• No results found

On commutativity and lie nilpoten y in matrix algebras

N/A
N/A
Protected

Academic year: 2021

Share "On commutativity and lie nilpoten y in matrix algebras"

Copied!
65
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

by

Mahlare Gerald Sehoana

Thesis presented in partial fullment of the requirements for

the degree of Master of S ien e (Mathemati s) in the Fa ulty

of S ien e at Stellenbos h University

Supervisor: Prof. L. vanWyk

(2)

De laration

By submittingthis thesis ele troni ally,I de lare that the entirety of the work ontained

therein is my own, original work, that I am the sole author thereof (save to the extent

expli itly otherwise stated), that reprodu tion and publi ation thereof by Stellenbos h

University will not infringe any third party rights and that I have not previously in its

entirety orin part submitted itfor obtainingany quali ation.

2015/09/30

Date: ...

Copyright© 2015 Stellenbos h University

(3)

Abstra t

On Commutativity and Lie nilpoten y in Matrix Algebras

M.G.Sehoana

Department of Mathemati al S ien es,

Stellenbos h University,

Private Bag X1, Matieland 7602, South Afri a.

Thesis: MS (Mathemati s)

September 2015

In thisthesis we rstdis uss the proofbyMirzakhani [9℄ofS hur's Theorem whi hgives

the maximumnumberoflinearlyindependentmatri esina ommutativealgebraof

n × n

matri es over a eld

F

. An example illustrating the appli ation of S hur's Theorem is given.

Se ondly,wedis ussthe Cayley-HamiltonTheoremwhi hassertsthatany

n×n

matrix

A

satisesits hara teristi polynomial. Adedu tionofaCayley-Hamiltontra eidentityfor

a

2 × 2

matrix

A

over a ommutativering fromthe Cayley-HamiltonTheorem is shown. Wethen dis uss the Cayley-Hamilton tra e identity forany matrix

A ∈ M

2

(R)

when (i)

R

is ommutative,

(ii)

R

isnot ne essarily ommutative,

(iii)

R

is not ne essarily ommutative and

tr(A) = 0

,

(iv)

R

is not ne essarily ommutativeand satises the identity

[[x, y], [x, z]] = 0.

Lastly,wedis ussthematrixalgebras

U

n

(R)

,inparti ularthematrixalgebras

U

3

(R)

and

U

4

(R)

, in relation to polynomial identities

[[. . . [[x

1

, x

2

], x

3

], . . .], x

n

] = 0

,

[x, y][w, z] = 0

and

[[x, y], [w, z]] = 0

.

(4)

Uittreksel

Oor Kommutatiwiteit en Lie nilpotensie in Matriksalgebras

(On Commutativityand Lienilpoten y inMatrix Algebras)

M.G.Sehoana

Departement Wiskundige Wetenskappe,

UniversiteitStellenbos h,

PrivaatsakX1, Matieland 7602, Suid Afrika.

Tesis: MS (Wiskunde)

September 2015

In hierdie tesis beskryf ons eerstens die bewys deur Mirzakhani [9℄ van S hur se Stelling

wat die maksimum aantal lineêr onafhanklike matrikse in 'n kommutatiewe algebra van

n × n

matrikse oor 'n liggaam

F

gee. 'n Voorbeeld word gegee wat die toepassing van S hur seStelling illustreer.

TweedensbespreekonsdieCayley-HamiltonStellingwatbeweer datelke

n × n

matriks

A

sykarakteristiekepolinoombevredig. 'nAeidingvan'nCayley-Hamiltonspooridentiteit

vir 'n

2 × 2

matriks

A

oor 'n kommutatiewe ring vanuit die Cayley-Hamilton Stelling word gegee. Ons bespreek dan die Cayley-Hamilton spoor identiteit vir enige matriks

A ∈ M

2

(R)

wanneer (i)

R

kommutatief is,

(ii)

R

nienoodwendig kommutatief is nie,

(iii)

R

nie noodwendig kommutatief is nieen sp

(A) = 0

,

(iv)

R

nienoodwendigkommutatief isnie en dieidentiteit

[[x, y], [x, z]] = 0

bevredig.

Laastensbespreekons diematriksalgebras

U

n

(R)

,inbesonder diematriksalgebras

U

3

(R)

en

U

4

(R)

, met betrekking totdiepolinoomidentiteite

[[. . . [[x

1

, x

2

], x

3

], . . .], x

n

] = 0

,

(5)

A knowledgements

I would like toexpress my sin ere gratitude to the following people and organisations:

Prof LeonvanWyk forthe guidan e, dire tionand enlightenmentthroughout my stud-ies. His patien e and onstru tive omments kept my hopes alive. He brought ba k my

love forMathemati s.

Prof David Kubayi for getting me started on this proje t and for the support that, together with the Deanof FSA at UL, provided duringhis time asHOD.

My family for theirmoral support and motivation.

Department of Mathemati al S ien es at Stellenbos h University for allowing me the opportunity tostudy for anMS degree.

Fellow students Sandile Mkhaliphi and Andry Rabenantoandro for assisting me with Latex.

Colleagues in the s hool of Mathemati al and Computer S ien es at the University of Limpopofor their en ouragement.

DST-NRF Centre of Ex ellen e in Mathemati al and Statisti alS ien es (CoE-Mass) for their nan ialsupport.

(6)

Dedi ations

(7)

Contents De laration i Abstra t ii Uittreksel iii A knowledgements iv Dedi ations v Contents vi 1 Introdu tion 1

2 Mirzakhani's Simple Proof of S hur's Theorem 5

3 Cayley-Hamilton Theorem 14

4 Commutativity and Lie nilpoten y in the Matrix Algebra

U

n

(R)

21 4.1 The ring

U

3

(R)

. . . 21 4.2 The ring

U

4

(R)

. . . 34

5 Cayley-Hamilton Tra e Identity for

2 × 2

Matri es 45 5.1 Tra e identities for

2 × 2

matri es . . . 45 5.2 Relationshipbetween identities . . . 55

(8)

Chapter 1

Introdu tion

This hapter is mainlyabrief ba kgroundand overview of the subsequent Chapters

2

to

5

. Also inthis hapterwedis uss some of the on epts whi h we have used anumber of times in this thesis. Where possible, we have supplied examples to substantiate laims

made. Chapter

5

anbeviewed asa ontinuationof Chapter

3

. Though inChapter

3

we dealwithmatri esovertheeld

R

ofrealnumbersandinChapter

5

wedealwithmatri es over an arbitrary ring

R

. Coin identally, Chapters

2

and

4

deal with upper triangular matri es. InChapter

2

ween ounter uppertriangularmatri eswhi hmutually ommute whereas in Chapter

4

ommutativity of the said matri es isnot ne essary.

A binary operation

ona set

A

issaid to be ommutativeif and onlyif

x ∗ y = y ∗ x

for all

x, y ∈ A.

Were all that aring

R

isan algebrai stru ture with two binary operations alled additionand multipli ation. One of the axioms of a ring

R

states that addition is ommutative. However, ina ring

R

multipli ationis not ne essarily ommutative. Thus, if multipli ation is ommutative su h a ring is alled a ommutative ring. A nonempty

subset

B

of a ring

R

is said tobe a subringof

R

if

B

is itself a ring with respe t to the operations of addition and multipli ation in

R

. Fora nonempty subset

B

of a ring

R

to be a subring it is su ient that

ab ∈ B

and

a − b ∈ B

for all

a, b ∈ B.

The olle tion

M

n

(R)

,where

R

is aring, of all

n × n

matri eshaving elements of

R

asentries is aring. For

n ≥ 2

,

M

n

(R)

isnot a ommutativering. But, for a ommutativering

R

,the ring

B =

  a b

0 a



| a, b ∈ R



is ommutativeand

B

is asubringof

M

2

(R)

. Foreveryring

R

the trivialsubringB={0} is ommutative. Thus every ring has at least one subring whi h is ommutative.

In Chapter

2

we shall en ounter a maximal ommutative subalgebraof

M

n

(F )

whi hwe use to illustrate anappli ation of S hur's Theorem. (A subring

B

of a ring

R

is said to bea maximalsubringwithrespe t toproperty

Y

if

B 6= R

and thereexists nosubring

C

in

R

with the property

Y

su h that

B ⊂ C ⊂ R

.) In fa t, a ording toS hur's Theorem the numberoflinearly independentmatri esinthe subalgebra

B

above is

⌊2

2

/4⌋ + 1 = 2

.

Moreover, we see that the number of elements in a basis for

B

is

2

. A basis of a ve tor spa e

V

is a subset

W ⊆ V

whi h is linearly independent and spans

V

. A basis of a

(9)

CHAPTER 1. Introdu tion 2

ve tor spa e isa maximal linearlyindependent subset of that ve tor spa e.

The expression

⌊x⌋

represents the greatest integer less than or equal to

x

. If

x

is an integer, we have

⌊x⌋ = x

and

⌊x + b⌋ = x

for

0 < b < 1.

The hara teristi polynomialof an

n × n

matrix

A

overa ommutativering

R

isdened tobe

p(λ) =

det

(A − λI) = k

n

λ

n

+ k

n−1

λ

n−1

+ . . . + k

1

λ + k

0

,

k

i

∈ R.

Bythe tra eofa squarematrix

A

,denoted

tr(A)

, ismeantthe sum ofthe entries onthemaindiagonalof

A

,fromtheupperlefttothelowerright. Thefollowingproperties of tra es of any matri es

A, B ∈ M

n

(R)

are used in this thesis:

(i)

tr(A ± B) = tr(A) ± tr(B),

(ii)

tr(cA) = c tr(A),

where

c

isa onstant.

Thenontrivial oe ientsofthe hara teristi polynomialofamatrix

A

an beexpressed expli itly in terms of tra es of powers of A, (see [15℄, [13℄). In [13℄, it is shown that if

n = 4

, then

p(λ) = λ

4

− T

1

λ

3

+

1

2

T

2

1

− T

2

2

1

6

T

3

1

− 3T

1

T

2

+ 2T

3

+

1

24

T

4

1

− 6T

1

2

T

2

+ 8T

1

T

3

+ 3T

2

2

− 6T

4



= λ

4

− tr(A)λ

3

+

1

2

tr

2

(A) − tr(A

2

)λ

2

1

6

tr

3

(A) − 3 tr(A) tr(A

2

) + 2 tr(A

3

)λ

+

1

24

tr

4

(A) − 6 tr

2

(A) tr(A

2

) + 8 tr(A) tr(A

3

) + 3 tr

2

(A

2

) − 6 tr(A

4

),

where

T

m

= tr(A

m

).

In this thesis we deal with the ase when

n = 2

, that is,

p(λ) = λ

2

− tr(A)λ +

1

2

tr

2

(A) − tr(A

2

)



and obviously repla ing

λ

by

A

and introdu ingthe identity matrix

I ∈ M

2

(R)

yields

p(A) = A

2

− tr(A)A +

1

2

tr

2

(A) − tr(A

2

)I.

The equation just given leads to the Cayley-Hamilton tra e identity for a

2 × 2

matrix whi hwe dis uss inChapter

5

under various hypotheses with

1

2

∈ R.

Denition 1. Let

R

be aring (not ne essarily ommutative) and

a, b ∈ R

. An element of the form

[a, b] = ab − ba

is alled a ommutator, more pre isely, the ommutator of

a

and

b.

Denition2. Aring

R

is alledLienilpotentofindex

n (n ≥ 2)

if

R

satisestheidentity

[[[. . . [[x

1

, x

2

], x

3

], . . .], x

n

], x

n+1

] = 0

but not the identity

(10)

Denition 3. A ring

R

is alled Lie nilpotent if it is Lie nilpotent of index

n

for some

n ≥ 2.

(Wenotethata ommutativeringmaybe alleda"Lienilpotentringofindex 1".)

The on eptsof ommutativityandLienilpoten yare"somehow"relatedinthesensethat

one implies the other. Commutativity always implies Lie nilpoten y and Lie nilpoten y

implies ommutativity only if the on erned ring is of Lie nilpotent index 1. Thus, we

an say ommutativity is a stronger ondition than Lie nilpoten y. For example, in a

ommutative ring the identity

[x

1

, x

2

] = 0

holds whi h in turn implies

[[x

1

, x

2

], x

3

] = 0

, whi hinturn implies

[[[x

1

, x

2

], x

3

], x

4

] = 0

andso on. Weshall see inProposition33that the ring

U

3

(R)

satises the hypothesis for Lie nilpoten y but by Example 30,

U

3

(R)

is not ommutative.

Wefurthernoti ethat inthe algebras

U

n

(R)

wedis uss inthisthesis,

R

isrequiredtobe ommutative in order to attain Lie nilpoten y. This fa t is observed in Theorem 44. It

is shown in Example 45that Lienilpoten y may not ne essarily beattained in

U

n

(R)

if

R

is non ommutative. (In ontrast, a subring

V

∗∗

n

(R) ⊂ U

n

(R)

, with a non ommutative ring

R

,dened in Chapter

4

isLie nilpotentof index

2

,for all

n

. The subring

V

∗∗

n

(R)

is a tually a version of the subring

F

n

given in Chapter

2

but with a non ommutative ring

R

.)

We see again the fundamental role of ommutativity in Corollary 37 where an algebra

U

3

(U

3

(R))

, with non ommutative ring

U

3

(R)

and ommutative

R

, satises the identity

[[x, y], [w, z]] = 0

and does not satisfy either of the stronger identities

[[x, y], z] = 0

and

[x, y][w, z] = 0

. On the other hand,the algebra

U

4

(U

3

(R))

with ommutative

R

doesnot satisfy

[[x, y], [w, z]] = 0

but

[[[x, y], [w, z]], [[u, v], [r, s]]] = 0

.

Fora ommutativering

R

,anyprodu t

[x

1

, y

1

][x

2

, y

2

]

in

U

n

(R)

,

n ≤ 4,

isequaltozeroand the dis ussion just after Remark 48 shows that for

n ≥ 7

a produ t

[x

1

, y

1

][x

2

, y

2

][x

3

, y

3

]

may not ne essarilybe equaltozero. This leadsto Theorems52 (ii)and 53whi h give a

smallest value of

k

forwhi h any produ t of the form

[x

1

, y

1

][x

2

, y

2

] · · · [x

k

, y

k

]

(1.1) in

U

n

(R), R

ommutative,isequal tozero. This value of

k

dependson

n

. When

R

isnot ommutative, (1.1) may not ne essarilybe equalto zero for su h values of

k

as shown in Remark 56(i.e, thereare matri esin

U

n

(R)

for whi h

[x

1

, y

1

][x

2

, y

2

] · · · [x

k

, y

k

] 6= 0

). Denition4. Let

R

beanarbitraryring. Thematrixunit

E

i,j

in

M

n

(R)

with

1 ≤ i, j ≤ n,

is dened to bethe matrix with

1

in position

(i, j)

and zeroselsewhere.

Notethat

E

i,j

E

k,l

=

 E

i,l

if

j = k,

0

if

j 6= k.

Alternatively

E

i,j

E

k,l

= δ

j,k

E

i,l

,

where

δ

j,k

=

 1

if

j = k,

(11)

CHAPTER 1. Introdu tion 4

The fun tion

δ

j,k

is alled the Krone ker delta. We observe that for

a, b ∈ R,

(aE

i,j

)(bE

k,l

) = (ab)E

i,j

E

k,l

=

 (ab)E

i,l

if

j = k,

0

if

j 6= k.

(1.2)

It should be noted that in all the examples that show that ertain statements do not

ne essarilyhold when

R

is non ommutative, we used spe i matri esin the ring

U

n

(R)

be ause there may be matri esin

U

n

(R)

for whi h the statements hold. For example, if

R

is non ommutative,a produ tof the form(1.1) an be zero as in

[E

1,2

, E

1,3

][A

2

, B

2

] · · · [A

k

, B

k

] = 0,

for all

k

and

E

1,2

, E

1,3

, A

k

, B

k

in

U

n

(R)

. Wehave

[E

1,2

, E

1,3

] = 0

,a ording toDenition 1 and the observation that follows afterDenition 4.

Lastly, atthe end of Chapter 5 we dis uss the proof of the fa tthat in a ring ontaining

1

(12)

Chapter 2

Mirzakhani's Simple Proof of S hur's

Theorem

Foraeld

F

, the ring

M

n

(F )

of

n × n

matri eswith

n > 1

andelementsin

F

is non om-mutative. But there are subalgebras

S ⊂ M

n

(F )

whi h are ommutative. Theorem

10

in this hapterknown astheTheoremofS hurdealswithsubalgebrasof

M

n

(F )

ofmutually ommutative matri es. It gives the maximum number of linearly independent matri es

in a maximal ommutative subalgebra. Mirzakhani [9℄ provided a simpler proof, using

indu tion, of this theorem whi hwe disse t inthis hapter. Mirzakhani [9℄alsoprovided

anexample of a ommutative subalgebrasatisfying the hypothesis of Theorem10.

Denition 5. A set

X = {x

1

, x

2

, . . . , x

n

}

is said to be a spanning set of a ve tor spa e

W

overa eld

F

if every

w ∈ W

is alinear ombinationof the

x

i

∈ X

, i.e.,

w = a

1

x

1

+ a

2

x

2

+ · · · + a

n

x

n

where

a

i

∈ F

.

Denition 6. A set

V = {v

1

, v

2

, . . . , v

r

}

of non-zero ve tors in a ve tor spa e over eld

F

issaid to be linearly independent whenever

a

1

v

1

+ a

2

v

2

+ · · · + a

r

v

r

= 0

implies that

a

i

= 0

for all

i

, where

a

i

∈ F.

Denition 7. Let

A = [A

1

|A

2

| . . . |A

n

]

be an

m × n

matrix over a eld

F

, with the

A

i

's as olumns of

A

. The rank of

A

is dened to be the maximum number of linearly independent ve tors inthe set

{A

1

, A

2

, . . . , A

n

}.

Denition 8. Let

A

be an

m × n

matrix over a eld

F

. The null spa e of

A

is the set ofall

x

in

F

n

su hthat

Ax = 0.

Thedimension ofthe nullspa e of

A

is alledthe nullity of

A

.

Remark 9. The nullity of a matrix

A

is the dimension of the solution spa e of

Ax = 0

, whi h is the same as the number of parameters in the general solution of

Ax = 0

and whi his the same as the number of freevariables.

(13)

CHAPTER 2. Mirzakhani'sSimple Proof of S hur's Theorem 6

Theorem 10. Let

A

be an

m × n

matrix. Then

rank A + nullity A = n.

AsubmatrixofanygivenmatrixAisamatrixwhi hisobtained fromAby removingany

numberofrows and/or olumns. Amatrixissaidtobepartitionedwheneveritisdivided

into submatri esby drawing verti al and horizontallines between its rows and olumns.

Example 11. If

A =

a

1,1

a

1,2

· · · a

1,n

a

2,1

a

2,2

· · · a

2,n

. . . . . . . . . . . .

a

m,1

a

m,2

· · · a

m,n

,

thenapartitioningof

A

intosubmatri es

B, C, D

and

E

oforder

3×2, 3×(n−2), (m−3)×2

and

(m − 3) × (n − 2)

respe tively is

a

1,1

a

1,2

a

1,3

· · · a

1,n

a

2,1

a

2,2

a

2,3

· · · a

2,n

a

3,1

a

3,2

a

3,3

· · · a

3,n

a

4,1

a

4,2

a

4,2

· · · a

4,n

. . . . . . . . . . . . . . .

a

m,1

a

m,2

a

m,3

· · · a

m,n

=

 B C

D E



where

B, C, D

and

E

an bethought of aselements of

A

. We note that the partitioning of a matrix intosubmatri es is not unique.

Denition 12. A eld

F

is said tobealgebrai ally losed if every polynomialequation

a

0

+ a

1

x + a

2

x

2

+ · · · + a

n

x

n

= 0

with oe ients in

F

has a solutionin

F

.

Theeld

R

ofrealnumbersisnot algebrai ally losedastheequation

x

2

+ 1 = 0

doesnot

havea solutionin

R

.

Butthe eld

C

of omplexnumbers isalgebrai ally losed, (see[6 ℄).

Westate, withoutproof,the followingtheorem (whi h an befound in[4℄) be auseof its

signi an e inthe proof of Theorem 14.

Theorem 13. Let

F

n

be a family of ommuting matri es of order

n

over analgebrai ally losed eld

F

. Then there exists a nonsingular matrix

P

of order

n

with entries in

F

su h that

P

−1

F

(14)

Theorem 14. The maximum number of mutually ommuting linearly independent

ma-tri es of order

n

over a eld

F

is

⌊n

2

/4⌋ + 1

.

Proof. The proof is by mathemati alindu tion.

(i)For

n = 1

the statementis obviously true.

(ii) Assume the theorem is true for

n − 1,

i.e., a set onsisting of mutually ommuting matri es of order

(n − 1) × (n − 1)

has at most

⌊(n − 1)

2

/4⌋ + 1

linearly independent

matri es.

(iii)Let

F

n

bea familyof ommutingmatri esof order

n

overa eld

F

. Suppose

F

n

has more than

⌊n

2

/4⌋ + 1

linearly independent matri es. Assume, withoutloss of generality,

that

F

is algebrai ally losed, then by Theorem 9 there exists a nonsingular matrix

P

withentries in

F

su hthat

P

−1

F

n

P

isafamilyofuppertriangularmatri es. Alsoforany

T, U ∈ F

n

,

(P

−1

UP )(P

−1

T P ) = P

−1

U(P P

−1

)T P = P

−1

(UT )P

and

(P

−1

T P )(P

−1

UP ) = P

−1

T (P P

−1

)UP = P

−1

(T U)P.

But

UT = T U

and thus

(P

−1

UP )(P

−1

T P ) = (P

−1

T P )(P

−1

UP )

showing that the

ma-tri esin

P

−1

F

n

P

aremutually ommuting. Let

V

bethe ve torspa espanned by the set

P

−1

F

n

P

. Then

V

onsists of uppertriangularmatri eswhi h ommute. Thus,

 P

−1

F

n

P ⊆

span

{P

−1

F

n

P } = V



and dim

V ≥ ⌊n

2

/4⌋ + 2.

Sin e a subset of a linearly independent set is also linearly

independent there exists a linearly independent subset

{A

1

, A

2

, . . . , A

q

}

of a basis of

V

,

q = ⌊n

2

/4⌋ + 2

. Sin e ea h of the

A

i

's is an uppertriangularmatrix, the partitioning of ea h

A

i

intosubmatri es

M

i

,

H

i

and a zero matrix of order

(n − 1) × (n − 1)

,

1 × n

and

(n − 1) × 1

respe tively,yields matri esof the form

A

i

=

H

i

0

0

M

i

. . .

0

.

Now, partitioningthe

H

i

further (where

L

i

, N

i

and

M

i

aresubmatri es oforder

1 × 1, 1 ×

(n − 1)

and

(n − 1) × (n − 1)

respe tively) we have

A

i

A

j

=

 L

i

N

i

0

M

i

  L

j

N

j

0

M

j



=

 L

i

L

j

L

i

N

j

+ N

i

M

j

0

M

i

M

j



and

A

j

A

i

=

 L

j

N

j

0

M

j

  L

i

N

i

0

M

i



=

 L

j

L

i

L

j

N

i

+ N

j

M

i

0

M

j

M

i



.

(15)

CHAPTER 2. Mirzakhani'sSimple Proof of S hur's Theorem 8

Sin e

A

i

A

j

= A

j

A

i

it follows that

M

i

M

j

= M

j

M

i

, i.e., the

M

i

's ommute.

Let

W

be the ve tor spa e spanned by the set

{M

1

, M

2

, . . . , M

q

}

, so the elements of

W

are

(n − 1) × (n − 1)

matri es. Suppose

k =

dim

W

. Then it follows from the indu tion hypothesis that

k ≤ ⌊(n − 1)

2

/4⌋ + 1

. Assume, without loss of generality, that

W

is spanned by the linearly independent set of matri es

{M

1

, M

2

, . . . , M

k

}.

Then for

i > k

ea h

M

i

is expressible asa linear ombination

M

i

=

P

k

j=1

c

i,j

M

j

with s alars

c

i,1

, . . . , c

i,k

in

F.

Now, for

i > k

, let

B

i

= A

i

P

k

j=1

c

i,j

A

j

.

Thenfor

i = k + 1, . . . , ⌊n

2

/4⌋ + 2

,

B

i

= A

i

k

X

j=1

c

i,j

A

j

=

H

i

0

M

i

P

k

j=1

c

i,j

H

j

0

P

k

j=1

c

i,j

M

j

=

t

i

0

0

=

 t

i

0



where

t

i

= H

i

P

k

j=1

c

i,j

H

j

is a

1 × n

matrix. Now onsider

q

X

i=k+1

d

i

B

i

=

q

X

i=k+1

d

i



A

i

k

X

j=1

c

i,j

A

j



= 0.

Sin e the

A

i

's are linearly independent it follows that the s alars

d

i

= d

i

c

i,j

= 0

and so the

B

i

'sare linearlyindependent. Furthermore,if

q

X

i=k+1

d

i

t

i

= 0

then

q

X

i=k+1

d

i

 t

0

i



=

q

X

i=k+1

d

i

B

i

= 0

and thus, the s alars

d

i

= 0

, hen e the set

{t

k+1

, . . . , t

q

}

is linearly independent over

F

.

Now onsider an alternative partitioning of ea h of

A

1

, A

2

, . . . , A

q

,

q = ⌊n

2

/4⌋ + 2

into submatri es

M

i

,

H

i

and a zero matrix of order

(n − 1) × (n − 1)

,

n × 1

and

1 × (n − 1)

respe tively, as follows:

A

i

=

M

i

0 0 · · · 0

H

i

(16)

forall

i

. Again,sin e

A

i

A

j

= A

j

A

i

itfollowsasbeforethat

M

i

M

j

= M

j

M

i

,i.e., the

M

i

's ommute. Let

W

be the ve tor spa e spanned by the set

{M

1

, M

2

, . . . , M

q

}

, so the ele-mentsof

W

are

(n − 1) × (n − 1)

matri es. Suppose

s =

dim

W

. Thenfromtheindu tion

hypothesisit follows that

s ≤ ⌊(n − 1)

2

/4⌋ + 1

. Assume,again withoutlossof generality,

that

W

is spanned by the linearly independent set of matri es

{M

1

, M

2

, . . . , M

s

}.

Then for

i > s

ea h

M

i

is expressible as a linear ombination

M

i

=

P

s

j=1

c

i,j

M

j

with s alars

c

i,1

, . . . , c

i,s

in

F.

Now, for

i > s

, let

B

i

= A

i

P

s

j=1

c

i,j

A

j

.

A similar argument asbefore shows that

B

i

=

 0 t

i



where

t

i

= H

i

P

s

j=1

c

i,j

H

j

is an

n × 1

matrix,

i = s + 1, . . . , ⌊n

2

/4⌋ + 2.

The

B

i

's are linear ombinations of the

A

i

's, so the

B

i

's are in

V

. Similarly the

B

j

's are in

V

and hen e

B

i

B

j

= B

j

B

i

. From

B

i

B

j

=

 t

i

0



 0 t

j

 =

 0 t

i

t

j

0

0



and

B

j

B

i

=

 0 t

j



 t

i

0



= 0

itfollowsthat

t

i

t

j

= 0

forevery

i = k + 1, . . . , q

and

j = s + 1, . . . , q

,where

q = ⌊n

2

/4⌋+ 2

. Let

A =

t

k+1

t

k+2

. . .

t

q

=

a

k+1,1

a

k+1,2

· · · a

k+1,n−1

a

k+1,n

a

k+2,1

a

k+2,2

· · · a

k+2,n−1

a

k+2,n

. . . . . .

· · ·

. . . . . .

a

q,1

a

q,2

· · ·

a

q,n−1

a

q,n

where

q = ⌊n

2

/4⌋ + 2

and

t

i

= (a

i,1

, a

i,2

, . . . , a

i,n

)

for

i = k + 1, . . . , q.

Sin e the

t

i

's are linearly independent it follows that

rank

A ≥ ⌊n

2

/4⌋ + 2 − (k + 1) + 1 = ⌊n

2

/4⌋ − k + 2.

And

t

i

t

j

= 0

implies

At

j

= 0

whi h implies that

t

j

is in the null spa e of

A

for all

j = s + 1, . . . , ⌊n

2

/4⌋ + 2

. Furthermore, the

t

i

's are linearly independent,thus,

nullity

A ≥ ⌊n

2

/4⌋ + 2 − (s + 1) + 1 = ⌊n

2

/4⌋ − s + 2.

Now

n =

rank

A +

nullity

A

 n

2

4



− k + 2



+

 n

2

4



− s + 2



= 2

 n

2

4



+ 4 − (k + s).

(17)

CHAPTER 2. Mirzakhani'sSimple Proof of S hur's Theorem 10 But

k + s ≤ (⌊

(n−1)

2

4

⌋ + 1 + ⌊

(n−1)

2

4

⌋ + 1)

,so

n ≥ 2

 n

2

4



+ 4 −

 (n − 1)

2

4



+ 1 +

 (n − 1)

2

4



+ 1



= 2

 n

2

4



 (n − 1)

2

4



+ 1



.

If

n

iseven, say

n = 2m, m ∈ Z

+

,

then

n ≥ 2

 (2m)

2

4



 (2m − 1)

2

4



+ 1



= 2



m

2





(m

2

− m) +

1

4



+ 1



= 2(m

2

− m

2

+ m + 1)

= 2m + 2

= n + 2.

If

n

isodd, say

n = 2m + 1, m ∈ Z

+

,

then

n ≥ 2

 (2m + 1)

2

4



 (2m)

2

4



+ 1



= 2



(m

2

+ m) +

1

4





m

2



+ 1



= 2(m

2

+ m − m

2

+ 1)

= 2m + 2

= n + 1.

Wehavethusarrived ata ontradi tion inboth ases. Thus, the assumptionthat

F

n

has more than

⌊n

2

/4⌋ + 1

linearly independent matri es leads to a ontradi tion. Therefore

F

n

has atmost

⌊n

2

/4⌋ + 1

linearly independent matri es.

Thefollowing ommutativesubalgebraof

M

n

(F )

givenin[9℄isanexampleofasubalgebra ontaining

⌊n

2

/4⌋ + 1

linearly independent matri es. The example istrue for allpositive

integer

n

. This shows that the upper bound

⌊n

2

/4⌋ + 1

annot be lowered. We look at

the ase when

n = 5

for illustrativepurposes. Example 15. The subalgebra

F

n

= {aI + a

i,j

E

i,j

| 1 ≤ i ≤ ⌊n/2⌋, ⌊n/2⌋ + 1 ≤ j ≤ n, a, a

i,j

∈ F }

of

M

n

(F )

,

F

aeld,isa ommutativesubalgebrawhi hhas

⌊n

2

/4⌋+1

linearlyindependent

matri es.

We show that

F

n

is indeed ommutative. Sin e, by denition of

F

n

,

i

is never equal to

(18)

bI + b

i,j

E

i,j

in

F

n

we have

(aI + a

i,j

E

i,j

)(bI + b

i,j

E

i,j

) = abI + ab

i,j

E

i,j

+ a

i,j

bE

i,j

+ a

i,j

b

i,j

E

i,j

E

i,j

= abI + ab

i,j

E

i,j

+ a

i,j

bE

i,j

and

(bI + b

i,j

E

i,j

)(aI + a

i,j

E

i,j

) = baI + ba

i,j

E

i,j

+ b

i,j

aE

i,j

+ b

i,j

a

i,j

E

i,j

E

i,j

= baI + ba

i,j

E

i,j

+ b

i,j

aE

i,j

.

Sin e

F

isa eld, itthen follows that elements of

F

n

ommute.

Wenoti ethat every element

aI + a

i,j

E

i,j

of

F

n

an be expressed asa linear ombination

aI + a

i,j

E

i,j

= aI + a

1,⌊n/2⌋+1

E

1,⌊n/2⌋+1

+ . . . + a

1,n

E

1,n

+ a

2,⌊n/2⌋+1

E

2,⌊n/2⌋+1

+ . . . + a

2,n

E

2,n

. . .

+ a

⌊n/2⌋,⌊n/2⌋+1

E

⌊n/2⌋,⌊n/2⌋+1

+ . . . + a

⌊n/2⌋,n

E

⌊n/2⌋,n

and alsothe set

W = {I, E

i,j

| 1 ≤ i ≤ ⌊n/2⌋, ⌊n/2⌋ + 1 ≤ j ≤ n}

is linearly independent. Thus,

W

is abasis for

F

n

. The numberof elementsin

W

is

 n

2



n −

 n

2



+ 1.

Now, if

n

is even, say

n = 2m

,

m ∈ Z

+

,

then

 n

2



n −

 n

2



+ 1 =

 2m

2



2m −

 2m

2



+ 1

= ⌊m⌋(2m − ⌊m⌋) + 1

= m(2m − m) + 1

= m

2

+ 1

=

 (2m)

2

4



+ 1

=

 n

2

4



+ 1.

(19)

CHAPTER 2. Mirzakhani'sSimple Proof of S hur's Theorem 12 If

n

isodd, say

n = 2m + 1, m ∈ Z

+

,then

 n

2



n −

 n

2



+ 1 =

 2m + 1

2



2m + 1 −

 2m + 1

2



+ 1

=



m +

1

2



2m + 1 −



m +

1

2



+ 1

= m(2m + 1 − m) + 1

= m

2

+ m + 1

=



m

2

+ m +

1

4



+ 1

=

 (2m + 1)

2

4



+ 1

=

 n

2

4



+ 1.

Example 16. In parti ular, if

n = 5

and

F

is aeld, then

F

5

= {aI + a

i,j

E

i,j

| 1 ≤ i ≤ ⌊5/2⌋, ⌊5/2⌋ + 1 ≤ j ≤ 5, a, a

i,j

∈ F }

= {aI + a

i,j

E

i,j

| 1 ≤ i ≤ 2, 3 ≤ j ≤ 5, a, a

i,j

∈ F }.

Let

A, B ∈ F

5

su h that

A =

a 0 a

1,3

a

1,4

a

1,5

0 a a

2,3

a

2,4

a

2,5

0 0

a

0

0

0 0

0

a

0

0 0

0

0

a

= aI + A

1,2

and

B =

b 0 b

1,3

b

1,4

b

1,5

0 b b

2,3

b

2,4

b

2,5

0 0

b

0

0

0 0

0

b

0

0 0

0

0

b

= bI + B

1,2

where

A

1,2

=

0 0 a

1,3

a

1,4

a

1,5

0 0 a

2,3

a

2,4

a

2,5

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

and

B

1,2

=

0 0 b

1,3

b

1,4

b

1,5

0 0 b

2,3

b

2,4

b

2,5

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

.

Wesee that

A

1,2

B

1,2

= B

1,2

A

1,2

= 0

and thus,

AB = (aI + A

1,2

)(bI + B

1,2

)

(20)

and

BA = (bI + B

1,2

)(aI + A

1,2

)

= baI + bA

1,2

+ aB

1,2

.

Therefore

AB = BA

indi atingthat the elements of

F

5

are indeed mutually ommuting. It is lear that

{I

5

, E

1,3

, E

1,4

, E

1,5

, E

2,3

, E

2,4

, E

2,5

}

isalinearlyindependentset ofmatri esin

F

5

.

Moreover, notethatthis sethas

7

elements and

⌊5

2

/4⌋ + 1 = 7.

Weobservethat inthe subalgebra

F

n

inExample15 the number

⌊n

2

/4⌋ + 1

isalsoequal

(21)

Chapter 3

Cayley-Hamilton Theorem

Inthis hapter wegiveadetailedproof ofthe Cayley-HamiltonTheoremfor anarbitrary

matrixin

M

n

(R),

where

R

denotestheeldofrealnumbers. Wefurtherdis ussinbriefthe tra eidentity fora

2 × 2

matrixover

R

whi h arisesfromthe Cayley-HamiltonTheorem.

Consider an

n × n

matrix

A ∈ M

n

(R)

given by

A = (a

i,j

) =

a

1,1

a

1,2

· · · a

1,n

a

2,1

a

2,2

· · · a

2,n

·

·

· · ·

·

·

·

· · ·

·

·

·

· · ·

·

a

n,1

a

n,2

· · · a

n,n

.

(3.1)

The followingdenitions are given in relationtothe general

n × n

matrix

A ∈ M

n

(R)

in Equation 3.1.

Denition 17. (Nering E.D. [10℄)

The determinant of the matrix

A = (a

i,j

)

is dened to be the s alar

det(A) = |a

i,j

|

omputed a ording tothe rule

det(A) = |a

i,j

| =

X

π

(

sgn

π)a

1,π(1)

a

2,π(2)

· · · a

n,π(n)

,

where the sum is taken overall permutationsof the elements of the set

S = {1, . . . , n}.

Wenote the following with regardto the above denition:

(i)"sgn

π

" means the "the sign of

π

".

(ii)A permutation

π

of a set

S

is dened to bea one to one mappingof

S

ontoitself. (iii)The element whi hthe permutation

π

asso iates with

i

is denoted by

π(i).

(iv) sgn

π = +1

if

π

is aneven permutation. (v) sgn

π = −1

if

π

isan odd permutation.

(22)

Example 18. Consider a

3 × 3

matrix

B ∈ M

3

(R)

given by

B =

b

1,1

b

1,2

b

1,3

b

2,1

b

2,2

b

2,3

b

3,1

b

3,2

b

3,3

.

(3.2) The determinant of

B

is

det(B) =

X

π

(

sgn

π)b

1,π(1)

b

2,π(2)

b

3,π(3)

= b

1,1

b

2,2

b

3,3

+ b

1,2

b

2,3

b

3,1

+ b

1,3

b

2,1

b

3,2

− b

1,2

b

2,1

b

3,3

− b

1,3

b

2,2

b

3,1

− b

1,1

b

2,3

b

3,2

= b

1,1

(b

2,2

b

3,3

− b

2,3

b

3,2

) + b

1,2

(b

2,3

b

3,1

− b

2,1

b

3,3

) + b

1,3

(b

2,1

b

3,2

− b

2,2

b

3,1

).

Thus,

det(B) = b

1,1

B

1,1

+ b

1,2

B

1,2

+ b

1,3

B

1,3

(3.3) whereea h

B

i,j

isadeterminantofamatrix obtainedfrom

B

bydeletingthe

ith

rowand

jth

olumnof

B.

That is,

B

1,1

=

b

2,2

b

2,3

b

3,2

b

3,3

, B

1,2

= −

b

2,1

b

2,3

b

3,1

b

3,3

, B

1,3

=

b

2,1

b

2,2

b

3,1

b

3,2

.

Remark 19. The determinantof the

n × n

matrix

A

in(3.1) an be writtenin the form

det(A) = a

i,j

A

i,j

+ (

terms whi hdo not ontain

a

i,j

as a fa tor

).

Example18andRemark19leadustothefollowingdenition,(seeJainandGunawardena

[5℄).

Denition 20. The ofa torof any entry

a

p,q

of an

n × n

matrix

A = (a

i,j

)

isdened to be

A

p,q

= (−1)

p+q

·det(

the

(n−1)×(n−1)

matrix obtained by deletingthe

p th

row and

q th

olumn

).

InRemark19thes alar

A

i,j

isthe ofa toroftheentry

a

i,j

andinExample18,

B

1,1

, B

1,2

, B

1,3

are ofa tors of

b

1,1

, b

1,2

, b

1,3

, respe tively.

Example 21. Usingthe matrix

B ∈ M

3

(R)

in Example 18, we have

b

2,1

B

1,1

+ b

2,2

B

1,2

+ b

2,3

B

1,3

(3.4)

= b

2,1

(b

2,2

b

3,3

− b

2,3

b

3,2

) + b

2,2

(b

2,3

b

3,1

− b

2,1

b

3,3

) + b

2,3

(b

2,1

b

3,2

− b

2,2

b

3,1

).

(3.5) Multiplying and grouping onthe right hand side of Equation 3.5gives

b

2,1

B

1,1

+ b

2,2

B

1,2

+ b

2,3

B

1,3

= b

2,1

b

2,2

b

3,3

− b

2,2

b

2,1

b

3,3

+ b

2,3

b

2,1

b

3,2

− b

2,1

b

2,3

b

3,2

+ b

2,2

b

2,3

b

3,1

− b

2,3

b

2,2

b

3,1

= 0.

(23)

CHAPTER 3. Cayley-Hamilton Theorem 16

Remark 22. In general

n

X

j=1

a

i,j

A

k,j

= a

i,1

A

k,1

+ a

i,2

A

k,2

+ . . . + a

i,n

A

k,n

= 0

whenever

i 6= k.

Denition 23. The transpose of the matrix

A = (a

i,j

)

is the matrix

A

T

whose element

a

i,j

appearing in row

i

and olumn

j

is the element

a

j,i

appearingin row

j

and olumn

i

of

A.

Againin relationto (3.1)and Denition20,the matrix

(A

i,j

) =

A

1,1

A

1,2

· · · A

1,n

A

2,1

A

2,2

· · · A

2,n

·

·

· · ·

·

·

·

· · ·

·

·

·

· · ·

·

A

n,1

A

n,2

· · · A

n,n

whoseentries are ofa torsof allentries of an

n × n

matrix

A = (a

i,j

)

is alled a ofa tor matrix.

Denition 24. The transpose

(A

j,i

) =

A

1,1

A

2,1

· · · A

n,1

A

1,2

A

2,2

· · · A

n,2

·

·

· · ·

·

·

·

· · ·

·

·

·

· · ·

·

A

1,n

A

2,n

· · · A

n,n

of the ofa tor matrix

(A

i,j

)

is alled the adjointof matrix

A

and itis denoted by

adj A.

Lemma 25. The produ t of any matrix

A ∈ M

n

(R)

and its adjoint

adj A

is equal to

(det(A))I,

i.e.,

A(adj A) = (det(A))I

where

I

is the identity matrix in

M

n

(R)

. Lemma26. Let

A

0

+A

1

λ+. . .+A

m

λ

m

= 0

forall

|λ|

su iently large,where

A

i

∈ M

n

(R)

for all

i

and where

R

denotes the eld of real numbers. Then ea h

A

i

= 0.

Proof. Multiplying

A

0

+ A

1

λ + . . . + A

m

λ

m

= 0

(3.6) by

1

λ

m

yields

A

0

1

λ

m

+ A

1

1

λ

m−1

+ . . . + A

m−1

1

λ

+ A

m

= 0.

(3.7)

(24)

Letting

|λ| → ∞

in(3.7) yields

A

m

= 0

and thus(3.7) be omes

A

0

1

λ

m

+ A

1

1

λ

m−1

+ . . . + A

m−2

1

λ

2

+ A

m−1

1

λ

1

= 0.

(3.8) Multiplying (3.8) by

λ

yields

A

0

1

λ

m−1

+ A

1

1

λ

m−2

+ . . . + A

m−2

1

λ

+ A

m−1

= 0.

(3.9)

Letting

|λ| → ∞

in(3.9) yields

A

m−1

= 0

and thus (3.9) be omes

A

0

1

λ

m−1

+ A

1

1

λ

m−2

+ . . . + A

m−2

1

λ

1

= 0.

(3.10)

Continuing tomultiplyby

λ

and letting

λ → ∞

resultseventuallyin

A

0

λ

+ A

1

= 0.

(3.11)

Finally,againletting

λ → ∞

gives

A

1

= 0

and so(3.6)impliesthat

A

0

= 0.

Hen eallthe

A

i

's are zero.

Corollary 27. Let

A

i

and

B

i

be

n × n

matri es over

R

and suppose that

A

0

+ A

1

λ + . . . + A

m

λ

m

= B

0

+ B

1

λ + . . . + B

m

λ

m

for all

|λ|

large enough. Then

A

i

= B

i

for all

i

.

Proof. Sin e

A

0

− B

0

+ (A

1

− B

1

)λ + . . . + (A

m

− B

m

m

= 0,

Lemma 26implies that

A

i

− B

i

= 0

for all

i

. Hen e

A

i

= B

i

for all

i

.

ThefollowingtheoremisthewellknownCayley-HamiltonTheoremanditstatesthatany

n × n

matrix

A

isa solution of its hara teristi polynomial

p(λ).

Theorem 28. Let

A

be an

n × n

matrix over

R

and let

p(λ) = det(A − λI)

be the hara teristi polynomial of

A

. Then

p(A) = 0.

Proof. Consider a matrix

A ∈ M

n

(R)

su hthat

A = (a

i,j

).

Then

A − λI =

a

1,1

− λ

a

1,2

· · ·

a

1,n

a

2,1

a

2,2

− λ · · ·

a

2,n

· · ·

· · ·

· · ·

· · ·

a

n,1

a

n,2

· · · a

n,n

− λ

and the determinantof

A − λI

isa polynomial in

λ

of degree

n

, say,

(25)

CHAPTER 3. Cayley-Hamilton Theorem 18

for some

k

0

, k

1

, . . . , k

n

∈ R.

Now the ofa tor

A

1,1

=

a

2,2

− λ · · ·

a

2,n

· · ·

· · ·

· · ·

a

n,2

· · · a

n,n

− λ

is apolynomialin

λ

of degree

n − 1

. In fa tea h ofa tor

A

i,j

is apolynomialin

λ

of at most

(n−1)

thdegree. Hen etheentriesoftheadjointmatrix

adj(A−λI)

arepolynomials in

λ

of atmost

(n − 1)

thdegree. Thus,

adj(A − λI) = B

n−1

λ

n−1

+ B

n−2

λ

n−2

+ . . . + B

1

λ + B

0

where ea h

B

i

is an

n × n

matrix with entries from

R

. Now

(A − λI) adj(A − λI)

= (A − λI)(B

n−1

λ

n−1

+ B

n−2

λ

n−2

+ . . . + B

1

λ + B

0

)

= AB

n−1

λ

n−1

− IB

n−1

λ

n

+ AB

n−2

λ

n−2

− IB

n−2

λ

n−1

+ . . . + AB

1

λ − IB

1

λ

2

+ AB

0

− IB

0

λ,

i.e.,

(A − λI) adj(A − λI) = C

n

λ

n

+ C

n−1

λ

n−1

+ C

n−2

λ

n−2

+ . . . + C

1

λ + C

0

(3.13) where

C

n

= −IB

n−1

C

n−1

= AB

n−1

− IB

n−2

C

n−2

= AB

n−2

− IB

n−3

. . .

C

2

= AB

2

− IB

1

C

1

= AB

1

− IB

0

C

0

= AB

0

.

Multiplying the above equationsfrom the left by

A

n

, A

n−1

, A

n−2

, . . . , A

2

, A, I

respe tively, yields

A

n

C

n

= A

n

(−IB

n−1

)

A

n−1

C

n−1

= A

n−1

(AB

n−1

− IB

n−2

)

A

n−2

C

n−2

= A

n−2

(AB

n−2

− IB

n−3

)

. . .

A

2

C

2

= A

2

(AB

2

− IB

1

)

AC

1

= A(AB

1

− IB

0

)

IC

0

= IAB

0

.

(26)

Addingthe aboveequations yields

A

n

C

n

+ A

n−1

C

n−1

+ A

n−2

C

n−2

+ . . . + A

2

C

2

+ AC

1

+ C

0

= −A

n

B

n−1

+ A

n

B

n−1

− A

n−1

B

n−2

+ A

n−1

B

n−2

− A

n−2

B

n−3

+ . . . + A

3

B

2

−A

2

B

1

+ A

2

B

1

− AB

0

+ AB

0

= 0.

That is,

A

n

C

n

+ A

n−1

C

n−1

+ A

n−2

C

n−2

+ . . . + A

2

C

2

+ AC

1

+ C

0

= 0.

(3.14) Now, itfollows fromLemma 25 and (3.12)that

(A − λI)

adj

(A − λI) = I(

det

(A − λI)) = I(k

n

λ

n

+ k

n−1

λ

n−1

+ . . . + k

1

λ + k

0

).

(3.15)

Substituting (3.13)into (3.15) gives

C

n

λ

n

+ C

n−1

λ

n−1

+ C

n−2

λ

n−2

+ . . . + C

1

λ + C

0

= I(k

n

λ

n

+ k

n−1

λ

n−1

+ . . . + k

1

λ + k

0

).

By Corollary27 wehave

C

n

= Ik

n

, C

n−1

= Ik

n−1

, C

n−2

= Ik

n−2

, · · · , C

2

= Ik

2

, C

1

= Ik

1

, C

0

= Ik

0

.

Substituting the

C

i

by

Ik

i

in(3.14) we get

k

n

A

n

+ k

n−1

A

n−1

+ k

n−2

A

n−2

+ . . . + k

2

A

2

+ k

1

A + k

0

I = 0.

Consider a

2 × 2

matrix

A =

 a b

c d



over

R

with hara teristi polynomial

p(λ) = λ

2

− (a + d)λ + ad − bc

= λ

2

− tr(A)λ + det(A).

The Cayley-Hamilton Theorem asserts that

p(A) = A

2

− tr(A)A + I det(A) = 0,

(3.16)

where

I

is the identity matrix in

M

2

(R).

Sin e

tr(I) = 2

, taking the tra e of (3.16), it follows that

tr(A

2

) − tr

2

(A) + 2 det(A) = 0.

(3.17)

Thus,

det(A) =

1

2

tr

2

(A) − tr(A

2

).

(3.18)

Substituting (3.18)into (3.16) gives

A

2

− tr(A)A +

1

2

tr

2

(A) − tr(A

2

)I = 0.

(27)

CHAPTER 3. Cayley-Hamilton Theorem 20

The identity in(3.19) isknown as the Cayley-Hamiltontra e identity for

2 × 2

matri es. Weshall see in Chapter

5

that (3.19) is not ne essarilyzero when we deal with matri es over anon ommutativering.

We note that, although we have dealt with the Cayley-Hamilton Theorem for square

matri esover the eld of real numbers, there exist several proofs of this theorem for

ma-tri esoverthe eld

C

of omplexnumbers andarbitrary ommutativerings. Forinstan e, Zhang[14℄provided a prooffor square matri esoverthe eld

C

of omplexnumbers and Straubing [12℄ provided a proof for a square matrix over anarbitrary ommutativering.

Furthermore,toeverylineartransformationofave torspa eofdimension

n

overaeld

F

there orresponds an

n × n

matrix over

F

and onversely,toeverysu h matrixthere or-responds a linear transformation of the ve tor spa e. A ordingly, the Cayley-Hamilton

Theorem hold for linear transformations and Hungerford [3℄ provides a proof for linear

(28)

Chapter 4

Commutativity and Lie nilpoten y in

the Matrix Algebra

U

n

(R)

Inthis hapterwedisse tthepaper[8℄byMeyer, etal. Weexplorethering

U

n

(R)

,in par-ti ularthe rings

U

3

(R)

and

U

4

(R)

,inrelationtothe polynomial identities

[[x, y], z] = 0,

[x, y][u, v] = 0

and

[[x, y], [u, v]] = 0.

Wedis ussboth ases whenaring

R

is ommutative andwhen

R

isnot ommutative. Itisshown inTheorem44that

U

n

(R)

isLienilpotentof index

n − 1

. A ring satisfying anidentity

[[x, y], [u, v]] = 0

is alled Lie solvable of index

2

. In [8℄, Meyer, etal,giveanexample of a Liesolvable ring of index

2

whi h wedis uss in Corollary37.

4.1 The ring

U

3

(R)

Denition 29. Let

R

be an arbitrary ring (not ne essarily ommutative) with unity

1

, and let

U

n

(R) =

a a

1,2

· · ·

a

1,n

0

a

. . . . . . . . . . . . . . .

a

n−1,n

0 · · ·

0

a

: a, a

i,j

∈ R

be the subring of

M

n

(R)

of uppertriangularmatri es with equaldiagonalentries. Example 30. Consider the elements

E

1,2

, E

2,3

in

U

3

(R)

, i.e.,

E

1,2

=

0 1 0

0 0 0

0 0 0

and

E

2,3

=

0 0 0

0 0 1

0 0 0

.

Then

E

1,2

E

2,3

= E

1,3

6= 0 = E

2,3

E

1,2

.

Referenties

GERELATEERDE DOCUMENTEN

• Fixxx / leantraject voor doorgeleiding schuldhulp naar kredietbank. • Early warnings ontsluiten (stadsbank, nhas’s,

The discussions are based on five lines of inquiry: The authority of the book as an object, how it is displayed and the symbolic capital it has; the authority of the reader and

Traditioneel wordt dit principe wel gebruikt, maar niet in zijn volle consequentie doorgevoerd: De richtlijnen van de Inter- national commision on radiation units (ICRU) schrijven nog

Before we discuss the method of “ethical circles in social work”, it is important that we first take a look at the values and standards within social work.. Moreover,

We only use solver libraries to solve linear systems (no Trilinos NOX or PETSC SNES) 3.. We have implemented line

56 The UNEP suggests that the issue of liability vis-à-vis geoengineering must be discussed but is pessimistic on the prospects for any international governance or

Utrecht University and their researchers are often asked by national and international media to share their insights in societal relevant issues. This way the university shares

Inmiddels hebben veelleden zich al aangemeld bij Grand Hotel Krasnapolsky. Maar er is nog plaats. Wanneer u de antwoordkaart nog niet heeft ingevuld, kunt u deze alsnog inzenden