotypic  variability  has  to  be  heritable,  iii)  the  heritable  variability  could  be  related  with   the   probabilities   of   the   survival   and   replication   of   the   replicator.   Soberon   claims   that   if   an   entity  meets  the  first  two  requirements,  then  it  can  be  considered  as  an  EU,  and  if  all  three   conditions  are  met,  then  the  entity  can  be  considered  as  a  Darwinian  Evolution  Unity  (DEU).   Given  this,  according  to  Dennett's  description  of  replicators,  the  simpler  replicators  were  DEU   and  EU.    

 

1.3.2      From  simple  replicators  to  the  nervous  system    

 

The  nervous  system  is  a  complex  and  specialized  system.  In  order  to  generate  such  system,   it  is  necessary  the  association  of  specialized  cells.  These  cells,  have  evolved  to  respond  and   discern  to  external  stimulus.  In  1993,  Dennett  suggested  that  “protoneurons”  evolve  through   NS,   developing   an   unstable   membrane   potential,   that   propagated   into   other   population   of   cells.   After,   the   diversification   of   neurons   was   given   by   morphological   changes   as   the   increase  in  the  size  of  dendrites  and  axons,  giving  rise  to  a  more  complex  network.  In  that   sense,  this  also  gave  place  to  the  specialization  of  neurons,  in  which,  some  of  them  will  focus   on   the   processing   of   information,   or   work   as   motoneurons,   among   other   things   (Angrino,   2010).    

2  “In  the  crudest  terms,  fitness  involves  the  ability  of  organisms—  or,  more  rarely,  populations  or  species—  to  survive  and  

(13)

 

The  evolution  of  simple  entities  into  networks  gave  place  to  three  different  types  of  nervous   systems  that  we  find  in  the  present  phyla.  According  to  van-­Wielink,  a  neurologist  specialized   in   neurodegenerative   diseases,   the   first   type   of   neural   system   is   constituted   by   an   nonsynaptic   net   of   cells   that   is   present   in   less   complex   animals,   as   cnidarians   and   echinoderms,  characterized  by  single  units  that  communicate  each  other  by  calcium  waves   and   other   impulses,   to   control   simple   actions.   In   contrast   with   this,   there   are   some   authors   that   postulate   that   this   can   not   be   considered   as   a   nervous   system,   instead,   this   will   represent   the   most   primitive   system,   being   considered   as   the   precursor   of   the   nervous   system  due  to  its  lack  of  synaptic  junctions  and  less  specialized  cells  in  contrast  with  neurons   (Jacobs  et  al.,  2007).  

 

The  second  category  is  characterized  by  the  presence  of  ganglion.  This  system  is  found  in   animals  that  represent  the  next  stage  in  evolution,  in  terms  of  complexity,  as  arthropods  and   annelids.   In   this   system,   the   neurons   are   no   longer   single   units,   in   contrast,   they   build   a     segmental  ganglion,  that  as  the  name  says,  will  modulate  a  segment  of  the  body,  and  will  be   connected  to  the  next  ganglion  by  “connectives”.    

 

Finally,  the  last  category  is  the  most  complex  and  its  found  in  chordates.  It  is  characterized   by  the  presence  of  a  neural  tube  and  the  cephalization  of  the  system.  It  is  divided  into  central   nervous  system  and  the  peripheral  nervous  system.  The  communication  between  cells  can   be   by   electrical   synapses   and   chemical   synapses,   and/or   extrasynaptic   release.   This   nervous  system  gives  rise  to  more  complex  systems  in  terms  of  intelligence.  

 

Dennett   (1993)   makes   evident   that   for   primitive   animals   with   a   simple   nervous   system,   the   signals   from   the   environment   were   innately   modulated.   As   for   what   he   called   “proximal   anticipation”   behavior,   to   respond   into   an   immediate   future,   and   “short-­range   anticipation”   behavior,  to  the  capacity  of  an  animal  to  produce  a  more  elaborate  response  than  a  reflex.   He   states   that   these   behaviors   are   really   flexible,   and   so,   be   consider   as   highly   adaptive   characters,   that   contributes   to   the   fitness   of   an   organism   that   can   be   extended   into   populations.  

 

Despite   Dennett's   functionalist   approach,   to   explain   the   primordial   behavior   of   the   first   animals   with   a   nervous   system,   he   only   tells   us   that   they   are   equipped   to   solve   ecological   problems.  The  cognitive  tools  that  appeared  since  very  early  times  and  that  we  all  possess   now,  like  the  reflexes,  the  orientation  and  the  capacity  to  recognize  objects,  are  only  one  face   of   the   currency   of   what   can   really   be   deduced   from   the   origin   of   evolution   of   cognition.  

(14)

Without  being  able  to  explain  the  ecological  contexts  of  selective  pressures,  whether  a  niche   is   chosen   or   created,   whether   they   were   only   instinctive   characteristics   or   manifested   as   emotions,  among  other  things.  

 

1.3.3      Phenotypic  variation  and  the  understanding  of  cognition  

 

Following   Darwin's   theory,   the   design   that   animals   own   is   not   always   the   most   fitted   for   a   specific  environment.  However,  the  ones  that  are  able  to  redesign  will  be  the  ones  that  will   survive  and  reproduce.  This  means  that  there  is  a  certain  level  of  variation  to  which  we  can   resort   to   our   life   depending   on   the   eventualities   that   arise.   This   characteristic   is   called   “phenotypic  plasticity”  (Dennett,  1993).  

 

Thus,   in   terms   of   cognition,   natural   selection   has   been   responsible   for   designing   cognition,   acting   on   the   variations   of   nervous   systems   that   have   existed,   leaving   only   those   who   responded  effectively  to  environmental  interactions  and  who  could  inherit  the  characteristics   that  helped  to  survive  their  carriers.  

 

Dennett  claims  that  when  the  “plastic  brain”  is  exposed  into  novel  things  in  its  environment,   the  brain  reorganize.  The  process  by  which  this  happens  is  by  a  similar  process  than  natural   selection.  Everything  starts  in  an  individual  brain  by  postnatal  fixation.  In  this  case,  the  brain   structures   that   are   select,   will   be   the   ones   that   can   control   or   influence   behavior.   The   mechanic   process   of   elimination   will   lead   selection,   that   at   the   same   time,   it   has   a   genetic   background.  In  this  case,  the  organisms  with  brain  plasticity  will  have  an  advantage  over  the   ones  that  does  not,  and  this  might  accelerate  evolution  by  NS.    

 

For  Dennett,  the  “good  tricks”  that  an  animal  learns  during  its  whole  life  are  going  to  improve   the   animal   fitness.   This   claim,   gives   a   lot   of   things   for   granted,   and   specifically,   not   all   the   good  learned  tricks  will  lead  to  a  higher  probability  of  reproduction,  and  therefore  the  fixation   of  the  character,  will  not  occur.  For  example,  a  chimpanzee  can  learn  how  to  use  a  tool  to   take  the  termites  from  their  holes.  However,  this  does  not  assure  him  that  he  will  become  the   alpha  male  of  the  herd  and  then  have  more  chances  to  reproduce.  In  response  to  this  issue,   Diéguez  (2011)  proposes  that  natural  selection  acts  on  individuals  with  a  tendency  to  have   certain   cognitive   abilities.   The   selection   would   have   been   produced   by   the   disposition   to   learn  them.  Thus,  learning  the  “good  tricks”  would  have  easily  passed  the  next  generation  in   a  non-­genetic  way,  however,  what  is  genetically  passed  is  the  disposition  to  learn  them.    

(15)

In  summary,  Dennett's  evolutionary  explanation  tells  us  that  cognition  is  a  product  of  natural   selection,   acting   on   the   variations   in   the   different   nervous   systems   that   are   responsible   for   producing   cognitive   phenomena.   Animals   that   have   cerebral   plasticity,   are   those   that   have   been   able   to   evolve   to   a   "more   complete"   cognition.   The   complexity   of   cognition   leads   to   those   that   apart   from   the   recording   and   processing   of   information,   also   have   a   representational   system   of   the   information   that   comes   from   the   environment,   that   is,   they   may   be   able   to   have   beliefs   and   desires   about   the   environment.   Finally,   with   cerebral   plasticity,   new   neural   connections   can   be   formed,   triggered   by   the   experiences   that   individuals  have  throughout  their  lives,  thus  contributing  to  their  survival  and  reproduction.    

As   we   could   see,   cognition   is   diverse,   but   is   not   impossible   to   find   a   common   type   of   evolutionary  story  that  could  apply  to  most  of  the  cases.  Nowadays,  cognitive  and  behavioral   neurosciences  aim  to  study  the  brain  and  its  functions  using  a  wide  range  of  methods.  Within   the  most  popular  techniques  to  record  the  brain  activity  we  can  find:  electroencephalography,   magnetic  resonance,  electrophysiology,  among  others.  These  techniques  are  use  in  order  to   understand   mechanisms   such   as   motor   behavior,   thought,   consciousness,   memory,   perception,  language,  among  others.  At  the  same  time,  other  sciences  as  the  philosophy  of   mind,   the   ecology   of   behavior,   cognitive   paleoanthropology,   artificial   intelligence,   and   evolutionary   psychology   are   using   their   own   scientific   methods   to   complement   the   origin   of   the  evolution  processes  of  cognition.  To  postulate  a  multilevel  causality  for  the  understanding   on  the  adaptationist  idea  of  cognition,  first  we  need  to  introduce  the  processes  that  we  would   like  to  use.  So,  in  the  next  chapter  I  will  present  the  first  process,  ontogeny.  

                             

(16)

2   Ontogeny  and  the  “theory  of  neuronal  group  

selection”  in  the  understanding  of  cognition.  

 

2.1  

Introduction    

 

Ontogeny  is  the  origination  and  historicity  of  an  organism,  from  egg  fertilization  till  its  death.   Along   with   its   life,   the   organism   will   undergo   physical   and   behavioral   changes   that   can   be   due  to  external  factors  (environmental  interaction),  or  internal  factors  (epigenetics).  In  1977,   Stephen  J.  Gould,  one  of  the  most  influential  evolutional  biologist  from  the  XX  century,  stated   that  evolution  will  occur  when  ontogeny  is  transformed.  This  transformation  can  be  due  to  an   introduction   of   new   characters   or   by   the   change   of   an   old   character.   Following   this,   the   change  of  an  old  character  will  have  a  regulatory  effect,  that  will  change  the  rate  for  features   already  present,  and  the  introduction  of  a  new  character  might  give  rise  to  a  new  feature.    

The  understanding  of  how  cognitive  capacities  are  build  giving  the  present  brain  structures,  it   is  essential  in  the  study  of  cognition.  In  1987,  Gerald  Edelman,  a  biologist  winner  of  a  Nobel   Prize  due  to  his  work  on  the  immune  system,  proposed  a  theory  to  apply  Darwin’s  theory  to   the   evolution   of   cognition,   in   which,   he   claims   that   all   cognitive   functions   have   a   biological   support  that  lay  in  the  brain.  Indeed,  those  properties  will  be  regulated  by  NS  and  will  apply   to  all  organizational  levels  from  biochemistry  to  morphology.  In  this  theory,  he  applies  NS  on   a   different   level   than   Dennett.   In   this   case,   Edelman   speaks   about   a   population   of   cells   instead   of   populations   of   individuals.   In   this   chapter,   I   will   like   to   explain   and   try   to   relate   Edelman’s   evolutionary   explanations   about   the   cognitive   properties   that   might   complement   the  understanding  of  cognition  under  an  adaptationist  scope.  

 

2.2.        Edelman  and  the  variation  and  selection  within  neural  populations

   

The  theory  proposed  by  Edelman  called  “Neural  Darwinism”  or  “The  theory  of  neuronal  group   selection”  (TNGS),  tries  to  fill  the  gap  between  biological  bases  and  cognitive  psychology.  All   started  with  the  necessity  of  merging  two  different  observations  of  brain  function.    

 

One  of  the  observations  was  the  structural  and  functional  variability  of  an  individual  nervous   system.  According  to  Edelman  (1987),  the  variability  will  be  present  at  a  molecular,  cellular,   anatomical,   physiological   and   behavioral   level   in   time   and   space.   To   explain   this   variation  

(17)

between   individuals,   even   from   the   same   species,   Edelman   claims   that   the   adaptive   characteristic  will  emerge  in  the  course  of  an  individual  development  (ontogeny).  

 

The   second   observation   relies   on   the   understanding   of   the   development   of   such   adaptive   characteristic  and  its  relation  with  the  world  stimuli,  i.e.,  “in  order  to  survive  in  its  econiche3,   an   organism   must   either   inherit   or   create   criteria   that   enable   it   to   partition   the   world   into   perceptual  categories  according  to  its  adaptive  needs”  (Edelman,  1993).  

 

Furthermore,   Edelman   argues   that   the   ability   to   categorize   a   novel   input   from   the   environment   and   respond   to   it,   from   an   adaptive   perspective,   comes   from   processes   of   selection   upon   variation,   instead   of   the   presences   of   a   semi   fixed   neuroanatomy   that   just   reads  the  manual  of  instructions  in  order  to  respond  and  adapt  (Edelman,  1993).  

 

In  this  case,  if  no  individual  result  of  sexual  reproduction  is  identical,  then,  no  two  brains  are   alike.  Each  brain  has  its  own  developmental  process  and  is  constantly  changing  during  its  life   spam.  Edelman  and  Tononi  (2000)  point  out  that  during  the  process  of  natural  selection  the   phenomenon  of  correlative  variation  can  occur  where  a  “primary  trait  can  be  selected  for  and   bring   along   another   changes   that   are   used   later   for   other   selective   events”   (Edelman   and   Tononi,  2013).  For  example,  selection  of  an  enlarged  brain  structure  to  facilitate  perception   may   be   accompanied   by   the   enlargement   of   other   neighboring   regions   in   the   brain   and   subsequently  these  regions  may  be  selected  to  perform  another  function,  such  as  memory.    

2.2.1   The  three  main  tenets  of  the  theory  of  neuronal  group  selection.  

The  Neural  Darwinism  theory  is  built  under  tree  main  tenets  explained  below:      

1.   Developmental  selection.  Darwinian  natural  selection  and  evolution  is  usually  

studied  in  populations  of  organisms,  but  when  it  applies  to  cellular  populations;;  

is   called   “somatic”   evolution.   Such   somatic   evolution   tends   to   reduce  

cooperation   among   cells,   thus   threatening   the   integrity   of   the   organism  

(Edelman   1994).   Given   the   above   argument,   genes   and   inheritance   give   the  

formation   of   an   initial   anatomy   of   the   brain.   However,   the   connectivity   of  

synapses   is   established   by   the   somatic   selection   during   each   organism  

development.    

 

3     The   econiche   definition   stills   controversial,   however,   in   this   work   we   refer   to   econiche   to   “what   describes   a  

species’  ecology,  which  may  mean  its  habitat,  its  role  in  the  ecosystem,  etc”  (Pocheville,  2015).    

(18)

As   an   example,   during   neurogenesis,   dendrites   and   neurites   will   mature,  

giving  rise  to  new  branches  that  grow  in  several  directions.  This  will  give  rise  

to   new   patterns   of   connection,   which   in   turn   will   produce   a   vast   and   varied  

repertoire   of   neural   circuits.   Then,   according   to   neural   individual   patterns   of  

electrical  activity,  neurons  will  create  populations,  ending  in  a  system  in  which  

“neurons  that  fire  together,  wire  together”.  As  a  result,  neurons  of  a  population  

will   be   more   closely   associated   to   each   other   that   to   neurons   in   other  

population.  (

Edelman  and  Tononi,  2013).  

 

 

2.   Experiential  selection.  The  process  of  synaptic  selection  will  occur  inside  the  

repertories   of   already   existing   groups   of   neurons   due   to   behavioral  

experience.   For   example,   the   maps   of   the   brain   that   corresponds   to   a   finger  

response  can  change  their  confines,  depending  on  the  use  of  them.  When  a  

finger   is   trained   to   be   used   in   a   certain   way,   then,   the   synapses   between  

populations   on   charge   of   this   response   will   get   strength,   without   any  

anatomical  changes  (

Edelman  and  Tononi,  2013).  

 

 

3.  

Reentry.  This  tenet  allows  the  integration  of  the  previous  two  

tenets

,  leading  to  

the  

synchronization  of  the  activity  of  groups  of  neurons  in  different  brain  maps,  

transforming   them,   temporarily,   into   a   big   circuit   with   a   coherent   output.  

The  

ability  that  we  have  to  discern  between  movement  and  shape  in  a  display  of  

moving  dots,  due  to  the  integration  of  different  brain  areas,  is  an  example  of  

this   (

Edelman   and   Tononi,   2013).  

  The   reentry   of   connections  between  

neuronal   groups   in   diverse   parts   of   the   brain   by   a   single   stimuli   sense   by  

different  senses,  will  coordinate  the  impressions  from  all  the  senses  to  provide  

a  coherent,  consistent,  continuous  experience.  The  reentry  of  information  also  

will   provide   a   mechanism   of   re-­categorization

4

,   the   fundamental   process   by  

which  the  brain  carves  up  the  world  into  different  things  and  recognizes  those  

it  has  encountered  before.    

 

4

The  word  re-­categorization,  it  is  not  to  be  taken  as  implying  the  existence  of  a  prior  set  of  categories:  in  fact,   every  act  of  recognition  modifies  the  category.  

(19)

In   this   theory,   Edelman   stress   out   the   importance   to   high-­order   processes   -­as   thinking,   planning,  perceiving,  and  language-­,  in  which  concepts  are  maps  of  maps  of  the  brain,  which   will  get  rise  from  the  re-­categorization  of  the  brain  activity.  The  first  –order  of  consciousness   will  be  given  by  the  concepts  by  themselves,  and  in  human  consciousness,  we  will  also  find   the  features  of  a  secondary  consciousness  as  the  concepts  about  concepts,  language,  and  a   concept  of  the  self,  that  will  be  built  on  the  foundation  of  first-­order  concepts.    

In   summary,   in   terms   of   cognition,   some   patterns   or   population   connectivity’s   will   be   reinforced   by   experiences,   while   many   others   will   be   eliminated   in   a   selective   process.     Some  other  type  of  research  supports  this  theory,  as  the  consolidation  and  reconsolidation  of   memory  (Edelman  y  Tononi  2000;;  Nader  et  al.,  2000).  Neural  Darwinism  attempts  to  explain   how  some  cognitive  abilities  emerge  at  the  cellular  level.  Neural  Darwinism  is  an  incomplete   analogy   to   the   historical   process   of   Darwinian   natural   selection.   The   difference   is   the   time   scale  and  the  selection  units.  In  this  theory,  the  entities  under  natural  selection  are  the  neural   groups.   The   first   stage   of   selection   occurs   during   the   embryonic   development   of   the   individual.  This  first  pattern  of  connections  between  neural  groups  are  those  given  by  value   systems.   The   second   stage   is   the   selection   given   by   experience,   which   occurs   during   the   postnatal   stage   and   until   the   death   of   the   individual.   Contact   with   the   environment   creates   modifications   between   the   different   connections   of   the   neural   groups   with   degenerative   characteristics   and   as   a   consequence   gives   a   flexible   or   plastic   property   to   the   neural   groups.   Finally,   the   process   of   re-­entry   is   all   the   reciprocal   connections   that   are   distributed   throughout  the  brain,  which  marks  the  coherence  to  produce  the  cognitive  phenomena.    

This   whole   repertoire   known   as   neural   Darwinism   is   the   basis   for   understanding   how   cognition  develops  in  each  individual.  There  are  other  elements  that  complement  this  theory   and  which  I  consider  below.  

 

2.2.2   Degeneracy  and  value  

 

The   theory   argues   the   existence   of   another   essential   and   unique   property   that   all   the   selective  systems  will  share,  denominated  “degeneracy”.  This  property  refers  to  the  ability  of   structurally   different   variations   of   brain   elements   to   produce   the   same   function,   i.e.,   “many   different   ways,   not   necessarily   structurally   identical,   by   which   a   particular   output   occurs”   (Edelman   and   Tononi,   2013).     For   Edelman   and   Tononi,   this   property   will   occur   at   one   organizational  level  or  across  a  multiple,  otherwise,  all  mutations  would  be  lethal.    

Finally,   another   key   idea   in   the   theory   is   value,   a   word   used   here   to   describe   inbuilt   tendencies  towards  particular  behavior.  These  forms  of  behavior  may  be  driven  by  what  we  

(20)

value  in  a  fairly  straightforward  sense  -­  seeking  food,  for  example,  but  they  also  include  such   inherent  actions  as  the  hand's  natural  tendency  to  grasp.  

2.3      Edelman’s  theory  applied  to  the  immune  system  

Edelman  constructs  an  analogy  of  TNGS  with  what  happens  to  the  immune  system.  In  this   case,   instead   of   population   of   neurons,   the   entities   under   NS   are   the   antibodies.   He   proposes   that   from   a   vast   variety   of   antibodies,   the   ones   that   will   be   selected   to   rapidly   reproduce  will  be  the  ones  that  linked  successfully  to  the  target  molecule.  That  at  the  same   time,   increase   the   fitness   of   the   organism.   In   this   case,   the   immune   theory,   from   which   Edelman  formulates  his  analogy,  postulates  that  there  is  no  possible  way  that  the  body  will   have   all   the   antibodies   for   all   the   foreign   substances   that   could   attack   an   organism.   In   contrast,  the  body  will  rapidly  produce  an  antibody  for  substances  it  has  never  encountered   before  (and  indeed  for  substances  which  never  existed  in  the  previous  history  of  the  planet).   In   an   analogous   way   the   TNGS   explains   how   the   brain   can   recognize   objects   in   the   world   without  having  a  huge  inherited  catalogue  of  patterns.  

 

On  the  contrary,  the  biologist  Steven  Rose  (2001),  does  not  agree  with  the  name  granted  by   Edelman   of   neural   Darwinism.   Rose   believes   that   it   is   neither   a   homologous   process   nor   sufficiently  analogous  to  Darwinian  natural  selection.  Considering  neural  Darwinism  only  as  a   metaphor  (Rose  2001)  Even  Rose  agrees  with  Francis  Crick  in  calling  it  'neural  edelmism'.    

Rose's  strongest  argument  against  neural  Darwinism  is  that  overproduction  and  subsequent   selection  of  neurons  and  synapses,  is  actually  a  cooperative  process  rather  than  a  process   of   competition.   Migration   of   cells   and   axon   growth   over   long   distances   is   only   possible   by   remote  and  local  signals  between  the  same  neurons.  On  the  contrary,  if  those  signals  are  not   present   during   the   growing   and   migration   period,   then,   the   axon   wouldn’t   have   reached   its   final  destination.  As  far  as  cells  do  not  "compete"  between  them,  it  can  rather  be  seen  as  a   "cooperative".              

 

(21)

3.Evo-­Devo:  an  extension  to  cognition  

 

3.1.  

Introduction    

 

As   we   saw   in   the   last   chapter,   when   it   relates   to   cognition,   ontogeny   does   not   actually   recapitulate   phylogeny,   as   Haeckel   proposed   in   his   “recapitulation   theory”  5   (Gould,   1997).   Now,   it   is   necessary   to   discuss   the   relationship   between   embryological   development   and   evolution  of  cognition,  since  embryos  also  evolve  in  different  ways,  putting  the  recapitulation   theory   seen   as   a   historical   side-­note,   rather   than   as   a   dogma   in   the   field   of   developmental   biology.   Then,   to   understand   the   relationship   between   embryological   development   and   evolution   of   cognition,   we   will   explore   the   interdisciplinary   field   of   research   called   Evolutionary  developmental  biology,  also  known  as  Evo-­Devo.    

 

Evo-­Devo   studies   the   differences   between   organisms   during   their   development   to   determinate   their   phylogenetic   relationships.   Evo-­Devo   offers   explanations   about   the   phylogeny  based  on  the  heritability  of  their  altered  characters  produced  during  the  ontogeny   of  an  organism.  At  the  same  time,  Evo-­Devo  claims  that  the  design  of  a  character  will  not  be   totally  predetermined  by  the  genotype.  In  these  terms,  genes  are  not  the  only  causal  agents   of   development.   At   the   same   time,   each   developmental   stage   will   react   to   multiple   interactions  between  environmental  and  epigenetic  factors.  Evo-­Devo  does  not  question  NS   as   an   evolutionary   force,   but   also   delimit   to   what   degree   the   NS   can   be   considered   as   a   creative  force.  When  it  relates  to  NS,  one  of  the  most  controversial  topics  is  the  position  of   NS   as   a   creative   force   or   not.   Against   this   position,   authors   such   as   Gould   and   Lewontin,   argue   that   NS   does   not   “create”   features,   adaptations,   or   even   life.   For   them,   NS   it   merely   selects   a   feature   that   provides   greater   survival   rates.   On   favor   of   this   position   we   can   find   authors  such  as  Ernst  Mayr,  who  claimed  NS  as  "an  all-­powerful  natural  selection".  

 

Furthermore,   all   the   processes   related   to   the   development   of   the   brain   plays   an   important   role  in  the  evolution  of  cognition.  An  Evo-­Devo  approach  will  allow  us  to  specify  how  much   weight  developmental  constraints  have  on  evolutionary  models  of  cognition.  Recognizing  that   these   constraints   do   not   just   limit,   but   also   order   the   evolutionary   path   producing   a   bias   of  

5 The  theory   of   recapitulation   is   commonly   synthetize   in   a   phrase   given   by   Ernst   Haeckel'   as   "ontogeny   recapitulates   phylogeny".   This   refers   to   a   questioned   biological   hypothesis   that   argues   that   during   the   embryological   development   of   an   animal,   from  fertilization  to   gestation,   i.e.   ontogeny,   all   the   successive   stages   from  which  the  animal  undergo  represents  stages  in  evolution  of  the  animal's  remote  ancestors  (phylogeny).      

(22)

evolutionary   phenomena   that   which   cannot   be   explained   by   explicitly   citing   the   classical   evolutionary  factors  (eg,  NS).      

 

3.2  Evolutionary  developmental  biology  theory    

 

Nowadays,  evolutionary  developmental  biology  (Evo-­Devo)  theory  studies:  i)  the  evolution  of   development,   by   a   comparative   approach   of   features   at   different   hierarchical   levels   (Hall,   2003);;   ii)   the   establishment   of   homologies,   by   genetic   expression   patterns   (Amundson,   2005);;   iii)   evolutionary   innovations,   to   comprehend   the   mechanisms   that   give   rise   new   characters  (Hoekstra  &  Coyne,  2007);;  iv)  phenotypic  evolutionary  patterns,  to  determinate  if   development   constraints   can   influence   evolutive   diversification   (Müller,   2007);;   and   v)   genotype-­phenotype  mapping,  for  the  understanding  of  the  dynamics  of  adaptation  (Pigliucci,   2010).  

 

However,   the   study   of   Evo-­Devo   as   a   discipline   started   in   the   1980’s   century,   with   the   discovery  of  the  homebox.  In  1983,  Walter  Gehring  from  the  University  of  Basel  and  Matthew   Scott  and  Amy  Weiner  form  the  University  of  Indiana  found  a  highly  conserved  180-­base  pair   (bp)   DNA   segment   in   animals,   fungi   and   plants,   involved   in   morphogenesis   and   which   encodes   a   polypeptide   segment   designated   as   homeodomain   (Gehring   1992).   Later   on,   during  the  study  of  the  development  genetics  of  the  fruit  fly  Drosophila,  researchers  found  a   coding   sequence   involved   in   segment   formation.   This   sequence   was   found   later   along   different  species  in  clusters  of  related  genes,  now  known  as  hox  genes.    

 

The   study   of   homologous   genes   in   different   species   ended   up   by   sealing   the   connection   between  genetics,   developmental   biology   and   evolution.   Despite   the   great   conservation   of   genes,  the  morphological  diversity  between  taxa  is  given  by  the  variations  in  the  expression   of  these  genes.  These   variations   would   produce   along   the   development   morphological   and   functional   differences   between   taxa   on   which  NS   would   operate   adapting   the   organisms   to   the  environment  and  generating  the  enormous  biodiversity  past  and  present  (Baguñá  2003).   With  this,  scientist  could  not  avoid  the  study  of  developmental  genetics  in  terms  of  evolution,   giving  place  to  “Evo-­Devo”  (Carroll,  2008).  

 

Evo-­Devo   theory   claims   that   the   genotype   does   not  completely   define   the  design   of   an   organism,   and   it   considers   that   mutations   have   a   strong   effect   on   fitness   (Carroll,   2008).   Within   this   theory,   genes   are   not   considered   as   the   only   causal   agents   of   development.   Moreover,  the  role  of  genes  in  development  and  evolution  does  not  lie  above  that  of  the  other  

(23)

factors   involve   in   such   processes.   Evo-­Devo   supporters   believe   that   environmental   and   epigenetic  factors  bear  equal  importance  as  genes  in  the  development  of  an  organism  (Balari   &  Lorenzo,  2008).  

 

3.2.1  The  neural  system  from  an  Evo-­Devo  perspective.    

 

As   we   mentioned   above,   Evo-­Devo   claims   that   there   are   patterns   involved   during   the   development   of   organisms.   However,   these   patterns   are   also   found  in   the   development   of   the   nervous   system.   Nowadays,   research   has   revealed   the   existence   of   different   stages   of   brain  formation,  starting  from  a  simple  set  of  undifferentiated  cells  that  grow  and  become  the  

neural   plate,   that   will   fold   to   form   a   groove   then   tube,   open   initially   at   each   end.  Three  

projections   come   out   of   this   tube.   The   first   is   the   one   that   will   give   rise   to   the   series   of   segments   that   make   up   the   rhombencephalon,   which   will   contribute   to   breathing,   balance   and  keeping  the  body  alert.  The  second  segment  will  give  rise  to  the  mesencephalon,  which   coordinates  additive  and  visual  reflexes.  Finally,  the  third  will  give  rise  to  the  precursor  of  the   forebrain,  responsible  for  reason  and  decision  making  (Nicholls  et  al.,  2012).  

 

In   order   to   develop   a   nervous   system,   brain   cells   must   specialize   and   migrate   to   their   final   locations,   otherwise   this   will   cause   irreversible   damages   to   the   organism.   Initially,   only   certain  regions  of  the  body  are  responsible  for  manufacturing  cells  in  an  "emergency"  case,   where  by  means  of  a  cellular  Darwinian  strategy,  those  that  have  been  able  to  integrate  into   a  previously  established  and  large  system  will  be  selected  (Marcus,  2005).  

 

Gene  expression  plays  a  very  important  role  in  terms  of  complexity,  since  they  establish  and   adjust  the  neural  circuits.  So,  we  could  say  that  the  brain  structure,  as  a  cognitive  substrate,   is  the  result  of  transformations  that  occur  during  the  development  of  an  organism.  Where  the   constrains6  of  brain  development  enter  the  field  of  study  of  Evo-­Devo.  With  this  approach,  it  

will   be   possible   to   determine   the   weight   of   the   causes   of   developmental   constraints   in   evolutionary   models   of   cognition   such   as   the   adaptation,   described   by   Dennett,   and   ontogeny,  described  by  Edelman.    Due  to  the  importance  in  the  understanding  and  definition   of   developmental   constraints   in   evolutionary   developmental   biology,   we   will  revise   in   detail   the  constraints  in  the  next  subsection.  

 

 

6 “Another   consequence   of   interacting   modules   (in   terms   of   the   homebox)   is   that   these   interactions   limit   the  

possible  phenotypes  that  can  be  created,  and  they  also  allow  change  to  occur  in  certain  directions  more  easily   than  in  others.  Collectively,  these  restraints  on  phenotype  production  are  called  developmental  constraints”.

Referenties

GERELATEERDE DOCUMENTEN

De berekening kan zowel voor het totale vermogen als voor het eigen vermogen worden gemaakt: Rendement Eigen Vermogen REV = inkomen uit bedrijf + herwaardering grond – berekende

De voordelen hiervan zijn onder andere het korte tijdsbestek waarin tot een akkoord kan worden gekomen (de lange UWV- procedure hoeft niet te worden afgewacht) en de lage kosten om

Ut de N-balans van weidende koeien blijkt dat ongeveer 80 procent van de met het gras opgenomen stikstof via urine en faeces wordt uitgescheiden.. Van deze stikstof (N) komt slechts

Meer activiteit en meer aandacht voor afleidingsmateriaal leidt bij biggen met intacte staarten tot minder staartbijten.. Dit blijkt uit een voorbereidend onderzoek

This study aims to identify hantaviruses and hantavirus diseases in southern Africa. So far, the occurrence of these viruses and any possibly related illnesses is

This chapter piovides a review of the empincal hteiature on the relationship between the quahty of attachment and cognitive development First, a bnef review of attachment theory

The isofunctional character of the representation, which correlates various aspects of a neural construct with identifiable features of real-world objects, detaches the image from

Place attachment is “the development of affective bond or link between people or individuals and specific places” (Ujang 2012, p. 157) Therefore, I will study