• No results found

Insight into the origin of the limited activity and stability of p-Cu2O films in photoelectrochemical proton reduction

N/A
N/A
Protected

Academic year: 2021

Share "Insight into the origin of the limited activity and stability of p-Cu2O films in photoelectrochemical proton reduction"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Insight

into

the

origin

of

the

limited

activity

and

stability

of

p-Cu

2

O

films

in

photoelectrochemical

proton

reduction

A.Wouter

Maijenburg

a,b,

*

,

Michel

G.C.

Zoontjes

a

,

Guido

Mul

a,

*

a

PhotoCatalyticSynthesisGroup,MESA+InstituteforNanotechnology,UniversityofTwente,P.O.Box217,7500AEEnschede,TheNetherlands b

PresentAddress:ZIKSiLi-nano,Martin-Luther-UniversityHalle-Wittenberg,Karl-Freiherr-von-Fritsch-Straße3,06120Halle(Saale),Germany

ARTICLE INFO Articlehistory:

Received15February2017

Receivedinrevisedform16May2017 Accepted17May2017

Availableonline19May2017 Keywords: p-Cu2Ophotocathode electronscavenger photoelectrochemistry gaschromatography ABSTRACT

Theoriginofinstabilityofp-Cu2OfilmsdepositedonaplatinizedSisubstratewhenusedasphotocathode

inphotoelectrochemicalwatersplitting,wasstudiedintheabsenceorpresenceofaprotectivelayerof

RuO2.Whenappliedat+0.3Vvs.RHEandatpH7,p-Cu2Ofilmswerefoundtoshowaslightlymorestable

performanceascomparedtophotoelectrochemicalmeasurementsreportedintheliteratureat0Vvs.

RHEandunderacidicconditions.Inaddition,thestabilityandthephotocurrentinducedbytheCu2O

filmsweresignificantlyimprovedwhenH2O2wasaddedtotheelectrolyte,whichisexplainedbyefficient

scavengingofelectrons,yieldingoxygenandwaterasconfirmedbygaschromatography(GC).Also,other

electronacceptorsimprovedthephotocatalyticperformanceofthep-Cu2Ofilms,demonstratingthatthe

transferofphoto-excitedelectronstoprotonsadsorbedonthesurfaceistheratedeterminingstepin

p-Cu2Obasedphoto-electrochemicalwatersplitting.WeconfirmedthatdepositionofRuO2improvesthe

stabilityofthefilms,buttotheexpenseofadecreaseinphotocurrentdensity.Theresultsprovidedinthis

studyrationalizetheattachmentofaneffectiveH2evolutioncatalystasameanstosignificantlyimprove

thestabilityofp-Cu2Oelectrodes.

©2017TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1.Introduction

Oneofthetechniquesthatisemergingasapromisingmethod for storage of renewable energy, is photocatalytic or photo-electrochemicalsplittingofwater,yieldinghydrogen(andoxygen) gas.Unfortunately,theefficiency ofmanycellconfigurationsin solar-to-hydrogenconversionislow,becauseeitherthebandgap oftheappliedsemiconductorsistoolargeandonlyphotonsofthe UVregionofthesolarspectrumcanbeefficientlycaptured(i.e. TiO2, ZnO and SrTiO3), or the conduction band minimum is

positionedunfavourably,sothatwater(proton)reductionisnot thermodynamicallyfeasible(forexamplethecaseforFe2O3and

WO3) [1,2]. In order to achieve overall water splitting using

semiconductorswithasmallbandgap,atwo-photonsystembased on a Z-scheme can be employed, which requires two semi-conductors (a H2- and an O2-evolving photocatalyst) that are

electricallyconnected viaan electronmediator [1,3,4]. Alterna-tively,bothsemiconductorscanbeconnectedthroughanOhmic

contact, constituting a so-called p-ntype photoelectrochemical diode[5,6].Recently,Zoontjesintroducedaninnovativedesignofa watersplittingdevice,containingaPtdividerseparatinghydrogen and oxygen, which is simultaneously used as Ohmic contact betweenthephotocathodeandanode[7].

Todate,manyn-typeoxidesemiconductorshavebeenreported to bepromising photo-anodes stimulatingwater oxidation (i.e. WO3[8]andBiVO4[9]),buttheefficiencyand

photoelectrochem-ical stability of p-type oxide semiconductors suitable for H2

formationislimited.Despitedevelopmentofnovelp-type(oxide) photocathodematerialssuchasCuFeO2[10]andCu2ZnSnS4[11],

p-Cu2Oisstilloneofthemostpromisingp-typeoxidematerialsfor

photocatalyticandphotoelectrochemicalwatersplitting.p-Cu2O

has many favourable properties: it is abundant, cheap and environmentallybenign,anditsbandgapof1.9-2.2eVissuitable for solarenergy conversion in the visible light region[12–14]. Furthermore, the conduction band minimum lies significantly negative of the equilibrium potential of water reduction [14]. Unfortunately, the stability of p-Cu2O is low and requires

improvement.Cu2Ohasalimitedphotoelectrochemicalstability

inaqueoussolutions,sincetheredoxpotentialsforthereduction and oxidation of Cu2OtoCu and CuO,respectively, arelocated

withinitsbandgap[14].Inpreviousreports,differentstrategies * Correspondingauthor.

E-mailaddresses:wouter.maijenburg@chemie.uni-halle.de(A.W.Maijenburg), g.mul@utwente.nl(G.Mul).

http://dx.doi.org/10.1016/j.electacta.2017.05.114

0013-4686/©2017TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). ContentslistsavailableatScienceDirect

Electrochimica

Acta

(2)

wereemployedfortheenhancementofthephotoelectrochemical stabilityofCu2O,includingatomiclayerdepositionofalayerof

ZnO:AlandTiO2withorwithoutanadditionalRuO2layer[14,15],

protection with a layer of carbon [16], improvement of the crystallinity and reduction of defects by annealing [17], and chemicaletchingofthesurfacebyMV2+reduction[18].Thefirst

threetechniqueshavetheadvantagethatthephotocurrentwas simultaneouslyenhancedwiththestability(seeTable1),buttheir disadvantageisthatthephotocurrentstilldecreasessignificantly withinthefirst20minutes;onlytheprotectionwithanadditional RuO2 layer seemstobecapableof improvingthe

photoelectro-chemicalstability of Cu2Oas photocathode,showing94% ofits

initialactivityafter8hofillumination[15].Inanotherstudyfrom Sowersetal.,itisproposedthatthecrystalorientationandsurface termination of Cu2O play a significant role in determining its

photoelectrochemicalstability,andtheyshowthatCu+-terminated

(111)surfacesaremorestablethanthemorecommonlyobtained O2-terminated(100)surfaces[19].

Comparingthedifferentelectrolytesandpotentialsusedinthe literaturetothePourbaixdiagramofCu[20],surprisinglymany photoelectrochemical measurements reported in the literature wereperformedatconditionsinwhichCu2Othermodynamically

corrodes in the absence of illumination. From the Pourbaix diagram it can beobserved that shifting the applied potential from0Vvs.RHEto0.3Vvs.RHEandbyusinganelectrolytewith neutralpH,Cu2Oisalreadymorestable,andtheuseofaprotective

coatingisnotprincipallynecessary[20].Therefore,weusedthese conditions(pH7and0.3Vvs.RHE)inthepresentstudyforthe evaluationof thephotocatalyticactivityof differentCu2O films

depositedonaplatinizedSisubstrate,servingasamodelsubstrate forthemetallicdividerproposedbyZoontjesetal.[7]. Further-more, we studied the effect of different hole and electron scavengers on both the photocatalytic activityand the photo-electrochemicalstabilityofCu2Ofilmsintheabsenceorpresence

ofaRuO2layer,inordertoevaluatethelimitingfactorsthatresult

in the poor performance of Cu2O. Although it is known that

electronacceptors,suchasH2O2,improvethestabilityofCu2O,we

providemoredetail in thechemistryand Faradaic efficiency of theseCu2O filmsby combining PECmeasurements with

ultra-sensitivereal-timeGasChromatographymeasurements(allowing H2andO2detectionintheppbrange).

2.Experimentaldetails

Allchemicalsusedwerepurchased fromcommercialsources andusedwithoutfurtherpurification.Coppersulphate pentahy-drate(CuSO4



5H2O,p.a.quality)andsodiumsulphate(Na2SO4,p.a.

quality) were purchased from Boom Chemie;lactic acid(extra pure), sodium hydroxide (NaOH, purity 98.5%), sulfuric acid (H2SO4, 96% in water) and dipotassium phosphate trihydrate

(K2HPO4



3H2O,purity>99%)werepurchasedfromAcrosOrganics;

chloroplatinic acid hexahydrate (H2PtCl6



6H2O, powder and

chunks), potassium perruthenate (KRuO4), potassium sulphate

(K2SO4,purity99%),hydrogenperoxide(H2O2,30wt%inH2O),

sodium persulphate (Na2SO8, purity98%), sodium sulphite

(Na2SO3, purity 98-100%) and methanol were purchased from

Sigma-Aldrich. Double distilled water with a resistivity of 18.2M

V

cmwasusedinallexperiments.

Cu2OlayersweremadebyelectrodepositiononaplatinizedSi

wafer as the working electrode. The platinized Si wafer was obtainedbydepositionofalayerof13nmTi,and subsequently 100nmPtbysputtering,usingacommerciallyavailable<100>Si waferandahome-buildsputteringsetup,byapplyinga6.6mbar argonatmosphereanda200Wdirectcurrent.Asimilarplatinized Si wafer was used as counter electrode during the deposition procedure,andAg/AgClin3MKCl(MetrohmAutolab)wasusedas referenceelectrode.TheelectrodeswereconnectedtoanAutolab PGSTAT128Npotentiostat.p-Cu2Owasdepositedat0.4Vvs.Ag/

AgCl fromanaqueouselectrolyte containing0.02MCuSO4 and

0.4Mlacticacid.Beforedeposition,thesolutionwasadjustedtopH 11usingNaOHand heatedinawater bathtoa temperatureof 60C.

RuO2layersweredepositedbyphoto-enhanced

electrodeposi-tioninadifferentthree-electrodecellconnectedtoaVersastat4 potentiostat (Princeton). Here, the working electrode was the previouslydepositedCu2Ofilm,thecounterelectrodeconsistedof

aPtmeshconnectedtoaPtwire,andAg/AgClin3MKCl(BASi)was usedasthereferenceelectrode.Thereactorconsistedofa25mL opticalglasscuvette(HellmaAnalytics),whichfilteredmostofthe emittedUV light.In this cell,theRuO2 layerwas depositedfor

15min at 33.7

m

A/cm2 from an aqueous solution containing

1.3mMKRuO4underconstantilluminationwithanAM1.5Gsolar

simulator(model10500,ABETTechnologies)[15].

Photoelectrochemical(PEC)measurementswereperformedin an electrolyte consisting of 0.1MK2SO4 with or without an

additional0.1Mofanelectron-orholescavenger(H2O2,S2O82,

methanol,SO32,PO43).Asareference,theelectrolytedescribed

byParacchinoetal.(1.0MNa2SO4with0.1MK2HPO4atpH4.9)

was used [14]. Linear Sweep Voltammetry (LSV) curves were measuredaspartofacyclicvoltammogram(CV),measuredinthe positivedirectionfrom0.5Vvs.Ag/AgClto0.5Vvs.Ag/AgClat 0.05V/s,ofwhichthesecondhalfofthefirstCVwastakenasthe LSVwhenthecurvewasmeasuredinthenegativedirectionfrom 0.5V vs. Ag/AgCl to 0.5V vs. Ag/AgCl. For prolonged PEC measurements,a 300WXelampwithAM1.5G filter(Newport Corporation)withanautomaticshutterwasusedincombination withthesameelectrochemicalcellandpotentiostat.Thepotential was converted to the RHE reference electrode by the Nernst equation:

Eðvs:RHEÞ¼Eðvs:Ag=AgClÞþEAg=AgClðrefÞþ0:0591V



pH;(1)

EAg=AgClðrefÞ¼0:1976Vvs:RHEat 25C:(2)

Next to the PEC measurements, the photoelectrochemical stabilityoftheCu2OfilmsbeforeandafterPECmeasurementswas

evaluatedbyXRDandSEM.Foranalysisofthecrystalstructureof Cu2O and thepresenceof Cu and/orCuOin theCu2Olayers,a

BrukerD2powderdiffractometer(equippedwithaCuK

a

source) was used. A Nova 600-nanolab HRSEM instrument (FEI Instru-ments)wasusedforimagingoftheCu2Osurface.

GasChromatography(GC) measurementswereperformedin combinationwiththePECmeasurementsinordertoinvestigate Table1

OverviewofstabilityenhancementstrategiesandobtainedphotocurrentsofCu2O.

Stabilityenhancedby Electrolyteused Potentialused

(Vvs.RHE)

Photocurrent obtained(mA/cm2)

Ref.

ALDofZnO:AlandTiO2 1.0MNa2SO4and0.1MKxH3-xPO4(pH4.9) 0 7.6 [14]

ZnO:Al,TiO2andRuO2 0.5MNa2SO4and0.1MKxH3-xPO4(pH5.0) 0 5 [15]

Clayerprotection 1.0MNa2SO4(pH7) 0 3.95 [16]

Annealing 0.5MNa2SO4(pH7) 0.3 0.143 [17]

(3)

the mechanistic aspects involved in the photoelectrochemical watersplittingoftheCu2O-RuO2filmsinthedifferentelectrolytes.

Tothisend,aCompactGC(Interscience)equippedwithapulsed dischargedetector (PDD)was used witha 7N heliumpurge of 10mL/min. The combined GC and PEC measurements were performedina home-buildPECcellwithaquartzwindowand a gas inlet and outlet for the GC measurements. Before each measurement,theelectrolytewas purgedwithHeovernight to removeasmuchO2andN2fromthesolutionaspossible.Thenext

morning,theO2deficientelectrolytewasinsertedintothePECcell

andpurgedfor1extrahourbeforestartingtheGCmeasurement. 3.Resultsanddiscussion

Fig.1a shows thesurfaceof anas-depositedCu2Ofilmwith

cubic crystals ranging in size from 100nm to 1

m

m. The XRD pattern shownin Fig.1c (blackcurve) demonstrates that Cu2O

crystalsgrow preferentiallyinthe(111) directionwithaminor fractioninthe(220)direction,inducedbythepresenceoflactic acidintheprecursorsolution.Also,asmallCupeakwasobserved, which was apparently deposited along with Cu2O. The Pt

diffractionlineisduetothePtfilmpresentonSi,usedassubstrate fortheCu2Ofilm.Afterphotoelectrochemical(PEC)measurements

for30mininneutralsolution(0.1MK2SO4,pH7),itwasobserved

thatthesurfaceoftheCu2Ocrystalsroughened(Fig.1b).Asthe

XRDpatternsofthesamplesbeforeandafterPECmeasurements aresimilar(Fig.1c),itisexpectedthatrougheningonlytookplace atthetopsurfaceanddidnotlargelyaffectthecrystalintegrityof Cu2O.Mostimportantly,noadditionalpeaksformetallicCuwere

foundfor the XRD measurement of the p-Cu2O film after PEC

measurement. As can be seen from Fig. 1d, the measured photocurrent was quite stable and decreased only by 10% in the first few minutes, followed by stable performance in the remainder of the measurement (30min total). Also, the dark current only slightly increased during the first few min of measurement, but thenstayed constant. However,it should be notedthatweobservedamuchsmallerphotocurrentdensitythan valuesreportedintheliteratureat0.3V[14].Thistotalcurrent density of0.06mA/cm2 yields the equivalent of 0.11 C/cm2

passedthroughthecellafter30min.Assumingallchargeisusedto

reduce Cu2O tometallic copper(2 electrons per Cu2O unit), a

maximumof136nmofCu2Oisreduced(usingthemolarmassof

Cu2Oof143g/mol,andadensityof6g/cm3).Asthisisonlyabout

7%ofthetotalthicknessofthefilm(2.5

m

maccordingtotheSEM cross section, see Fig. 3b), this could explain the observed degradationbeinglimitedtothetopsurfaceofthep-Cu2Ofilm

(Fig.1b). Furthermore, we observed largecathodic and anodic spikes in current when the light was turned on and off, respectively; thesespikesindicatesignificant accumulation and recombination of photoexcitedstates(charges), suggesting that theH2evolution rateis lowcompared totheformation rate of

electron-holepairsbylightabsorption[21].

Even though the measurement conditions used seemed to provide a relatively higher photoelectrochemical stability, the photocurrentdensityof0.06mA/cm2asmeasuredunderthese conditionsisfarfromidealforitsuseasaphotocathode.Toconfirm thatthelargetransientinphotocurrentuponswitchingthelighton oroffisduetolimitingcatalyticperformanceofthep-Cu2Ofilms

forreductionofwater,weinvestigatedwhetherreductionofH2O2

orS2O82(electronscavengers)wouldenhancethephotocurrent

[22,23].TheresultisshowninFig.2.BoththeuseofH2O2(red

curve)andS2O82(greencurve)resultedinasignificantincreasein

the photocurrent, as well as an increase in the dark current (Fig. 2a). Especially noteworthy is the observed stability in photocurrent for thesample with H2O2 added;after 27min of

illumination,thecurrentdensitiesasmeasuredunderillumination andinthedarkwereevenslightlyhigherasobservedafter10min ofillumination,whileslightlyincreasingtheirdifference. Further-more,thelargeandfastcathodicandanodicspikesasobservedin

Fig.1dwerenotobservedinaH2O2containingsolution,indicating

electrontransfertoH2O2isquiteefficient.Theoriginoftheslow

transient in current response (to less negative values) after illumination was switched off is not exactly understood, but might be related to passivation of the electrochemically active surfacestatesoftheCu2Ocathode.TheXRDpatternofthissample

didnotshowsignificantdifferencesbeforeandafterexperiment, andonlyaminorchangeinsamplesurfacestructurewasobserved (redcurveinFig.2b,andFig.2c,respectively).Theenhancementin current densityuponilluminationusing H2O2 asscavengerwas

0.94mA/cm2.

Fig.1.(a,b)Top-viewSEMimagesofaCu2Ofilm(a)beforeand(b)afterPECmeasurementin0.1MK2SO4(pH7)for30minatanappliedpotentialof0.3Vvs.RHE;(c)XRD patternoftheCu2Ofilmbefore(blackcurve)andafter(bluecurve)photocurrentmeasurement:DiffractionpeakscanbeassignedtoPt(JCPDS#88-2343),Cu2O(JCPDS# 05-0667)andCu(JCPDS#03-1018);(d)PECmeasurementoftheCu2Ofilmin0.1MK2SO4atanappliedpotentialof0.3Vvs.RHE:thelightwasturnedonandoffduringthePEC measurement(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.).

(4)

Fig.2. (a)PECmeasurementsofp-Cu2Ofilmsin0.1MK2SO4withandwithoutscavengers:(bluecurve)noscavenger,(redcurve)0.1MH2O2and(greencurve)0.1MNa2S2O8; the(magentacurve)wasmeasuredinanaqueoussolutioncontaining1.0MNa2SO4with0.1MK2HPO4atpH4.9:allmeasurementswereperformedatanappliedpotentialof 0.3Vvs.RHEandthelightwasturnedonandoffduringthemeasurements;(b)XRDpatternsoftheCu2Ofilms(blackcurve)beforeandafterphotocurrentmeasurements (samecolorindexasin(a)):DiffractionpeakswereassignedtoPt(JCPDS#88-2343),Cu2O(JCPDS#05-0667)andCu(JCPDS#03-1018);(c-e)top-viewSEMimagesofCu2O filmsafterPECmeasurementin0.1MK2SO4with(c)0.1MH2O2or(d)0.1MNa2S2O8atpH7,andin(e)1.0MNa2SO4with0.1MK2HPO4atpH4.9(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.).

Fig.3.(a)Top-viewand(b)cross-sectionSEMimagesofaCu2OfilmwithaRuO2toplayer;(c)PECmeasurementofCu2O-RuO2filmsin0.1MK2SO4withandwithout scavengers:(bluecurve)noscavenger,(redcurve)with0.1MH2O2and(greencurve)with0.1MNa2S2O8:allmeasurementswereperformedatanappliedpotentialof0.3Vvs. RHEandthelightwasturnedonandoffduringthemeasurementsinordertoobtainabetterinsightintothedifferencebetweenthephotocurrentandthedarkcurrent;(d-f) top-viewSEMimagesofCu2O-RuO2filmsafterPECmeasurementin0.1MK2SO4(d)withoutscavenger,(e)with0.1MH2O2and(f)with0.1MNa2S2O8(Forinterpretationof thereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.).

(5)

Using S2O82 as electron scavenger, the current increase

betweendarkandilluminatedoperationwashighandamounted to 1.34mA/cm2. However, as can be seen from Fig. 2a, the

obtained current was not stable during the duration of the measurementasboththecurrentdensityunderilluminationand inthedarkincreasedsignificantlyovertime.Thisincreasecanbe relatedtoachangeinmorphologyandanincreaseinsurfacearea of the electrode as observed in Fig. 2d, although a minor contributionfrom Pt cross-over fromanode to cathodecannot beexcluded.AstheXRDpattern(greencurveinFig.2b)doesnot show a phase change, this might indicate that Cu2O

photo-electrodesslowlydissolvewhenexposedtoelectrolytescontaining S2O82. In addition, it should be noted that S2O82 reduction

(reactions(3)and(4))inducescurrentdoublingwhenusedasan electronscavenger: S2O28þe!SO  4 þ 1 2O2 ð3Þ SO4þH2O!SO24 þOH  þHþaq; ð4Þ

where  denotes a radical. Reaction (1) requires photon absorption (one photon per electron), while current doubling occursduetosubsequentreactionoftheformedOHradicalsto OH (accepting a second electron (not requiring an absorbed photon))[24].Therefore,theincreaseinphotocurrentmightnot necessarily scale with an increase in Cu2O induced photon

efficiency.

Itshouldbenotedthatthepossibilityofphotocurrentdoubling (duetotheformationofOHradicalsbyH2O2+e-!OH+OH)is

alsosuggestedfortheuseofH2O2[25–28],andthatespeciallyin

thecaseofGaAs,thecathodicreductionofH2O2wasassociated

withchemicaletchingoftheGaAssurface[26,27].Inthisrespect, wewouldliketostressthatinthecaseofp-Cu2Oelectrodes,we

observedtheoppositeeffect,namelyahigher photoelectrochem-icalstability oftheCu2OfilmsuponadditionofH2O2.Sincethe

extent of photocurrent doubling is strongly dependent on the semiconductorused,aswellasonitssurfaceorientationandthe appliedlightintensity,thecontributionofcurrent-doublingtothe enhancementinphotocurrentinducedbyH2O2cannotbeeasily

quantifiedandrequiresfurtherinvestigation.

Finally,theelectrolytethatwaspreviouslyusedbyParacchino et al. (1.0M Na2SO4 with 0.1MK2HPO4 at pH 4.9) was used

(magentacurveinFig.2a)[14].Asexpectedfromtheirpublication andthePourbaixdiagramofcopper,theobtainedphotocurrentin thissolutionquicklydiminishedastheCu2OlayerreducedtoCu.

Theobserveddifferencebetweenphotocurrentanddarkcurrent wasminimalafter10minofillumination.InstabilityofthisCu2O

filmwasalsoclearlyvisiblewhenanalysingthesamplesurface, whichturnedintonanoparticleswithadiameterof40nmwhile maintaining the overall cubic structure typical for Cu2O films

(Fig.2e).Furthermore,anadditionalandsignificantCupeakwas foundintheXRDpatternofthisfilm(Fig.2b,magentacurve),in agreementwiththeblackcolour of thissample after measure-ment.

Additionally,alsotheuseofthewell-knownholescavengers methanolandSO32wasinvestigated,aswellastheuseofPO43at

pH 7, but these electrolytes did not show any difference in behaviourcomparedtotheelectrolytewithoutaddedscavenger (resultsnotshown).

Although the previous results indicated a lower rate of photoreduction of Cu2O under the conditions used here, the

additionalprotectiveeffectofRuO2depositeddirectlyontopofthe

Cu2Ofilmwasalsoevaluatedundertheseconditions.TheRuO2

layerconsistsofsmallamorphousnanoparticlesmergedtogether

into acontinuous filmfollowing theoverallmorphologyof the underlyingCu2Ofilm,aswasobservedbySEM(Fig.3aandb)and

thelackofadditionalXRDlines(shownbelowinFig.6g(black curve)).The PECchronoamperogramfor theCu2O-RuO2 sample

measured in an electrolyte without scavenger (blue curve in

Fig.3c)showsaverylowtransientcurrentresponseafterthelight sourcewasturnedonoroff.WhenH2O2orS2O82areaddedtothe

solution,anincreaseindarkcurrentandphotocurrentisapparent, as was also thecase for Cu2Osamples withoutRuO2 (Fig.2a).

Comparing the photocurrent values of the samples with and withoutRuO2,itcanbeobservedthatthephotocurrentdecreased

uponadditionoftheRuO2layer(-0.43mA/cm2vs.0.94mA/cm2

and 0.30mA/cm2 vs. 1.34mA/cm2 for H

2O2 and S2O82,

respectively),butthestabilityincreasedsignificantly;the perfor-manceisparticularlystablewhenH2O2ispresentintheelectrolyte

(Fig.3c).AscanbeseenfromFig.3e,thePECmeasurementwith addedH2O2didnotinfluencethemorphologyoftheCu2O-RuO2

sampleatall,whilethemorphologyofthesamplecontainingRuO2

alsoappearedstabilizedintheabsenceofascavenger(Fig.3d).On theotherhand,themorphologyofthesampleinthepresenceof S2O82changeddramatically(Fig.3f),whichindicatesthatS2O82

issocorrosive,thataRuO2protectionlayerbecomesineffective.

A linear sweepvoltammogram (LSV) in thedark and under illuminationprovidesinformationabouttheonsetpotentialofa photocathodeinaspecificelectrolyte,whichisameasureofthe requiredoverpotentialforH2evolutionandthereforeameasure

forthesuitabilityofthephotocathodeforwatersplitting.When connecting the photocathode to a photoanode in a photoelec-trochemical diode, a more positive onset potential is highly desirable[29].Fig.4showsaselectionofLSVcurvesmeasuredin lightanddarkconditionsondifferentsamples(Cu2OandCu2

O-RuO2) with or without the addition of H2O2 or S2O82 to the

electrolyte. Fromthis figure, it can beobserved that the onset potentialforaCu2Ofilmwithouttheuseofanelectronscavenger

(0.4Vvs.RHE)isveryclosetothepotentialusedfor chronoam-perometricmeasurements(0.3Vvs.RHE),whichexplainsthelow currentdensities observedforthissample.Boththeadditionof H2O2 and S2O82 provided an onset potentialof 0.8V vs. RHE,

explainingthemuch highercurrent densitiesinthepresenceof thesecompounds.WhenaCu2O-RuO2filmismeasuredwithout

Fig.4. LSVmeasurementsof:(darkbluecurves)Cu2Ofilmin0.1MK2SO4,(red curves)Cu2Ofilmin0.1MK2SO4and0.1MH2O2, (greencurves)Cu2Ofilmin 0.1MK2SO4and0.1MNa2S2O8,(lightbluecurves)Cu2O-RuO2filmin0.1MK2SO4, and (magentacurves)Cu2O-RuO2film in0.1MK2SO4and 0.1MH2O2;Forall samples,thesolidcurvewasmeasuredunderAM1.5Gillumination,andthedotted curvewasmeasuredinthedark(Forinterpretationofthereferencestocolourin thisfigurelegend,thereaderisreferredtothewebversionofthisarticle.).

(6)

scavenger,theonsetpotentialliesevenmorepositivethan1.1Vvs. RHE,whilethedifferencebetweenthedarkcurrentandthecurrent measuredunderilluminationissmall.WhenmeasuringaCu2

O-RuO2 sample with H2O2 added, the onset potential becomes

slightly more negative (1.0V vs. RHE), while the difference between the dark current and the current measured under illuminationismorepronouncedatpotentialsmorenegativethan 0.6Vvs.RHE.Atmorepositivepotentials,thedifferencebetween thecurrentmeasuredunderillumination andin thedarkstays ratherlowforthesemeasurementconditions.

The photoelectrochemical stability of a Cu2O-RuO2 film was

further investigated during a long-term PEC measurement in whichH2O2wasaddedtotheelectrolyte(Fig.5).Fig.5ashowsthat

the photocurrentdecreases from 1.9mA/cm2 to 1.0mA/cm2

duringthefirst7hoursofthemeasurement,butincreasedagain afteradditionoffreshH2O2.Therefore,thisdecreasein

photocur-rentcanbeascribedtotheconsumptionofH2O2.Fig.5bshowsthat

thisCu2O-RuO2sample was photoelectrochemicallystable even

aftermore than 11hoursof illumination, which underlinesthe importanceoffastelectronextractionfromthephotocathodefor improvedstability.

In order toanalysethecathodically inducedchemical trans-formations,weperformedPECmeasurementsinacellthatwas connectedtoagaschromatograph(GC)(Fig.6;seeFig.6gfora schematicrepresentationofthecell).InFig.6a,c,e,theresultsfrom thecombinedPECandGCmeasurementsareshown,inwhichthe amountsofH2andO2evolvedduringthemeasurementaredirectly

comparedtothemeasuredcurrentdensity.Fromthemeasurement withoutscavenger(Fig.6a),it canbeseen thatbothH2 andO2

evolvedfromthePECcelluponilluminationoftheCu2O-RuO2film

whileapplyingabiasof0.3Vvs.RHE,buttheydidnotevolveina 2:1ratioaswouldbeexpectedfromstoichiometricwatersplitting: much more O2 than H2 evolved. We propose the following

reactionstakingplaceonaCu2O-RuO2cathodeandaPtanodein

0.1MK2SO4(pH7): Oxidation: H2Oþ2hþ!2Hþþ 1 2O2 E  ¼1:299VRHE E¼0:816VRHE ðonPtCEÞ ð5Þ

Reduction: 2Hþþ2e!H2andE=0VRHEE=0.413VRHE (6)

(on Cu2O-RuO2) Cu2OþH2Oþ2e!2Cuþ2OH E=0.360

VRHEE=0.053VRHE (7)

ThetransientinH2evolution(peakinFig.6a)canbeexplained

bytherapidlyrisingoxygenconcentrationinthecell.Eventhough a continuous purge is applied,we suspect that the reactionof hydrogenwithoxygentoformwaterbecomessignificant(the‘back reaction’,presumablyoccurringoverthePtanode). Atthesame time, the high concentration of oxygen formed can only be explainedbyasacrificialreductionreaction,whichsuggeststhat despitetheRuO2filmasignificantfractionofCu2Oisincontact

withthe0.1MK2SO4electrolyte,reactingaccordingtoreaction(5).

The formationof Cuis indeed observedby XRD(bluecurvein

Fig.6g).ItshouldalsobenotedthattheO2evolutionstillcontinues

after the solar simulator was turned off. This can likely be explained by the formed Cu particles, decreasing the cathode resistance,andallowingelectrochemicalO2formation(anode)and

reductionofCu2O(cathode)tocontinueattheappliedpotential

(0.3V vs.RHE). Assoonasthe potentialwas releasedfromthe sample, the O2 formation rate dropped to zero within a few

minutes,followingthetransientbehaviourofthereactor. ForthesampleforwhichH2O2wasusedaselectronscavenger,

H2 and O2 were formed upon photoelectrochemical reaction

(Fig. 6c). During the measurement, it was observed that gas bubblesaccumulatedonthesamplesurfacebeforebeingreleased, which explains the sharp spikes in the GC signals and the continuouschangeinthemeasuredcurrentdensity.BothH2and

O2evolvedatalargerratethanforthesamplewithoutscavenger,

butagaindidnotevolveina2:1ratio;againmuchmoreO2thanH2

evolved.Contrarytothesamplewithoutscavenger,Cupeakswere absentintheXRDspectraforthissampleafterreaction(redcurve inFig.6g),andalsothestructureofthesamplesurfacestayedmore or less intact (Fig. 6d). This means that in this case the photoreductionofCu2OtoCuisnotthecompetingreactionwith

H2formation,butthereductionofH2O2toH2O(reaction(11)).This

confirmsthatH2O2isindeedusedasanelectronscavengerduring

photoelectrochemical water splitting using a Cu2O-RuO2 film.

SincenoCuisformedinthiscase,noO2wasformedafterthelight

source was turned off while the potential was still applied. Furthermore,Ptfromthesubstrateand/orthecounterelectrode canalso actas acatalyst forhydrogen peroxidedecomposition (reaction(12)),whichcontributestothenonstoichiometricH2and

O2formation.Especiallythemuchmorethan5timesincreasein

observedO2evolutioninthecaseofaddedH2O2ascomparedto

the measurement without added electron scavenger (compare

Fig.6a,cwithFig.3c)andtheobservedO2formationbefore(and

after) illumination, show the significance of this catalytic disproportionation reaction.In summary, withtheuse of H2O2

asanelectronscavenger,thefollowingreactionstakeplace: Fig.5. (a)Long-termPECmeasurementofaCu2O-RuO2filmin0.1MK2SO4and

0.1MH2O2atanappliedpotentialof0.3Vvs.RHEandwithchoppedlight.0.1mL H2O2wasaddedafter7hourstobringitsconcentrationbackto0.1M;(b)top-view SEMimageoftheCu2O-RuO2filmafterlong-termPECmeasurementin0.1MK2SO4 and0.1MH2O2.

(7)

Fig.6. (a,c,e)CombinedPEC(at0.3Vvs.RHE)andGCmeasurementsofCu2O-RuO2filmsin(a)0.1MK2SO4withoutscavenger,(c)0.1MK2SO4with0.1MH2O2and(e)1M Na2SO4and0.1MK2HPO4adjustedtopH4.9.(b,d,f)Top-viewSEMimagesoftheCu2O-RuO2filmsaftercombinedPECandGCmeasurementsin(b)0.1MK2SO4,(d) 0.1MK2SO4and0.1MH2O2,and(f)1MNa2SO4and0.1MK2HPO4atpH4.9.(g)SchematicrepresentationofthePECcellusedforthecombinedPECandGCmeasurements showingtheidealcaseofstoichiometricwatersplitting;forsimplicity,theAg/AgClreferenceelectrodeusedisnotshown.(h)XRDmeasurementsoftheCu2O-RuO2films (blackcurve)beforeand(blue,red,magentacurves)aftercombinedPECandGCmeasurementsin(bluecurve)0.1MK2SO4,(redcurve)0.1MK2SO4and0.1MH2O2,and (magentacurve)1MNa2SO4and0.1MK2HPO4atpH4.9:DiffractionpeakswereassignedtoPt(JCPDS#88-2343),Cu2O(JCPDS#05-0667)andCu(JCPDS#03-1018)(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.).

(8)

Oxidation: H2Oþ2hþ!2Hþþ12O2 and E=1.229VRHE E=

0.816VRHE (8)

(on Pt CE) H2O2þ2OHþ2hþ!O2þ2H2O, E=0.146 VRHE

E=0.297VRHE (9)

Reduction: 2Hþþ2e!H2andE=0VRHEE=0.413VRHE (10)

(on Cu2O-RuO2) H2O2þ2Hþþ2e!2H2O E=1.776VRHE

E=1.334VRHE (11)

Catalysis:(onPt) 2H2O2!O2þ2H2O. (12)

ForthesamplethatwasmeasuredinanelectrolyteatpH4.9,as waspreviouslyusedbyParacchinoetal.[14],H2formationwasnot

significantandpredominantlyO2 wasformed(Fig.6e).

Further-more,weobservedthatthissamplelostitselectricalcontactafter approximately1hourofPECmeasurement.It wasattemptedto restartthePECmeasurement,but ascanbeobservedfromthe large switching of the current density around 2:15hours, the contactwiththesamplewasnotregained.Whenthesamplewas taken out of the PEC cell, it was observed that the film was detachedfromtheSi/Pt substrate,and SEM confirmed thatthe sample was reduced during the measurement (Fig. 6f), in agreement with the presence of a significant Cu peak in the XRDspectrumafterthemeasurement(magentacurveinFig.6g). Duringtheperiodthat thepotentialwas appliedtothesample withouthavingpropercontact,itwasobservedthatO2 formed,

andtheO2formationwentbackto0afterthepotentiostatwas

turnedoffwhilethelightwasstillturnedon.Thisdependenceof theO2formationontheavailabilityofanappliedpotentialtothe

sampleandnotontheavailabilityoflightcanbeascribedtothe formation of Cu onthis sample. In summary, with the use of

Na2SO4 and K2HPO4 as theelectrolyte at pH4.9, thefollowing

reactionstakeplaceonaCu2O-RuO2film:

Oxidation H2Oþ2hþ!2Hþþ 1 2O2 E  ¼1:229VRHE E¼0:816VRHE onptCEÞ ð ð13Þ

Reduction Cu2OþH2Oþ2e!2Cuþ2OH:

E¼0:360VRHE E¼0:053VRHE

ðonCu2ORuO2Þ

ð14Þ In summary, Fig. 7 shows the location of the valence and conduction band of Cu2O including the position of all redox

reactions(reactions (5)-(14)) as discussed above.The reactions indicatedinredandbluearethereactionsthattakeplaceinthe presenceandabsenceofH2O2intheelectrolyte,respectively,as

observedbytheGCmeasurementsshowninFig.6.Ascanbeseen inFig.7,forbothcases(withorwithoutH2O2)thesecoloredredox

reactionpairscorrespondtothereductionreactionwiththemost negative redox potential possible in combination with the oxidationreactionwiththemostpositiveredoxpotentialpossible. Furthermore,wecanobservethattheredoxreactions involving H2O2(inred)arethermodynamicallyabletotakeplace

spontane-ously without the presence of illuminated Cu2O, as was also

observedinFig.6c,althoughthepresenceofilluminatedCu2Odid

increasetheefficiencyofthesereactions.Theenergeticallymore favorableredoxreactionswithoutH2O2addedtotheelectrolyte(in

blue)doneedthepresenceofilluminatedCu2Oinordertotake

place,aswasalsoobservedinFig.6candFig.6e.

Theactivitydeterminationandevaluationofstructuralchanges confirmthat the performanceand stability of (RuO2 protected)

Cu2Ocanbesignificantlyimprovedifefficientelectrontransferis

induced,whichcouldbeachievedbyanefficientprotonreduction catalyst.AsourdatashowthatRuO2isnotsufficientlyeffectivefor

thispurpose[17,30],wealsoperformedpreliminaryexperiments withadditionalPtnanoparticles.Thesepreliminaryexperimentsin ourlaboratoryhaveshownthatdepositionofPtparticlesontopof Cu2OandCu2O-RuO2films,withoutmodificationofthe

composi-tionandstructureofCu2Oisnottrivial,andphotodepositionofPt

particlesresultedinan insignificant currentdensityincrease as compared to that obtained in the presence of H2O2.

Non-destructivePtdepositionbyphysicalmethodssuchassputtering or e-beam evaporation is highly desired for obtaining more efficientandstableCu2Ophotocathodes.Indeed,Grätzeland

co-workersalreadysolvedthisissuebyapplyingtheirchampion bi-layercoatingofAl-dopedZnOandTiO2viaatomiclayerdeposition

(ALD), afterwhich theywereable tosuccessfullydeposit Ptby either photodeposition or E-beam evaporation [14,15]. On the otherhand,wewouldliketoemphasizehere,thatinthisworkwe triedtoworkaroundthenecessityoftheseALDcoatings,which wouldmakethefinalphotoelectrodesystemmoreeasilyscalable. Provided that Pt nanoparticles or another hydrogen evolution catalyst can be deposited with a non-destructive and scalable depositiontechniqueontopoftheCu2O-RuO2films,our

experi-mentsshowthat it shouldindeedbepossibletoobtain photo-electrochemicallymorestablep-Cu2Ophotocathodeswithoutthe

needtogrowpassivationlayersviaALD.

Anothermethodforimprovementoftheefficiencyofp-Cu2Oas

aphotocathodeinphotoelectrochemicalwatersplittingwouldbe to use nanostructures like nanowires, nanowire networks or nanocubes [31]. Especially for Cu2O with a diffusion lengthof

minoritychargecarriers(electronsinthecaseofp-Cu2O)ofonly

20–100nm, and an absorption depth near the bandgap of approximately 10

m

m [16,32–34], the use of one-dimensional Fig.7.Energybanddiagramofp-Cu2Ofilmsincludingtheredoxpotentialsforall

reactionstakingplaceduringthephotoelectrochemicalexperimentsasdescribed above(Reactions(5)-(14)).ThereactionsinbluearetakingplacewithoutH2O2 addedtotheelectrolytesolution,thereactionsinredtakeplacewhenH2O2isadded asanelectronscavenger,andthereactionsinblackareeithernotconsideredoronly takingplaceatthestartofthemeasurementuntiltheCu2Oreductionreactiontakes over(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.).

(9)

nanostructures is likely to be highly beneficial to increase photocurrentefficiencies[35].

4.Conclusions

Itwasfoundthatthephotoelectrochemicalstabilityofp-Cu2O

films used for photoelectrochemical water splitting can be significantly enhanced by the use of milder conditions (pH 7 and0.3Vvs.RHE)thantypicallyappliedintheliterature.Although aphotoelectrodepositedRuO2layerfurtherenhancedthestability,

themeasuredphotocurrentslightlydecreased.Significant perfor-mance was obtained when H2O2 was added as an electron

scavengertotheelectrolyte:themeasuredphotocurrent(forH2O2

reduction) was increased and also the photoelectrochemical stability was that high, that the Cu2O-RuO2 film could be

illuminatedformorethan 11hourswithoutnoticeable photore-duction to Cu. By combining gas chromatography with the performedphotoelectrochemicalmeasurements,itwasconfirmed thatH2O2servedasan electronscavengerduring

photoelectro-chemical water splitting using Cu2O-RuO2 films: therefore, the

additionofasuitableH2evolutioncatalystishighlyrecommended

forobtainingmoreefficientCu2Ophotocathodes.Unfortunately,Pt

nanoparticlespreparedbyphotodepositionappearedincapableof providinghighhydrogenproductionratesandstability.

Acknowledgements

FinancialsupportfromtheNetherlandsTechnologyFoundation (STW)isgratefullyacknowledged.KaiHan(UniversityofTwente) isgratefullyacknowledgedforhishelpwiththeGCmeasurements. AlexanderMilbrat (University ofTwente) isgratefully acknowl-edgedfor hishelp withtheSEM measurements and foruseful discussionsconcerningthedesignofaPECcellforcombinedPEC andGCmeasurements.

References

[1]A.Kudo,Z-schemephotocatalystsystemsforwatersplittingundervisiblelight irradiation,MRSBull36(2011)32–38.

[2]R.Van DeKrol, Y.Liang,J. Schoonman, Solarhydrogenproductionwith nanostructuredmetaloxides,J.Mater.Chem.18(2008)2311–2320. [3]H.Kato,M.Hori,R.Konta,Y.Shimodaira,A.Kudo,ConstructionofZ-scheme

typeheterogeneousphotocatalysissystemsforwatersplittingintoH2andO2 undervisiblelightirradiation,Chem.Lett.33(2004)1348–1349.

[4]A.Kudo,H.Kato,I.Tsuji,Strategiesforthedevelopmentofvisible-light-driven photocatalystsforwatersplitting,Chem.Lett.33(2004)1534–1539. [5]A.J.Nozik,Photochemicaldiodes,AppliedPhysicsLetters30(1977)567–569. [6]A.J.Nozik,Photoelectrochemistry:Applicationstosolarenergyconversion,

AnnualReviewofPhysicalChemistry29(1978)189–222.

[7]M.G.C.Zoontjes,PhDthesis:Visible-light-inducedwatersplittingonachip, UniversityofTwente,Enschede,2015.

[8]M.G.C.Zoontjes,M.Huijben,J.Baltrusaitis,W.G.VanDerWiel,G.Mul,Selective hydrothermalmethodtocreatepatternedandphotoelectrochemically effectivePt/WO3interfaces,ACSAppl.Mater.Interfaces5(2013)13050–13054.

[9]T.Kim,K.S.Choi,NanoporousBiVO4photoanodeswithdual-layeroxygen

evolutioncatalystsforsolarwatersplitting,Science343(2014)990–994. [10]C.G.Read, Y.Park, K.S. Choi,Electrochemicalsynthesisofp-type CuFeO2

electrodesforuseinaphotoelectrochemicalcell,JournalofPhysicalChemistry Letters3(2012)1872–1876.

[11]L. Rovelli, S.D. Tilley, K. Sivula, Optimization and stabilization of electrodepositedCu2ZnSnS4photocathodesforsolarwaterreduction,ACS

Appl.Mater.Interfaces5(2013)8018–8024.

[12]C.M.McShane,K.S.Choi,Junctionstudiesonelectrochemicallyfabricatedp-n Cu2Ohomojunctionsolarcellsforefficiencyenhancement,PhysicalChemistry

ChemicalPhysics14(2012)6112–6118.

[13]L.-k.Tsui,L.Wu,N.Swami,G.Zangari,Photoelectrochemicalperformanceof electrodepositedCu2OonTiO2nanotubes,ECSElectrochemistryLetters1

(2012)D15–D19.

[14]A.Paracchino,V.Laporte,K.Sivula,M.Grätzel,E.Thimsen,Highlyactiveoxide photocathodeforphotoelectrochemicalwaterreduction,NatureMaterials10 (2011)456–461.

[15]S.D.Tilley,M.Schreier,J.Azevedo,M.Stefik,M.Graetzel,Rutheniumoxide hydrogenevolutioncatalysisoncompositecuprousoxidewater-splitting photocathodes,Adv.Funct.Mater.24(2014)303–311.

[16]Z.Zhang,R.Dua,L.Zhang,H.Zhu,H.Zhang,P.Wang,Carbon-layer-protected cuprousoxidenanowirearraysforefficientwaterreduction,ACSNano7 (2013)1709–1717.

[17]K.Maeda,N.Saito,L.Daling,Y.Inoue,K.Domen,Photocatalyticpropertiesof RuO2-Loaded(-Ge3N4foroverallwatersplitting,JournalofPhysicalChemistry

C111(2007)4749–4755.

[18]F.Amano,T.Ebina,B.Ohtani,Enhancementofphotocathodicstabilityofp-type copper(I)oxideelectrodesbysurfaceetchingtreatment,ThinSolidFilms550 (2014)340–346.

[19]K.L. Sowers, A. Fillinger, Crystal face dependenceof p-Cu2Ostability as

photocathode,JournaloftheElectrochemicalSociety156(2009)F80–F85. [20]B.Beverskog,I.Puigdomenech,Revisedpourbaixdiagramsforcopperat25to

300(C,JournaloftheElectrochemicalSociety144(1997)3476–3483. [21]L.M.Peter,Dynamicaspectsofsemiconductorphotoelectrochemistry,Chem.

Rev.90(1990)753–769.

[22]A.N.Ökte,M.S.Resat,Y.Inel,Influenceofhydrogenperoxideandmethanolon thephotocatalyticdegradationof1,3-dihydroxybenzene,Toxicol,Environ. Chem.79(2001)171–178.

[23]H. Dotan,K. Sivula, M.Grätzel, A. Rothschild,S.C. Warren, Probing the photoelectrochemicalpropertiesofhematite(a-Fe2O3)electrodesusing

hydrogenperoxideasaholescavenger,EnergyEnviron.Sci.4(2011)958–964. [24]J. Schneider, D.W. Bahnemann, Undesired role of sacrificial reagents in

photocatalysis,JournalofPhysicalChemistryLetters4(2013)3479–3483. [25]R.Memming,MechanismoftheElectrochemicalReductionofPersulfatesand

HydrogenPeroxide,JournalofTheElectrochemicalSociety116(1969)785– 790.

[26]B.P. Minks, G. Oskam, D. Vanmaekelbergh, J.J. Kelly, Current-doubling, chemicaletchingandthemechanismoftwo-electronreductionreactions atGaAs,JournalofElectroanalyticalChemistryandInterfacial

Electrochemistry273(1989)119–131.

[27]B.P.Minks,D.Vanmaekelbergh,J.J.Kelly,Current-doubling,chemicaletching andthemechanismoftwo-electronreductionreactionsatGaAs,Journalof ElectroanalyticalChemistryandInterfacialElectrochemistry273(1989)133– 145.

[28]J.E.A.M.vandenMeerakker,Thereductionofhydrogenperoxideatsiliconin weakalkalinesolutions,ElectrochimicaActa35(1990)1267–1272. [29]M.G.Walter,E.L.Warren,J.R.McKone,S.W.Boettcher,Q.Mi,E.A.Santori,N.S.

Lewis,Solarwatersplittingcells,Chem.Rev.110(2010)6446–6473. [30]M.Tian,W.Shangguan,J. Yuan,S.Wang,Z.Ouyang,Promotioneffectof

nanosizedPt,RuO2andNiOxloadingonvisiblelight-drivenphotocatalystsK 4Ce2M10O30(M=TaNb)forhydrogenevolutionfromwaterdecomposition,Sci.

Technol.Adv.Mater.8(2007)82–88.

[31]A.W.Maijenburg,A.N.Hattori,M.DeRespinis,C.M.McShane,K.S.Choi,B.Dam, H.Tanaka,J.E.TenElshof,Niandp-Cu2Onanocubeswithasmallsize

distributionbytemplatedelectrodepositionandtheircharacterizationby photocurrentmeasurement,ACSAppl.Mater.Interfaces5(2013)10938– 10945.

[32]P.E. De Jongh, D. Vanmaekelbergh, J.J. Kelly, Photoelectrochemistry of electrodepositedCu2O,JournaloftheElectrochemicalSociety147(2000)

486–489.

[33]C.J.Engel,T.A.Polson,J.R.Spado,J.M.Bell,A.Fillinger,Photoelectrochemistryof porousp-Cu2Ofilms,JournaloftheElectrochemicalSociety155(2008)F37–

F42.

[34]S.Sunkara,V.K.Vendra,J.H.Kim,T.Druffel,M.K.Sunkara,Scalablesynthesis andphotoelectrochemicalpropertiesofcopperoxidenanowirearraysand films,CatalysisToday199(2013)27–35.

[35]J.Luo,L.Steier,M.-K.Son,M.Schreier,M.T.Mayer,M.Grätzel,Cu2ONanowire

PhotocathodesforEfficientandDurableSolarWaterSplitting,NanoLetters16 (2016)1848–1857.

Referenties

GERELATEERDE DOCUMENTEN

The extra hydrogen bonds that form in the backbone of the RNA-GQ due to the presence of the 2’-OH of ribose lend the RNA guanine dimers a higher con- formational stability, so that

To distinguish between these two scenarios, we plot in Fig. 8 the mass-weighted metallicity distribution of star-forming gas particles, in galaxies with sSFR &gt;10 −11 yr −1.

[r]

By means of a consumer questionnaire, the four key parameters brand loyalty, perceived quality, brand awareness and brand associations are examined in the

This paper considers the applicability of Kelly's repertory grid methodology to identify the factors influencing consumer choice of shopping centres.. Firstly, some

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

30 dependent variable intention to enroll and the mediator variable attitude as well as the extent of knowledge about Brexit, favorite country, visited the UK, and studied in the

of the O−O bond formation photocatalytic step in water oxidation, it is essential to understand if and how nonadiabatic factors can accelerate the proton-coupled electron