• No results found

the DUTCH AGROCOMPLEXity Interactions between socio-­‐economic context, political measures and ecological impact after WWII

N/A
N/A
Protected

Academic year: 2021

Share "the DUTCH AGROCOMPLEXity Interactions between socio-­‐economic context, political measures and ecological impact after WWII"

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

                 

the  

DUTCH

 

AGROCOMPLEX

ity    

 

 

Interactions  between  socio-­‐economic  context,  

political  measures  and  ecological  impact  after  WWII  

                     

Martin  Glabischnig

   

6143202  

Kim  Buisman

   

 

6076335  

Lisanne  Kraal

   

 

6033512  

 

 

 

UvA  Interdisciplinary  Project  paper  

December  23th  2011  

(2)

Abstract    

Agriculture  in  the  Netherlands  has  changed  dramatically  since  the  1950s.  The  then  predominant  small   traditional   farming   practices   largely   converted   into   a   large-­‐scale   industrial   agriculture,   which   affected   ecosystems.  This  is  a  complex  system  which  needs  to  be  approached  by  severel  disciplines  in  order  to   create   insights   on   its   dynamics.   In   this   paper,   dynamics   of   the   socio-­‐economic   context,   political   measures   and   ecological   impact   are   combined   to   create   an   integrated   timeline.   Based   on   a   historical   analysis  of  adaptive  cycles  and  feedback  loops  (derived  from  resilience  theory)  it  is  possible  to  identify   slow  and  fast  variables.  In  the  discussion  of  the  integrated  view  on  the  developments  it  became  clear   that   disciplinary   differences   were   still   underestimated.   A   theoretical   alternative   would   be   a   radical   separation  of  agriculture  and  natural  landscape.  

(3)

Index    

1)  Introduction                       p.  3  

 

  1.1)  Introduction  to  the  research  subject  &  research  question         p.  3    

  1.2)  Objectives  &  Social-­‐  and  scientific  relevance             p.  3    

2)  Theoretical  Framework  &  Methodology               p.  4    

3)  Dynamics  of  the  Dutch  Agrocomplex                 p.  7    

  3.1)  Dynamics  of  socio-­‐economic  system:  Socio-­‐economic  context       p.  7       3.1.1)  General  picture:  geographical  characteristics         p.  7     3.1.2)  Historical  trends  from  1950             p.  7    

  3.2)  Dynamics  of  political  system:  Political  measures           p.  10     3.2.1)  International  context               P.  10  

  3.2.2)  Policy  arrangements               P.  10  

    3.2.3)  Key  issues  in  policy  arrangements             P.  11    

  3.3)  Dynamics  of  ecological  system:  Ecological  impact           p.  14     3.3.1)  History  of  land  use  change             p.  14     3.3.2)  Ecological  impact:  Soil  &  Water             p.  14     3.3.2)  Ecological  impact:  Biodiversity             p.  16    

4)  Results:  Integrative  view  on  the  Dutch  Agrocomplex             p.  20    

  4.1)  Timeline                     p.  20  

 

  4.2)  Variables                     p.  23  

 

5)  Conclusion  and  discussion                   p.  24  

 

References                       p.  27  

 

Appendix                       p.  30  

(4)

1)  Introduction  

1.1)  Introduction  to  the  research  subject  &  research  question  

The   Dutch   agricultural   system   is   considered   as   one   of   the   most   intensive   and   productive   agricultural   systems  in  the  world.  Nonetheless,  some  problems  exist.  Negative  impact  on  ecosystem  services  (e.g.   biodiversity  loss,  habitat  loss  and  contamination)  is  recurring  issue.  Nowadays,  interests  of  this  sector   and  conservationists  seem  to  be  opposite.  Kol  &  Kuipers  (1991)  and  Karel  (2010)  state  that  the  sector   could   not   survive   in   today’s   global   market   without   state-­‐imposed   protective   measures.   In   order   to   create  a  basis  for  the  assessment  and  adjustment  of  agricultural  and  environmental  policies,  it  is  needed   to   not   only   understand   the   history   of   the   agricultural   sector,   but   create   integrated   knowledge   on   its   development  and  driving  forces.  

 

Therefore,  our  research  question  is

Developments  in  post  WWII  Dutch  Agriculture:  What  lessons  can  be  learned  from  an  integrated  view  on   the  interactions  between  socio-­‐economic  context,  political  measures  and  ecological  impact?

 

1.2)  Objectives  &  Social-­‐  and  scientific  relevance  

The   main   objective   of   this   report   is   contribute   to   an   integrated   view   on   the   complex   post   WWII   developments  of  the  Dutch  agricultural  system  and  formulate  lessons  that  can  be  learned  from  this.  To   achieve  this,  underlying  objectives  are:

-­‐  To  outline  dynamics  of  the  postwar  Dutch  Agrocomplex,  discussed  with  a  changing  focus  from  the                                -­‐  socio-­‐economic  context  to  the

                               -­‐  political  measures,  to  the                                -­‐  ecological  impact,  in  order  to

-­‐  Identify  the  driving  forces  in  the  interactions  between  these,  that  help  to -­‐  Gain  insights    on  this  system,  and  eventually

-­‐   Create   lessons   that   could   help   in   developing   future   policy   for   socio-­‐economic   and   ecological   sustainability.

 

The  catalysis  towards  a  increasingly  unsustainable  socio-­‐economic  and  ecological  state  are  to  be  sought   in  the  historic  events  following  World  War  II.  Thus,  the  complex  state  of  the  Dutch  agricultural  sector,  as   well   as   current   and   future   associated   policies   need   to   be   seen   against   the   background   of   its   historic   development   mainly   since   the   1950s.   Like   Feng   (1991)   mentions:   “Looking   back   on   these   historical   aspects  is  an  aid  to  understanding  the  mystery  of  Dutch  agricultural  development  and  gauging  its  future.   'Taking  history  as  the  mirror,  the  ups  and  downs  can  be  understood  correctly'”  (p.  41).

 

In  this  report,  first  the  theoretical  framework  and  methodology  will  outline  the  theories,  methods  and   techniques  that  provide  the  theoretical  guidelines  (Chapter  2).  This  is  followed  by  a  section  that  strives   to  analyze  the  dynamics  of  Dutch  agrocomplex  (Chapter  3).  First,  each  perspective  on  the  developments   is   described   (Sections   3.1,   3.2,   3.3)   and   an   integrated   view   on   the   interactions   is   given   (3.4).   Finally,   conclusions  are  drawn  and  discussed  (Chapter  4).  

(5)

2)  Theoretical  Framework  &  Methodology      

Theoretical  framework  

The   research   question   examines   the   interactions   between   the   political   measures,   socio-­‐economic   context   and   ecological   impact   related   to   the   Dutch   Agrocomplex   in   the   period   of   1950  -­‐   2010   (figure   2.1).  From  a  system  thinking  approach,  we  identify  the  socio-­‐ecological  system  on  multiple  scale  levels  in   time  and  space,  supported  by  insights  from  stakeholder  theory  (see  disciplinary  section  of  chapter  3.2).   In   this,   the   Dutch   Agrocomplex   can   be   defined   as   the   whole   agricultural   primary   sector   with   related   trade  and  industry  (Van  Leeuwen,  2010).      

   

Ecological   and   social   resilience   theory   is   part   of   system   thinking,   attempting   to   provide   ‘organized   complexity’.  Resilience  thinking  provides  an  alternative  theoretical  framework  to  the  balance  of  nature   paradigm  (classical  concept  of  equilibrium  in  nature).  Mostly,  the  concept  of  resilience  is  investigated  on   basis  of  case  studies,  which  are  analyzed  and  interpreted  through  the  so-­‐called  model  of  the  adaptive   cycle  (e.g.  Peterson,  2000;  Anderies,  2006;  Walker  &  Salt,  2006).  Through  the  adaptive  cycle  it  is  possible   to  describe  the  dynamics  of  a  system.  Today,  resilience  thinking  finds  its  application  in  different  scientific   fields  -­‐  such  as  e.g.  ecology,  economics,  social  science,  political  science   –  to  qualitatively  describe  the   magnitude  of  disturbance  impacting  a  system  and  the  equilibrium  and/or  non-­‐equilibrium  state(s)  of  it   (Wu  &  Loucks,  1995;  Gunderson,  2000;  Folke  et  al.,  2002;  Walker  &  Salt,  2006;  Fabinyi,  2008).  

 

  Figure  2.1  Theoretical  framework,  visualising  the  common  ground  between  disciplines  

(6)

As   pointed   out   by   Fabinyi   (2008)1,   the   (a)political   implications   of   resilience   thinking   about   socio-­‐

ecological  systems  can  conflict  with  the  political  aspects  of  the  issue.    

Methodology  

In   understanding   our   system,   resilience   thinking   helps   to   create   common   ground   among   the   social-­‐,   political-­‐  and  ecological  dynamics.  We  therefore  adapted  shared  and  overlapping  concepts  and  methods   of   Ecological   Resilience   Theory   and   Social   Resilience   Theory.   The   integrative   techniques   we   used   are   redefinition,   extension   and  reorganization   (Repko,   2008)   to   make   concepts   and   methods   of   resilience   more  suitable  for  our  interdisciplinary  research  approach.    

 

Systems  in  Resilience  Theory  are  never  stable  and  “move”  through  recurring  states.  The  dynamics  of  a   system  can  be  divided  in  four  processes2  (Gunderson,  2000;  Peterson,  2000)  as  seen  in  figure  2.2.  In  this  

figure,   arrows   are   representing   the   rate   of   the   occurrences   whereby   the   change   from   growth   to   conservation  is  relatively  slow  while  from  release  to  reorganization  this  change  occurs  sudden  and  in  a   small  time  span.  Systems  can  move  parallel  through  different  adaptive  cycles  that  are  not  necessarily   interlinked  and  through  different  stages  of  the  adaptive  cycle.  The  speed  of  change,  as  well  as  the  time   scale   of   the   adaptive   cycles   varies   greatly   between   social   and   ecological   systems.   Both   systems,   ecological  and  social,  are  partly  interlinked  and  impact  each  other  directly  or  indirectly  through  feedback   loops.  It  is  possible  that  “smaller”  nested  cycles  can  be  part  of  or  driving  force  of  “larger”  cycles.  

 

Interdisciplinary Project FPS Assignment IV

Kim Buisman (6076335) - Lisanne Kraal (6033512) – Martin Glabischnig (6143202)

4

-Transformability

Transformation to a different kind of system is always possible. This implies that if a system is in a undesirable regime (thus the configuration of states is changed with no chance to “bounce back”) it is always possible to deliberately transform the regime into another one - thus creating new variables and panarchy.

Adaptive cycle

Systems are never stable and “move” through recurring states. The dynamics of a system can be divided in four processes; (r) growth, (K) conservation, (!) release and (") reorganisation (Gunderson, 2000; Peterson, 2000) as seen in figure 2 on the next page. In this figure, arrows are representing the rate of the occurances whereby the change from growth to conservation is relatively slow while from release to reorganization this change occurs sudden and in a small timespan. Ecological an social systems can move parallel through different adaptive cycles that are not necessarily interlinked and through different stages of the adaptive cycle. The speed of change, as well as the time scale of the adaptive cycles varies greatly between social and ecological systems. Both systems, ecological and social, are partly interlinked and impact each other directly or indirectly through feedback loops. It is possible that “smaller” nested cycles can be part of or driving force of “larger” cycles. These nested cycles are non-partisan, which means that they are not restricted to cycles of their origin, but e.g. a social cycle can be a nested cycle within a larger ecological cycle.

Figure 2: A schematic representation of the adaptive cycle (Peterson, 2000) Adaptability

The key variables that define the properties and characteristics of an ecosystem, are also determining the stability variables of the system. In case of continuous pressure or disturbance, these key variables have the ability to change and “adapt” to the disturbance in order to keep the system in the current stable state. The key variables that configure the stability variables of an ecological system change at relatively slow rates (without human intervention).

Adaptive capacity in socio-ecological systems refers to the ability of humans to deal with change in their environment by observation, learning and altering their interactions. In this way, a social system has more “active” possibilities to deal with disturbance and might configure the stability variables of the social system at a relative fast rate.

General vs. specific resilience

Efforts to increase resilience of some aspect of a system regime to a specified set of disturbances can unwittingly reduce the resilience of other aspects of that system or another system that is interlinked.

 

  Figure  2.2  A  schematic  representation  of  the  adaptive  cycle  (Peterson,  2000)      

In  this  report,  three  disciplinary  sections  are  used  to  shortly  investigate  the  key  features  of  the  system   dynamics.  Within  these  disciplinary  sections,  relevant  features  are  underpinned  before  integrating  them   in  the  next  section.  Our  integration  process  starts  by  integrating  the  relevant  features  in  an  extensive   timeline   (featured   in   appendix   1)   which   will   be   discussed   in   chapter   4.   With   this   timeline   and   the   visualization  in  appendix  2,  slow  and  fast  variables  could  be  identified  according  to  the  format  suggested   by   Armitage   (2006).   These   will   help   to   map   the   interactions   within   this   period   of   time,   to   identify   its   current  regime  and  to  formulate  lessons  from  this.  

 

1  “Resilience  and  activities  undertaken  to  promote  resilience  at  the  scale  of  social-­‐ecological  systems,  must  be  

seen  as  a  political  concept.  Resilience,  like  any  other  concept  for  ecological  management,  including  those  that   emphasize  good  governance,  cannot  remove  the  need  for  political  decisions  and  negotiations  among  diverse   stakeholders  to  be  made  in  particular  local  contexts.”  (Fabinyi,  2008)  

(7)

3.1)  Dynamics  of  the  Socio-­‐economic  System:  Socio-­‐economic  context

 

 

3.1.1)  General  picture:  geographical  characteristics  of  the  Netherlands  

 

In  a  moderate  sea  climate3  and  with  a  flat,  fertile  soil,  the  Netherlands  could  be  said  to  have  several   geographical   characteristics   favorable   to   their   agricultural   system.   Subsequently,   their   position   in   relation  to  other  countries  and  regions  is  beneficial  on  a  strategic  level,  speaking  of  ‘a  gateway  to   Europe’  and  its  convenient  infrastructural  opportunities  (e.g.  the  several  large  rivers).  However,  its   geographical   location   also   poses   possible   weaknesses   like   a   threat   from   the   sea   and   the   growing   population   density   on   a   limited   space   (Feng,   1991).   Socio-­‐economic   developments   in   Dutch   agriculture  have  not  been  gradual  and  were  influenced  by  economic  trends  and  social  aspects.  In   this  context  of  the  Dutch  agriculture,  dynamics  of  this  socio-­‐economic  system  will  be  outlined  in  the   next  paragraph.  Various  elements  are  elaborated  in  the  timeline  of  the  appendix.  

 

3.1.2)  Historical  trends  from  1950

 

 

The   socio-­‐economic   agrosystem   of   the   Netherlands   transformed   from   a   traditional,   small-­‐scale,   widespread  system  with  numerous  farms  to  a  (particularly)  industrialized,  modernized  agricomplex   with   environmental   problems   to   be   tackled.   The   primary   sector’s   share   in   the   labour   force   decreased  from  19%  to  5%  between  1947  and  1990,  while  the  amount  of  capital  goods  increased  by   80%   (Grin   et   al.,   2004).   Key   trends   in   this   transformation   are   rationalization   of   the   agricultural   practices,   specialization,   expansion   of   production,   scale   enlargement   and   mechanization   (Karel,   2010;  Bieleman,  2009)  which  are  discussed  in  this  paragraph.  The  dynamics  of  this  transformation   and  the  accompanied  socio-­‐economic  trends  can  be  analyzed  through  time.  

 

In   the   start   of   our   historical   overview,   the   beginning   of   the   1950’s,   the   Dutch   economy   almost   completely   recovered   from   the   Second   World   War   (Bieleman,   2009).   Various   structures   (e.g.   the   SER)   facilitated   institutionalization   of   policy   cooperation   between   famers   and   government.   However,  the  agricultural  sector  coped  with  problems.  High  international  prices  and  the  resulting   subsidization  were  not  stimulating  this  sector  to  improve  their  productivity  or  to  lower  their  costs   which  –  together  with  a  traditional  agricultural  climate  (e.g.  knowledge  passed  on  from  father  to   son)  –  resulted  in  a  lack  of  investments.  The  numerous  small-­‐scale  farmers  were  incompatible  once   the  world  prices  lowered  (Karel,  2010).  

 

Modernization   -­‐   a   worldwide   trend   –   answered   the   need   of   the   Dutch   agriculture   to   reform,   influenced   by   various   programs   and   actions4.   In   addition,   sociologist   science5   demonstrated   the   necessity   of   modernizing   the   society   (Karel,   2010).   The   resulting   modernization   trend   involved   a   strong  growth  in  production  and  a  remarkable  one  in  productivity  resulting  from  a  changing  trend,   technically   and   on   the   level   of   business   organization   (Bieleman,   2009).   The   focus   of   innovation  

3  The  Netherlands  is  situated  latitude  51  to  54  of  the  Northern  hemisphere  and  nearby  sea.  

4  The  Rural  Area  Development  program  in  1956  (Karel,  2010),  the  European  Common  Market  in  1958  and  the  

Common  Agricultural  Policy  in  1962  (Bieleman,  2009).  

5   A   theory   which   was   developed   by   sociologists   (with   E.W.   Hofstee   as   initiator)   underpinned   these  

development  plan  by  stating  that  society  was  in  a  transition  phase  from  agriculture  to  the  modern  industrial   era  (Karel,  2010).  

(8)

changed  from  “land-­‐saving”  to  “labour-­‐saving”  (Bieleman,  2009)  and  specialization  (both  horizontal   and   vertical   in   the   production   chain)   reduced   the   diversity   on   farms   (Karel,   2010)   what   was   beneficial   in   terms   of   scale   advantages   (Feng,   1991).   This   can   be   seen   in   the   graph   of   figure   3.2   where  next  to  a  decline  in  numbers,  the  diversity  of  farms  also  declined6.  Scale  enlargement  and  its   mechanization  resulted  in  a  more  intensive  use  of  means  of  production  (Freng,  1991;  Karel,  2010),   efficiency  and  a  decrease  in  number  of  small  farms  (figure  3.1)  

 

Figure  3.1:  Number  of  farms  with  categories  of  size.  Source:  based  on  Table  1  of  Karel,  2010,  page  5.    

Dutch farms per sector 1950 - 2008

0 50 100 150 200 250 300 350 400 450 1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 Periode Number of farms x 1000 Total farms Tillage Cattle Pigs Chicken

Figure  3.2:  “Modernisation”  of  the  Dutch  agricultural  sector.  Source:  CBS  

6  Figure  3.2:  at  the  1950’s  the  farms  had  multiple  functions  as  adding  up  the  coloured  lines  transcanded  the  

(9)

 

This   was   mainly   due   to   government   intervention   (Karel,   2010).   However,   the   “Dutch   disease”7   accelerated   this   reduction   of   small   scale   farmers   and     and   addition,   the   formation   of   the   CAP8   involved  a  positive  influence  on  productivity.  

 

This  modernization  continued  in  the  1970’s.  The  number  of  farms  further  decreased  and  efficiency,   rationalization   and   scale   enlargement   formed   the   basis   for   industrialization   of   agriculture   (e.g.   factory  farming  of  cattle).  This  was  founded  on  scientific  knowledge  about  methods  and  innovations   of  agricultural  production  and  processing  (Karel,  2010)  This  industrialization  process  can  be  said  to   ‘surpass’  modernization  of  agriculture  regarding  its  emphasis  on  efficiency  like  a  factory.  

 

This  trend  of  farms  ‘becoming  a  factory’  can  also  be  illustrated  by  the  growing  awareness  on  the   environmental   impact   of   this   sector,   which   was   increasingly   recognized   during   the   70’s.   Intensification   of   agricultural   practices   increasingly   caused   pressure   on   nature   and   environment   (Karel,  2010;  Bieleman,  2009).  The  book  Silent  Spring  (by  Carlsen  in  1962),  the  publication  Limits  of   growth   (Club   of   Rome   in   1972)   and   the   oil   crisis   of   1973   seem   to   have   influenced   this   paradigm   switch  (Karel,  2010)  which  put  more  pressure  on  the  industry  in  the  1980’s.  This  stimulated  the  rise   of   organic   farming   and   several   industrial   reforms   (Bieleman,   2009).   Subsequently,   the   overproduction  of  milk  involved  a  lot  of  criticism,  resulting  in  the  milk  quota  in  1984  and  reforms  of   the  CAP  (1992  an  2003).  

 

In  a  few  decades  the  agricultural  system  dramatically  changed  in  its  structure  and  created  an  agri-­‐ business,   a   complex   network   focusing   on   the   chain   instead   of   the   farm   (Bieleman,   2009).   This   process   of   modernization   in   agriculture   at   the   same   time   also   sheds   light   on   the   process   of   individualization:   the   farms   became   individual   businesses   instead   of   communities   of   farmers   and   globalization   which   led   to   less   involvement   by   the   government   (Karel,   2010).   Later   on,   environmental  problems  in  agriculture  still  posed  a  great  issue  while  globalization  and  government   withdraw   cause   a   further   shift   in   the   balance   of   power   to   companies   in   a   world   market   (Karel,   2010).   This   trend   was   already   identified   in   social   science   by   Benvenuti   in   the   60’s9   and   Van   der   Ploeg  in  the  90’s10  (Karel,  2010).  Nowadays,  another  trend  could  be  added  regarding  agriculture’s   role   in   society   which   is   broadening:   next   to   production,   goals   like   managing   nature   and   environment   are   getting   more   integrated   in   this   sector   (Klijn   et   al.,   2008)   building   on   an   existing   trend11.  

 

7   Dutch   Disease,   also   known   as   a   resource   curse   involved   the   discovery   of   gas   reservoirs   which   caused  

economic  deflation.  (because  increase  in  export  of  resource  caused  general  salaries  to  rise  while  prices  stay   the  same).  Manufacturing  sectors  lose  their  competitiveness  on  the  international  market.  

8  CAP:  Common  Agricultural  Policy  of  the  European  Union  

9  Benvenuti  stated  that  to  great  extent,  institutions  and  corporations  decide  the  strategy  of  the  agricultural  

enterprise  (Karel,  2010).  

10  Van  der  Ploeg  posed  the  term  ‘virtual  farmer’  who  was  created  by  the  system,  with  whom  the  upcoming  

plans  and  models  do  work  (Karel,  2010).  

(10)

3.2)  Dynamics  of  the  political  system:  Political  measures  

 

3.2.1)  International  context    

 

The   Dutch   Agrocomplex   after   WWII   had   three   main   problems:   international   competition,   inefficient   production   and   high   numbers   of   small   farmers   (Karel,   2004).   Governance   therefore   was   focused   on   stimulation   of   knowledge   and   technology,   financial   measures,   land   redistribution   to   enable   concentration  and  specialization  and  improvements  in  water  management  (Grin  et.  al.,  2004).  Under  the   Common  Agricultural  Policy  (CAP),  intangible  barriers  with  mutual  recognition  of  standards  and  common   regulations  based  on  protectionist  attitudes  were  steady.  With  the  adoption  of  the  Single  European  Act   in  1992  paved  the  way  for  the  EU  to  ‘seek  to  guarantee  the  free  movement  of  goods,  capital,  services,   and  people  within  the  EU's  27  member  states’  (European  Commission,  2011).  What  key  features  explain   Dutch  political  measures  afters  WWII?  

 

3.2.2)  Policy  arrangements  

 

Different  types  of  policy  arrangements  (Van  Tatenhove,  Arts  and  Leroy,  2000),  are  essential  features  of   the  political  dynamics  of  the  Dutch  Agrocomplex.  A  policy  arrangement  is  the  ‘temporary  stabilization  of   the  organization  and  substance  of  a  policy  domain  at  a  specific  level  of  policy  making’  (see  scheme  3.2).   The  macro-­‐processes  of  political  modernisation12  are  reflected  quite  accurately  in  the  development  of  

agricultural  policy  in  the  Netherlands  (Wisserhof,  2000).  Policy  arrangements  (figure  3.4)  are  ideal-­‐types,   in  fluctuating  levels  represented  in  the  Dutch  situation  (see  figure  3.3).  

  FIGURE  3.3:  Developments  in  policy  arrangements  in  Dutch  agricultural  politics  

12  From  Bekke  et.  al.  (1994)  the  following:  

1)  ’45-­‐80  ‘early  political  modernization’  (organizational  stability)  

2)  1980s  ‘anti-­‐modern  criticism’  (growing  concern,  changes  set  in  motion)  

(11)

 Overview  of  policy  arrangements  in  Dutch  agriculture   policy   arrangement   central   discourse13   governing   coalition(s)14   power  and   resources15  

rules   of   the   game16  

Corporatist   ‘growth’  

‘rationalization’  

‘Green   Front’  

State:  influence,  authority,   information,  monopoly    

Interest  organizations:  co-­‐ operation,  information,   discipline,  legitimacy     consensus   elitism   technocracy   de-­‐politization   insulation  

Statist   ‘Limits  to   Growth’  

Ministry  of   Agriculture   and  

Environment  

ecological  knowledge,  legal   expertise,  legislative  power  

‘general’   administration,   autocracy,   secrecy   Civic   ‘sustainable   development’   and  liveability’   Regional   networks  

knowledge  and  information,   managerial  and   communicative  skills,   finances   consensus,  de-­‐ politicisation,   egalitarianism,   public-­‐private   partnership  

Liberal   ‘free  market’   Market   players  at   (inter)nation al  level(s)  

knowledge  and  technology   (innovation),  quality   standards  (certification)   market   orientation,  less   government   intervention,   self-­‐regulation   Figure  3.4.  Typification  of  agricultural  policy  arrangements  (Wisserhof,  2000)  

 

3.2.3)  Key  issues  in  policy  arrangements  

   

The  corporatist  system  was  institutionalized  based  on  the  ‘wet  publiekrechtelijke  bedrijfsorganisatie’   (PBO)  in  1950.  This  provided  legal  grounds  for  a  Sociaal  Economische  Raad  (SER)  and  a  new  organisation   of  interest.  The  PBO  is  the  system  of  ‘schappen’17;  cooperation  agreements  between  entrepreneurs  and  

employees  to  secure  the  interest  of  the  sector  (SER,  nd.).  In  1994,  the  horizontal  relations  eventually  has   been  completely  replaced  by  the  combined  farmer  union  ‘Land-­‐  en  Tuinbouw  Organisatie  Nederland’   (TLO).  The  redistribution  of  land  was  heavenly  affected  by  the  overlap  of    interest  between  the  MoA  and   farmer  union  (Karel,  2010),  although  the  state  was  still  the  main  policy  maker.    

13  ‘set  of  ideas,  concepts  and  categorisations’13  

14  ‘number  of  players  identify  and  pursue  similar  policy  goals’  

15  ‘changing  interrelations  between  state,  market  and  civil  society’  

16  ‘how  politics  is  played’  

17  The  ‘productschappen’  are  a  vertical  relation  within  sectors  of  the  product  chain,  and  have  decentralized  

decision   making   powers   on   the   policy   of   their   concern,   the   ‘landbouwschappen’   are   horizontal   relations   between  sectors.

   

(12)

Within   this   PBO,   Dutch   agricultural   policy   making   was   in   the   hands   of   an   Iron   triangle   -­‐   strong   connection  agriculture  ministry,  agricultural  branch  and  agricultural  specialists  in  parliament  (Bekke  &   de   Vries,   1994;   Wisserhof,   2000).   This   ‘Green   front’   was   a   result   of   the   ‘formation   of   the   ministry   of   agriculture’  (MoA),  redirecting  far-­‐reaching  responsibilited  to  farmer  unions,  and  the  prominent  position   members  of  parliament  took  within  their  parties  (Karel,  2004).  In  this  front,  the  participants  could  take   many  decision  without  democratic  control  (Frouws,  1994)  which  caused  a  fast  increase  of  the  impact  of   the  state  on  agricultural  developments  (Krajenbrink,  2004).    

 

In   relation,   technology   and   innovation   was   organized   in   an   OVO   triad   (Dutch   acronym   for   research,   information   and   education)   -­‐   financial   government   support   for   agricultural   research,   communication   and   education   (Wisserhof,   2000).   As   part   of   the   knowledge   infrastructure,   this   close   association   between   researchers,   often   originally   from   farmer’s   families   themselves,   and   farming   practices   facilitated  utilization  of  new  knowledge  and  technology  (Grin  et.  al.,  2004)  .  

 

Related  to  the  emergence  of  environmental  concerns  in  the  political  discourse,  Greenpeace  and  other   NGOs   imposed   pressure   on   the   political   agenda,   and   a   number   of   negative   effects   of   agricultural   efficiency   came   to   attention.   The   effect   on   policy   arrangements   however   was   not   significant,   the   criticism  mainly  caused  a  shift  to  more  statist  policy  arrangements  (see  table  3.4).  The  merge  of  ‘nature   conservation   and   outdoor   recreation’   in   ministry   (1982),   change   from   a   sector   client   ministry   (Agriculture   and   Fisheries)   to   becoming   a   ministry   of   general   administration   (including   Nature   Management  in  1989)  (Frouws  and  Van  Tatenhove,  1993),  strong  criticism  media  on  fish  quota  and  an   audit   of   independent   commission   (1991)   caused   ministry   large-­‐scale   reorganization   in   the   1990s,   the   ‘Swallow  process’  (Bekke  et.  al.,  1994).  Despite  critical  evaluations  imposed  by  the  government  on  PBOs   in  2006,  the  financial  support  to  agribusiness  continues,  based  on  farmers  ‘historical  rights’.  Karel  (2010)   concludes   that   the   remains   of   the   green   front   still   prevent   powerful   environmental   policy   today,   and   according   to   Wisserhof   (2000)   the   corporatist   Dutch   ‘polder   model’   is   still   present   in   the   current   agricultural  policy  making.  Controversies  in  current  development  (GMO’s)  indicate  possible  connexions   between  international  companies,  sector  interest  groups,  knowledge  institutes  and  parliament  are  still   highly  significant.  

 

New  agricultural  ministers  promote  a  ‘stronger  market  orientation’  and  ‘nature  as  well  as  agricultural   policy   in   the   rural   areas’   (Bekke   et.   al.,   1994).   Fusions   of   agribusinesses   formed   large   international   companies  (auction:  The  Greenery,  milk:  Campina  and  meat  industries:  Vion)  in  the  Netherlands,  who   have   a   substantial   share   in   the   world   market   and   impose   power   towards   more   liberal   policy   arrangements.    

 

The   erosion   of   Iron   triangle   was   a   result   of   the   division   of   the   ‘green   front’   into   ‘a   variety   of   new   arrangements  -­‐  statist,  civic  and  liberal’  (Wisserhof,  2000).  This  can  be  explaned  by  a  reduction  of  the   national   TLO’s   power   of   representation,   due   to   a   diminishing   amount   of   voting   farmer’s   they   represented  decreased  their  political  relevance.  But  more  important,  the  interests  of  the  MoA  and  the   LTO  increasingly  did  not  coincide,  causing  alienation  between  farmer  and  government.  A  differentiation   of   interests   between   the   agricultural   sectors   due   to   unequal   interest   in   subsidies,   arrangements   and  

(13)

quota.  Producers  of  starch  potatoes,  sugarcane,  milk  and  cow  meat  receive  many  payments,  whereas   producers   of   ‘free   crops’   including   potatoes,   onions,   vegetables,   fruit   and   flowers   receive   little   or   no   payments,   and   also   within   sectors,   whereas   some   farmers   innovate   more   than   others.   Moreover,   outside   actors   entered   the   field   and   agriculture   lost   the   monopoly   of   land   planning   within   the   government.    

 

Causes   for   the   continuation   of   an   OVO   triad   can   be   found   in   reduced   government   spending   for   knowledge  institutions  in  the  1980s,  which  increased  the  need  for  private  investments.  This  stimulated   inclusion   of   commercial   attitudes,   in   a   ‘complex   networks   of   knowledge   creation’   (Wisserhof,   2000).   Since  1994,  Wageningen  University  and  Research  Centre  (WUR)  is  the  combination  of  the  agricultural   university,   the   discipline-­‐based   institutes   and   the   commodity-­‐oriented   research   stations   management   (Spiertz   and   Kropff,   2011).   This   means   a   continued   interrelation   between   farmer   business   and   technologic   developments,   in   a   shared   ‘quest   for   change’   for   society,   where   agrotechnology   and   business  interest  are  not  separated.    

   

(14)

3.3)  Dynamics  of  ecological  system:  Ecological  impact  

 

3.3.1)  History  of  land  use  change  

 

Throughout   history,   the   Netherlands   advanced  their  land  into  the  shallow  sea  and   since   1950   the   overall   land   area   increased   more  than  1.850  km2  due  to  land  reclamation   projects,  such  as  the  “Zuiderzee”  works  (CBS,   2011).  Contrary  to  this  the  overall  agricultural   area   in   the   Netherlands   decreased   since   the   mid-­‐1960s  (CBS,  2011).  Despite  this  trend,  the   size  of  the  sector  remains  substantial,  making   agriculture   by   far   the   largest   user   of   land   in   the  Netherlands  (Figure  3.5  and  CBS,  2011).    

The   modernisation   process,   initiated   in   the   1950s,   lead   to   a   more   intensive,   specialised   and   productive   agriculture   sector.   In   the   shadow   of   this   development,   Dutch   agriculture   started   to   significantly   contribute   to   environmental   disturbances:   e.g.   air,   soil   and   water   pollution,   desiccation   and   destruction   and   fragmentation   of   natural   habitat,   which   threatens   intact   ecosystems   with  its  native  plants  and  animals  that  provide  

vital  ecosystem  services.           Figure  3.5:  Land-­‐use  2000  (Source:  CBS)    

To  tackle  these  problems,  the  Dutch  government  introduced  -­‐  next  to  several  environmental  policies  –   the  “main  ecological  structure”  in  1990,  with  the  aim  to  establish  a  continuous  network  of  important   nature   areas   in   order   to   enhance   connectivity   of   important   wildlife   habitats   and   thus   create   larger   protected   habitats   and   enable   wildlife   to   migrate   among   areas.   However,   most   recently   the   Dutch   government  spoke  their  intention  to  cancel  undertakings  that  are  formulated  in  the  original  plan  (e.g.   further  enlargement  and  creation  of  corridors  among  nature  areas)  (Berkhout  &  van  Bruchem,  2011).  

 

3.3.2)  Ecological  impact:  Soil  &  water    

 

The  growth  and  intensification  of  agriculture  has  led  to  excessive  inputs  of  nitrogen  (N)  and  phosphate   (PO4),  which  deteriorate  the  quality  of  shallow  groundwater  and  surface  water,  and  thus  impact  nature   on  land  and  in  water.  Not  only  through  leaching  and  runoff,  but  also  through  deposition  of  ammonia   (NH3)   in   the   environment   caused   by   nutrient   surpluses   in   agricultural   fertilisation   practices.   These   ammonia   depositions   are   responsible   for   of   eutrophication   and   acidification   of   nature.   Although   the   overall  amount  of  acidifying  deposition  decreased  from  more  than  5600  mol  acid/ha  to  about  2500  mol   acid/ha  between  1981  until  2010,  the  associated  contribution  from  agriculture  remained  at  around  50%   throughout   the   period   (CBS,   2011).   Concerning   the   situation   of   substances   causing   eutrophication,   agriculture  is  the  main  domestic  contributor  with  ca.  38%  of  all  emissions  (CBS,  2011).  The  ecological   effects  of  eutrophication  by  nitrogen  and  phosphates  are  more  important  than  the  acidifying  effects  of   sulphur  (main  emitter  is  industry)  and  nitrogen.    

(15)

Figure   3.6   and   Figure   3.7   show   the   development   of   phosphorus   and   nitrogen   surpluses   in   agriculture   from   1970   until   2008.   Growing   intensive   animal   farming   largely   caused   the   increase   of   nitrogen   and   phosphorus  between  1970  and  1986.  The  surplus  of  nitrogen  and  phosphorus  decreased  53%  and  77%   respectively  between  1986  and  2008,  which  was  driven  by  targeted  policies  and  monitoring.  A  surplus  is   the  amount  of  nutrients  that  is  not  taken  up  by  plants  and  thus  mainly  accumulates  in  soil,  where  one   part  is  leached  to  ground  and  surface  water  and  another  part  “evaporates”  into  the  atmosphere  through   oxidation   and   de-­‐nitrification.   In   2009,   the   annual   governmental   publication   on   water   issues   in   the   Netherlands  states  that  more  than  3/4  of  surface  water  in  the  Netherlands  is  significantly  impacted  by   chemical  disturbance  originating  from  agricultural  operations;  with  nutrients  and  heavy  metals  as  the   main  pollutants  (NWO,  2009).  

 

   

Figure  3.6:  Phosphorus  surplus  1970-­‐2008.  Source:  CBS  

 

  Figure  3.7:  Nitrogen  surplus  1970-­‐2008.  Source:  CBS  

(16)

Desiccation,   due   to   decreasing   groundwater   levels,   is   caused   by   several   factors,   e.g.   drinking   water   production,   industry,   irrigation,   artificial   water   level   management   to   make   land   workable.   Thus,   desiccation  in  the  Netherlands  is  a  structural  problem  and  has  nothing  to  do  with  a  lack  of  precipitation.   In   the   Netherlands   about   60%   of   the   overall   desiccation   is   caused   by   agricultural   operations   (RIVM,   2000).   Artificial   management   of   water   levels   in   agricultural   areas   also   showed   to   have   substantial   negative  effects  on  surrounding  nature  areas  (van  Zijts  et  al.,  2010).  About  40%  of  Dutch  plant  species   depend  on  a  high  water  table  or  from  an  upward  flow  of  groundwater  (Tamis  et  al.,  2001).  By  lowering   the  water  level  such  plants  become  increasingly  rare,  which  has  consequences  for  the  food  supply  of   wild   animals   that   depend   on   these   plants.   Communities   of   plants   and   animals   (ecosystems)   are   thus   affected.  Sometimes  polluted  surface  water  is  utilised  to  combat  desiccation  (van  Vliet  et  al.,  2002).  The   polluted  water  often  contains  minerals  and  phosphates  that  attribute  to  eutrophication,  which  changes   the  vegetation  structure  and  can  cause  the  overgrowth  of  aquatic  ecosystems  (Beugelink  et  al,  2006).   The   area’s   most   affected   by   drought   are   often   also   precious   and   rare   habitats,   e.g.   dunes   with   dune   slacks,  wet  heaths  and  bogs  (Beugelink  et  al.,  2006  &  PBL,  2010).  

 

3.3.3)  Biodiversity  and  wildlife  conservation    

Biodiversity  is  a  useful  indicator  to  understand  and  show  changes  in  ecosystems  and  ecosystem  services   due  to  biological,  chemical  and  physical  impacts  (Niemeijer,  2002;  and  Osinski  et  al.,  2003).  Since  birds   are   among   the   most   well   studied   animal   species,   selected   groups   of   bird   species   are   recognised   as   valuable   and   convincing   “indicator   species”   to   track   environmental   developments   and   determine   the   success  of  restoration  attempts  and  associated  policies  (Piorr,  2003;  and  Padoa-­‐Schioppa  et  al.,  2005).    

The  general  breeding  birds  associated  with  the  agricultural  area  (farmland  birds)  in  the  Netherlands  are   continuously   declining   since   1990   (Figure   3.8).   This   development   mainly   is   due   to   the   measures   that   were   taken   to   modernise   the   Dutch   agricultural   system   and   which   consequentially   impact   particular   ecological  features  that  are  vital  for  certain  bird  communities  (CBS  et  al.,  2011;  and  Dijk  et  al.,  2010);   namely:  the  decrease  of  grassland  area  and  the  ratio  of  permanent  pasture  (Figure  3.9);  changes  in  crop   choice  and  the  scale  of  farming  (Figure  3.10);  impaired  prey  availability  due  to  desiccation;  degradation   of  reed  areas  due  to  desiccation  and  eutrophication;  disappearance  of  small  landscape  elements  such  as   hedgerows.    

   

Agriculture   also   had   a   big   impact   on   the   dispersal   of   certain   plant   species.   Between   1980   and   2000,   plant   species   adapted   to   infertile   habitats   (nitrophobes)   declined,   while   species   adapted   to   fertile   habitats   (nitrophytes)   greatly   increased   (Figure   3.11).   This   illustrates   the   effect   of   eutrophication   on   ecosystem  structure  and  composition  at  a  national  scale.  Since  most  of  the  nitrophobes  are  uncommon   and   endangered   in   the   Netherlands   contrary   to   nitrophyte   species   (Tamis   et   al.,   2001),   an   increased   biodiversity  loss  impairs  the  functioning  and  adaptability  of  the  present  ecosystem.  

 

The   Dutch   nature   policy   aims   for   so-­‐called   “sustainable   conditions”   in   2020,   which   is   reflected   in   the   goal  to  ensure  the  survival  of  all  species  that  were  present  in  the  Netherlands  in  1982  (LNV,  2006;  and   Van  Zijts  et  al.,  2010).  Since  1990,  environmental  and  water  conditions  improved  in  areas  reserved  for   floral  wildlife,  however,  have  not  yet  reached  sustainable  levels  as  defined  by  the  Dutch  Environmental   Assessment   Agency   (PBL)   (Figure   3.12),   which   is   the   consultative   research   body   of   the   Dutch   government.  The  downward  trend  of  environmental  impact  appears  to  stagnate  and  it  was  needed  to   adjust   the   original   scheme   to   achieve   sustainable   levels   by   2020.   For   example,   ecological   sustainable   levels   of   surface   water   are   not   expected   to   be   reached   before   2027   (Van   Zijts   et   al.,   2010),    

(17)

  Figure   3.8:   Dutch   farmland   birds   1990-­‐2010.   The   largest   breeding   population   of   Black-­‐tailed   Godwit   is   found  in  the  Netherlands,  which  makes  the  conservation  of  the  breeding  sites  of  this  species  especially  important.   The  Skylark  was  considered  the  most  abundand  Dutch  farm  bird  before  1950.  Source:  CBS  

    Grassland 1950 - 2009 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 2002 2005 2008 Period x 1000 ha Temporary grasland Permanent grasland  

Figure  3.9:  Grassland  area  1950-­‐2009.  The  total  area  of  grassland  decreased  since  1968  and  from  2000   until   2005   there   was   a   significant   transformation   of   permanent   grassland   into   temporary   grassland.   Permanent   grassland  includes  areas  that  are  not  used  for  crop  rotation  for  at  least  5  years.  Source:  CBS  

(18)

  Figure   3.10:   Crop   area   1950-­‐2009.   The   cultivation   of   the   previous   most   common   crops,   rye   and   oat,   dramatically  slumped  in  the  1960s;  while  silage  maize  started  to  dominate  the  Dutch  agricultural  landscape.  Silage   maize  is  used  as  animal  feed.  Source:  CBS  

 

  Figure  3.11:  Changes  in  the  occurance  of  plant  species  

   

while  there  are  no  statements  made  about  when  the  goals  concerning  desiccation  could  be  reached.  In   fact,   PBL   concludes   in   their   2010   assessment   report   that   none   of   the   formulated   goals,   except   one   regarding  greenhouse  gas  emissions,  can  be  achieved  with  the  current  environmental  policies  (Van  Zijts   et  al.,  2010).  

(19)

   

  Figure  3.12:  Environmental  impact  (Source:  PBL)  

(20)

4)  Results:  Integrative  view  on  the  Dutch  Agrocomplex 4.1)  Timeline

 

In  this  section,  the  dynamics  of  the  different  perspectives  are  integrated  in  a  timeline  (see  figure  4.1  and   appendix)  that  shows  important  cross-­‐scale  interactions  and  feedback  loops  that  determine  the  Dutch   agrocomplex.  

 

After   the   Second   World   War   the   Dutch   government   started   a   large-­‐scale   reorganisation   of   the   agricultural  sector  to  adapt  to  the  new  economic  situation  of  an  increasing  global  market.  Therefore  the   so-­‐called  “Green  Front”,  a  corporative  policy  coalition,  and  farmer  unions  were  utilised  to  transform  the   relative   low   productivity   sector,   which   then   was   mainly   based   on   small-­‐scale   farms.   The   practical   modernisation   process   started   with   the   Land   Consolidation   Program   (1954)   and   the   Rural   Area   Development   Program   (1956),   which   facilitated   measures   for   intensification,   specialisation   and   rationalisation   of   the   agricultural   sector.   “Modernisation”   in   this   context   need   to   be   seen   as   a   larger   process  that  resulted  into  fewer  but  larger  farmers  (Figure  3.1  and  3.2  earlier  in  this  paper).  

 

In   the   1960s   a   growing   market   pressure   triggered   by   the   so-­‐called   “Dutch   disease”   and   the   establishment  of  the  European  Economic  Community  (and  the  subsequent  Common  Agricultural  Policy   (CAP))  made  the  survival  of  small-­‐scale  farmers  increasingly  difficult  and  accelerated  the  trend  towards   the  creation  of  a  new  kind  of  farmer.  This  regime  shift  in  the  agricultural  sector  had  a  strong  impact  on   the  environment,  which  lead  to  national  (water  pollution  act  1970  &  Relation  memorandum  1975)  and   European   (Birds   Directive   1976)   environmental   policies.   Against   the   background   of   the   obvious   water   pollution  in  the  Netherlands  and  international  important  events,  such  as  the  publication  “The  Limits  to   Growth”   or   the   first   global   oil   crisis   supported   a   growing   environmental   awareness   that   pushed   environmental   policies   and   the   establishment   of   environmental   organizations   (e.g.   Milieudifensie).   Environmental  degradation  caused  by  agricultural  practices  remains  an  urgent  issue  and  is  the  driver  of   the  adjustment  and  establishment  of  environmental  until  today.  

 

Another  consequence  of  the  modernization  process  –  not  only  for  the  Netherlands,  but  throughout  the   European   Economic   Community   -­‐   was   overproduction   of   diary   goods,   which   was   tackled   with   the   introduction  of  “milk  quotas”  1984.  The  milk  quotas  together  with  the  interim-­‐act  for  pig-­‐  and  poultry   farms   (1984),   and   the   soil   protection   and   fertilizer-­‐use   act   (1986)   effectively   managed   to   reverse   the   trend   of   increasing   nitrogen   and   phosphorus   surpluses   that   are   the   main   causes   of   eutrophication.   However, despite   the   critique   on   political   modernization   in   the   1980s,   government   payments   to   agribusiness  continued,  based  on  ‘historical  rights’.  This  means  the  agricultural  sector  defends  the  PBO,   and  more  specifically  their  rights  to  the  same  payments  they  received  in  the  past.  The  CAP  is  reinforces   and  this  decision  indicates  a  continuation  of  corporatist  policy  arrangement,  which  protects  a  status  quo   situation.  At   the   same   time,   the   1985   Land  Reconstruction  Act   ended   the   agricultural   “monopoly”   on   rural  areas  and  recognised  the  importance  of  conserving  “natural”  areas  and  associated  values,  such  as   cultural-­‐  and  recreational  values.  However,  the  growing  environmental  awareness  and  the  recognition   of  wildlife  conservation  caused  an  alienation  of  governmental  institutions  and  the  agribusiness.  Farmers   started  to  feel  as  scapegoats  for  environmental  problems  and  the  green  front  eroded.  

 

In   the   1990s   several   European   policies   were   issued   to   mitigate   nitrogen   surpluses,   conserve   natural   habitat   and   wildlife   (Main   Ecological   Structure   1990;   Nitrogen   Directive1992;   Habitat   Directive   1992),   and   proceed   on   the   way   to   a   more   market   driven   vision   of   the   agricultural   sector   (revision   of   CAP   (1992).   Between   1990   and   1998   the   phosphorus   surpluses   decline   significantly,   while   the   nitrogen  

(21)

surpluses   stagnate.   This   is   due   to   the   initial   focus   of   fertilisation   policies   on   tackling   phosphorus.   Eventually  in  1998,  a  system  (MINAS)  was  launched  that  obliged  farmers  to  account  fertilizer  use,  and   which  effectively  translated  into  a  further  downward  trend  of  N  and  P  surpluses.  This  trend  is  broken  in   2003  due  to  failures  in  crop  production  (tremendous  heat  wave)  and  thus  impaired  mineral  uptake  and   fixation   of   plants.   The   downward   trend   continuous   however   in   2006,   which   is   facilitated,   amongst   others,  by  an  improved  New  Fertilisation  Policy  (2006)  that  focuses  on  the  regulation  of  the  practice  of   fertiliser-­‐usage  rather  than  only  regulating  and  monitoring  surpluses.  Also  from  importance  is  the  2002   Reconstruction   Act,   which   created   so-­‐called   “concentration   areas”   to   geographically   restrict   certain   agricultural  practices  and  the  establishment  of  a  network  of  protected  areas  within  the  European  Union   (“Natura  2000”).  

(22)

Figure  4.1:  Timeline.  

The  different  colours  determine  the  underlying  driving  forces  of  each   event.  The  grey  ellipses  symbolise  mayor  processes  over  a  longer   period  and  the  dashed  lines  illustrate  long-­‐lasting  (slow)  forces  with   delayed  effects.  

Red:  “Modernisation”  

Blue:  “Europeanisation”  

Orange:  “Environmental  Awareness”  

The  events  with  orange  background  colour  and  a  differing  shadow-­‐ colour  indicate  actions  that  aim  for  environmental  protection,  but   have  a  second  underlying  driving  force  or  agenda.  

 

   

 

Referenties

GERELATEERDE DOCUMENTEN

De "beste" regelprestatie wordt ge- leverd door die operator die er in slaagt, gegeven een bepaalde proces- toestand, deze criteria op een "juiste" wijze tegen

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Apart from the production of PolyP in the chloroplasts of transgenic potato plants by expression of the polyphosphate kinase gene from Escherichia coli (13), no other reports

(Appendix; Table 4), where the average FDI inward flows for the eight countries and the reference group are calculated in percentages. This gives us the opportunity to check the

De uitkomsten van dit onderzoek laten wel zien dat het van waarde is om uitgebreider onderzoek te doen naar het effect van proactieve en reactieve webcare

If collaborative partners work towards a common vision and scaffold the boundary knowledge sharing, despite creative tensions in the shared learning experiences, then learning

Wij stellen voor om het effect van de duur van ouderschapsverlof curve-lineair te toetsen, om zo onderscheid te maken tussen de effecten van korte perioden verlof (vergeleken

In dit maïsperceel is de fosfaattoestand in de bovenste 20 à 30 cm te hoog voor zowel voedselarme als matig voedselrijke beheertypen en ook niet binnen 20 jaar door uitmijnen