• No results found

Groundwater saving and quality improvement by reducing water footprints of crops to benchmarks levels

N/A
N/A
Protected

Academic year: 2021

Share "Groundwater saving and quality improvement by reducing water footprints of crops to benchmarks levels"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Groundwater

saving

and

quality

improvement

by

reducing

water

footprints

of

crops

to

benchmarks

levels

Fatemeh

Karandish

a,∗

,

Arjen.Y.

Hoekstra

b,c

,

Rick

J.

Hogeboom

b

a Water Engineering Department, University of Zabol, Zabol, Iran

b Twente Water Centre, University of Twente, P.O. Box 217, Enschede 7500AE, The Netherlands

c Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 259770, Singapore

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Water footprint assessment Groundwater scarcity Groundwater quality Nitrate pollution Benchmarking Water saving Crop production

a

b

s

t

r

a

c

t

Theformulationofwaterfootprint(WF)benchmarksincropproduction– i.e.identifyingreferencelevelsof reasonableamountsofwaterconsumptionandpollutionpertonneofcropproduced– hasbeensuggestedas apromisingstrategytocounterinefficientwateruseandpollution.Thecurrentstudyisthefirsttoshowhow settingWFbenchmarksmayhelpalleviategroundwaterscarcityandpollution,inacasestudyforIran.We ad-vancethefieldofWFassessmentbydevelopingWFbenchmarklevelsforcropproduction,whichwesuccessively usetoassesspotentialgroundwatersaving,qualityimprovementandeconomicwaterproductivitygains.First, wecalculateclimate-specificWFbenchmarklevelsforbothtotalbluewaterfootprintsandnitrogen-relatedgrey groundwaterfootprintsfor26crops,forallyearsintheperiod1980–2010,at5×5′spatialresolution.Second, weestimatethewatersavingpotentialfortotalbluewaterresourcesandforgroundwaterresourcesspecifically, aswellasthegreygroundwaterfootprintreductionpotential.Finally,wecomparemeaneconomicwater pro-ductivitiesofcropproductioninthepastwithproductivitiesifWFsarereducedtobenchmarklevels.Wefind thatgroundwatercomprisesupto83%oftotalbluewaterconsumptionofirrigatedcrops,withthehighestshare inaridareasandincereals.Aquifersareundersignificanttoseverestress,exceptinthedrysub-humidzone, whereirrigationmainlyreliesonsurfacewater.ReducingWFsofcropsto25thpercentilebenchmarklevelscan save32%ofgroundwatercomparedtothereferenceyear2010,andlowerthenitrogen-relatedgreygroundwater footprintby23%.Moreover,itwouldincreaseaverageeconomicgroundwaterproductivityinIranby20%for cereals,and59%fornuts.WeconcludethatreducingWFstoclimate-specificbenchmarklevelsinawater-stressed countryisapromisingwaytoalleviateoverexploitationofaquifersandincreasenationalfoodsecurity.

1. Introduction

Apromisingstrategytosavewaterandreducewaterpollutioninthe agriculturalsectoristoformulatebenchmarklevelsforwaterfootprints of cropproduction(Zwartetal., 2010;Braumanetal., 2013; Hoek-stra,2013;MekonnenandHoekstra,2014;Zhuoetal.,2016b;Chukalla etal.,2017).Awaterfootprintreferstothevolumeof waterthatis consumedorpollutedtoproduceatonneofproduct.Theblue surface-waterfootprint(blue SWF)referstotheconsumptionof surface wa-ter,thebluegroundwaterfootprint(blueGWF)totheconsumptionof groundwater,andthegreenWFtotheconsumptionofrainwater.The greysurface-waterfootprint(greySWF)andgreygroundwaterfootprint (greyGWF)aremeasuresofsurfacewaterandgroundwaterpollution, respectively(Hoekstraetal.,2011).TheblueandgreenWFcomponents togetherformthetotalconsumptiveWF,whilethegreyWFisalsocalled thedegradativeWF.Benchmarkingwaterproductivity(kg/m3 )or

wa-∗Correspondingauthor.

E-mailaddress:f.karandish@uoz.ac.ir(F.Karandish).

terfootprints(m3 /kg)impliesdefiningwhatisareasonableamountof waterappropriationfortheprocessathandgivenenvironmental con-ditionsandtechnicalpossibilities.Benchmarksmayvarywith environ-mentalfactorslikeclimateandsoil(Hoekstra,2013;Hoekstra,2014). Consumptionbeyondthebenchmarklevelindicatesinefficientresource use.Benchmarkscanbeformulatedbasedongoodorbestavailable tech-nologiesandmanagementpractices(Chukallaetal.,2015,2017,2018) ortheycanbesetbyconsideringthespreadofactualWFsinacertain regionandtakingtheWFlevelthatisnotbeingexceededbythebest 10%,20%or25%ofthetotalproductioninthatarea(Mekonnenand Hoekstra,2014;Zhuoetal.,2016b).

Althoughstillinitsinfancy,theideaofdevelopingbenchmarklevels hasbeenelaboratedinafewpreviousstudies.Inaglobalassessment, Mekonnen andHoekstra(2014) developedbenchmarklevelsfor con-sumptiveandgreyWFsforvariouscropsthroughananalysisataspatial resolutionof5×5′andfoundthatWFbenchmarklevelsmaybelowerin atemperatethaninatropicalclimate.Theyfoundthatifallproducers

https://doi.org/10.1016/j.advwatres.2018.09.011

Received20February2018;Receivedinrevisedform15September2018;Accepted17September2018 Availableonline18September2018

(2)

globallywouldachieveaconsumptiveWFsimilartoorlowerthanthat ofthebest25%ofproduction,globalbluewatersavingswouldsum upto40%ofthetotalwaterconsumptionincropproduction.Ifgrey WFsincropproductionarereduced,worldwide,tothelevelofthebest 25%ofcurrentglobalproduction,waterpollutionwouldbereducedby 54%.Chukallaetal.,(2015,2017)studiedthereductionpotentialof blueandgreenWFsforcerealsbydevelopingbenchmarksfordifferent alternativeirrigationtechniques,irrigationstrategies,anddifferent al-ternativemulchingpractices.Theirresultsdemonstratethatintegrating dripirrigationwithdeficitirrigationandsyntheticmulchingmaycause a29%reductioninconsumptiveWFcomparedtoconventionalfarming practices.Zhuoetal.,(2016b) carriedoutastudyforconsumptiveWF benchmarksofwheatinChina,addressingtheimportantquestionofthe needtodifferentiatebenchmarksbasedonenvironmentalfactors. Con-sideringrain-fedversusirrigatedcroplands,wetversusdryyears,warm versuscoldyears,fourdifferentsoilclassesandtwodifferentclimate zones,theyconcluded thatitis justifiedtodifferentiatebenchmarks basedonclimatezones.

Noneofthepreviousstudiesquantifiedtheeffectthatsetting bench-marksmayhaveonalleviatingscarcityorpollutionlevelsfor ground-waterspecifically,whichwasnotpossiblebecausenoneofthem differ-entiatedblueWFsintoblueSWFsandblueGWFs.Inaddition,the eco-nomicbenefitsassociatedwithmoreefficientwaterconsumptiondueto benchmarkinghavenotbeenquantifiedbefore.Thecurrentstudyaims toadvance thefieldofwaterfootprintassessmentby(1)developing climate-specificbenchmarklevelsforbothblueandgreyWFs,inacase studyconsidering26cropsinIranovertheperiod1980–2010,(2) esti-matingwatersavingandwaterpollutionreductionpotentialforIran’s groundwaterresources,and(3)comparingtheeconomicwater produc-tivitiesofactualcropproductionwithproductivitiesifWFsarereduced tobenchmarklevels.Thiscomprehensiveaimprovidesamuch-needed widerperspectiveoninefficientwateruse incropproductioninIran inparticular,andonthestrategyofbenchmarkingWFsingeneral.Iran hasbeenchosenasanexemplarycaseofheavyrelianceongroundwater resources,ahighdegreeofaquiferoverexploitation,andmuchroomfor moreefficientwateruse.

2. Methodsanddata 2.1. Casestudy

Iranspansanareaof1,640,195km2 andisdividedinto30provinces (Fig.1a).Thelong-termnationalaveragesofminimum(Tmin )and max-imum(Tmax ) temperaturesare12°Cand25°C,respectively.The an-nualaverageprecipitationis244mm,butthesouth-easternpartsofthe country(SistanandBalouhestanprovinces)receivemuchless precipita-tion(104mm)andthenorthernparts(Gilan,MazandaranandGolestan provinces)muchmore(1033mm).Overtheperiod1980–2010, refer-enceevapotranspirationvariesintherangeof858–2374mmy− 1 within thecountry,withthelowestandhighestvaluesinthehumidand hyper-aridzones,respectively(KarandishandMousavi,2016).Basedonthe De-Martonneclassificationmethod,Irancanbeclassifiedintofive cli-matezones(KarandishandMousavi,2016):hyper-arid,semi-arid,arid, humidanddrysub-humid,witharidandsemi-aridbeingthe predomi-nantclasses(Fig.1a).Despitetheirlowfreshwateravailability,thearid andsemi-aridzonesareresponsibleforabout70%ofthetotalirrigated cropproductioninthecountry(IMAJ,2016).

Iranissufferingfromunprecedentedwaterscarcityofbothsurface waterandgroundwaterresources.Thisscarcityhasatleastthreemain causes:rapidpopulationgrowthcombinedwithanunevenpopulation distributionwithinthecountry;aninefficientagriculturalsector;and mismanagementandthirstfordevelopment(Madani,2014). Agricul-tureisbyfarthelargestwateruser:97%ofthetotalnetbluewater abstractionin Iranrelatestoirrigatedcropproduction(Hoekstraand Mekonnen,2012).Theimpact of theinefficientagriculturebecomes visible through the partial disappearance of lakes, like Urmia Lake

(Ghaleetal., 2017),the dryingup of rivers, like theZayandehroud River (Madani, 2014),fallinggroundwatertables(Rahnemaand Mi-rassi,2014),pollutionofwater(Karandishetal.,2017a),anddamageto ecosystemsandlocallivelihoods(Madani,2014).Moreover,inefficient wateruseleadstothelossofpotentialeconomicbenefitsthatcouldbe derivedfromincreasedyields.

Rapiddepletionofthecountry’saquifersduetoexcessive groundwa-terabstractionstoproducecropsisarguablythemostcriticalchallenge ofIran’sirrigatedagriculture.Over60%ofthecountry’sirrigation de-pendsonnon-renewableorrenewablegroundwaterstocks(FAO,2016). Iran’sgroundwaterdepletion,embeddedinfoodproduction,was28.4 billionm3 y− 1 in2000andincreasedto33.3billionm3 y− 1 in 2010 (Dalinetal.,2017).Waterabstractionsforirrigationhaveexpanded be-yond regionalwateravailabilitylevels.Nationalstatistics revealthat about500,000wellsareoperatedbylocalfarmers,withoutalicenseor permissionformanyofthem(WRM,2016).Inadditiontoincreasedrisks tonationalwatersecurity,seriousenvironmentaldegradationisinduced andenvironmentalflowrequirementsareviolated(Wadaetal.,2012). Landsubsidenceandseawaterintrusionareamongthemostsubstantial secondaryenvironmentalimpactsofthisunsustainablegroundwateruse (Bouwer,1977;KonikowandKendy,2005).

Thespatiallyunevendistributionofagriculturallandscontributesto thementionedchallenges.Over70%oftheagriculturallandsarelocated inaridandsemi-aridzones.Here,groundwatercontributesover50%to totalwateruseinagriculturalfoodproduction(WRM,2016).The sta-plecropsrequiredtofeedIran’spopulationaresourcedfromprovinces wheregroundwaterisbeinghighlydepleted.Dalinetal.(2017)showed thatIranisinthetopfourcountriesoftheworldexposedtoglobalfood andwatersecurityrisksduetoproducingandimportingfoodirrigated fromrapidlydepletingaquifers.

2.2. Green,blueandgreyWFsofcropproduction

Thegreenwater,totalbluewater,bluegroundwater,blue surface-waterandgreygroundwaterfootprintsofcropproductionwere calcu-lated percrop at aspatialresolution of 5×5′foreach growing sea-sonintheperiod1980–2010,basedontheaccountingframeworkof Hoekstraetal.(2011).ThegreenandtotalblueWFsofacrop(m3 t−1 ) werecalculatedastheactualseasonalgreenandblue evapotranspira-tion(ET,m3 ha− 1 )dividedbythecropyield(Y,tha− 1 ).ETandYwere simulatedusingFAO’scropwaterproductivitymodelAquaCrop,using adailytimestep(Hsiaoetal.,2009;Raesetal.,2009;Stedutoetal., 2009).Themodelwasinitializedthrougha5-yearrain-fedfallowland simulationpriortotheplantingdate,inordertodampenouteffectsof beginningconditionsonthesoilmoisturecomposition,aswasproposed bySiebertandDöll(2010)andZhuoetal.(2016a).Themodelevaluates adailysoilwaterbalanceoftherootzonetocalculateET:

𝑆[ 𝑡] =𝑆[ 𝑡−1 ] +𝑃[ 𝑡] +𝐼[ 𝑡] +𝐶𝑅[ 𝑡] −𝑅𝑂[ 𝑡] −𝐸𝑇[ 𝑡] −𝐷𝑃[ 𝑡] . (1) inwhichS[ t] andS[ t1] arethesoilwatercontentattheendofdayt andt-1,respectively,P[ t] theprecipitationondayt,I[ t] theirrigation waterapplied,CR[ t] thecapillaryrisefromthegroundwater,RO[ t] the surfacerunoff,ET[ t] theevapotranspiration,andDP[ t] thedeep perco-lation.Alltermsareinmm.Capillaryriseisnotconsideredheresince mostgroundwatertablesareassumedtobedeeperthanonemeterbelow therootingzone.ThegreenandtotalbluewaterfractionsofROwere calculatedeachdaybasedontherelativesharesofPandIinadayin thesumofP+I.Thefractionsgreenandtotalbluewaterinthesoil wa-tercontentovertimewerecalculatedfollowingChukallaetal.(2015), Zhuoetal.(2016a) andKarandishandHoekstra(2017).Thismethod isbasedontheassumptionthatthegreenwatercontentinthesoil in-creaseswhenrainfallinfiltratesinthesoilandthatthetotalbluewater contentincreaseswhenprecipitationinfiltrates.Thefractionsgreenand totalbluewaterinthetotalsoilwatercontentattheendoftheprevious daywereusedtocalculatethegreenandtotalbluefractionsinETand

(3)

Fig. 1. Provinces,municipalitiesandclimaticregionsofIran,withthedominantclimaticconditionperprovince.

ThetotalblueWFineachlocationandyearismadeupoftwo com-ponents:abluegroundwaterfootprint(GWF)andabluesurface-water footprint(SWF).Wedistinguishedthesecomponentsbasedondataon thefractionsgroundwaterandsurfacewaterinirrigationper munici-palityasprovidedbyWRM(2016).

The grey WF is an indicator of appropriated pollution assim-ilation capacity. Following the Global Water Footprint Standard (Hoekstraetal.,2011),wecalculatedthegreygroundwaterfootprint (inm3 t− 1 )relatedtotheapplicationofnitrogen(N)fertilizeras fol-lows:

𝐺𝑟𝑒𝑦𝐺𝑊𝐹 =𝛼𝐴𝑅∕ (

𝑐𝑚𝑎𝑥𝑐𝑛𝑎𝑡)

𝑌 (2)

whereARis theNfertilizer applicationratetothefield(kg ha1 y-,

𝛼 thefractionofthisleachingtothegroundwater,Cmaxthemaximum

acceptableNconcentrationinthegroundwater(kgm3),C

natthenatural

Nconcentrationinthegroundwater(kgm3),andYthecropyield(t

ha− 1 ).Theproduct𝛼AR representstheNloadtogroundwater.Based onthesuggestedvaluesbyFrankeetal.(2013),weassume𝛼 =0.1.A maximumacceptableNconcentrationof50mgnitrateL− 1 (or11.3mg NL− 1 )isadopted,basedonEUNitratesDirective(Monteny,2001).We didnotconsidergreyWFsforsurfacewaterinthisstudy.

2.3. BlueandgreyWFbenchmarklevelsandpotentialblueandgreyWF reduction

Percrop,perclimatezoneandperyear,wedeterminedbenchmark levelsforthetotalblueWFandthegreyGWF.FollowingMekonnenand Hoekstra(2014)andZhuoetal.(2016b),WFbenchmarklevelswere de-terminedbyrankingthegrid-levelWFvaluesfromsmallesttolargest, andplottingthesesortedfootprintsagainstthecorresponding cumula-tivepercentageoftotalcropproduction.AWFbenchmarkforacertain crop,climatezoneandyear isthensetbytakingtheWFatagiven percentileofproduction,e.g.the10th,20thor25thpercentileof pro-duction.The10thpercentilebenchmarklevelthusreferstotheWFof thatisnotexceededbythebest10%ofthetotalproductionvolume

(with‘best’referringtothecropscomingfromtheplaceswithsmallest WFs).WedidthisforbothtotalblueWFsandgreyGWFs.Subsequently, weestimatedwatersavingpotentialifWFsarereduced– bothtotalblue WFsandgreyGWFs– tothesebenchmarklevels.

To estimate the potential reduction of groundwater scarcity, we firstcalculatedgroundwaterscarcityperclimatezone,bydividingblue groundwater footprints of the 26 crops considered in this studyby groundwater availabilityfor the referenceyear 2010 (Schynset al., 2015;SchynsandHoekstra,2014).Wetookgroundwateravailability (recharge)datafromWRM(2016).Subsequently,wecomputed ground-waterscarcityforthescenariosinwhich,percropandperclimatezone, actualtotalblueWFsarereducedtotheclimate-specificbenchmark lev-els setby the10th,20th and25th productionpercentiles.Following Hoekstraetal.(2012)andHoekstraandMekonnen(2016),weclassified scarcityintofourgroups:low(<20%),moderate(20%−30%), signifi-cant(30%−40%)andsevere(>40%)scarcity.Thedifferencebetween thereferenceyearandreducedWFscenariosgivesanindicationofthe potentialreductioningroundwaterscarcityperclimatezone.

ToestimatethegreyGWFreductionpotential,wefirstcalculated thewaterpollutionlevel perclimatezonebydividingthetotalgrey GWFbygroundwateravailabilityforthereferenceyear2010.Next,we calculatedgroundwaterpollutionlevelsforthescenariosinwhich,per cropandperclimatezone,actualgreyGWFsarereducedtothe bench-marklevelssetbythe10th,20thand25thproductionpercentiles.When thewaterpollutionlevelequals1,thecompletegroundwaterflowin theconsideredregionisrequiredtoassimilatetheloadof pollutants (Hoekstraetal.,2011).Thedifferencebetweenthereferenceyearand reducedWFscenariosgivesanindicationofthepotentialreductionin groundwaterpollution.

2.4. Economicwaterproductivity

FollowingAldayaetal.(2010)andHogeboomandHoekstra(2017), meaneconomicwaterproductivity(EWP,in$m− 3 )wascalculated,per cropclass,perclimatezone,andperyear,bydividingtheproducerprice ($ton− 1 )bythetotalconsumptive(i.e.greenplusblue)WF(m3 ton− 1 ).

(4)

Table 1

Overviewofdatasources.

Input variable Source Spatial resolution ∗ Temporal resolution Remarks

Irrigated area IMAJ (2016) Municipal per crop Annual 1980–2010 Crop-specific municipal level irrigated area were downscaled to the 5 × 5 ′ resolution based on spatial distributions of crop-specific irrigated areas by Siebert et al., 2013 . Irrigation water resources

(ground and surface water)

WRM (2016) Municipal Crop-specific municipal level irrigated amounts and recharge were downscaled to the 5 × 5 ′ resolution based on spatial distributions of irrigated areas by Siebert et al. 2013 Applied N fertilizer in irrigated

areas

IMAJ (2016) municipal annually Spatial distribution of applied N fertilizer within the irrigated areas was derived based on the ratio of crop irrigated area within in a 5 × 5 ′ unit to the crop irrigated area in the corresponding municipal unit as a whole

Weather data (Tmin, Tmax, RH, WS, n) ∗∗

IRIMO (2016) 52 synoptic stations daily Weather stations are shown in Karandish and Hoekstra (2017) . Raster maps were resampled in GIS to the 5 × 5 ′ spatial resolution.

Soil data (i.e. texture data and the total soil water holding capacity)

Batjes (2012) 5 × 5 ′ resolution –

Soil hydraulic characteristics (PWP, FC, TS, Ks) ∗∗∗

Steduto et al., 2009 Not applicable Raster maps at 5 × 5 ′ resolution were prepared based on 5 × 5 ′ soil texture map

Climatic zones 5 × 5 ′ Climatic zones were determined based on the method by

De-Martonne, based on weather data (see above, available at 5 × 5 ′ resolution and upscaled to the provincial level)

Duringthestudyperiod,Iranhad30provinces.EachprovincewasfurtherdividedintomunicipalunitsbasedonnationalrulesestablishedbytheMinistryof

theInterior(KarandishandHoekstra,2017).

∗∗Tmin:minimumairtemperature,Tmax:maximumairtemperature,RH:relativehumidity,WS:windspeed,n:sunshinehour).

∗∗∗PWP:permanentwiltingpoint,FC:soilmoistureatfieldcapacity,TS:soilmoistureatsaturation,Ks:soilsaturatedhydraulicconductivity.

Basedonthe30-yeartimeseriesofWFs(1980–2010),EWPwas calcu-latedforboththeactualconditionsandthescenariosinwhichthe con-sumptiveWFsarereducedtotheclimate-specificbenchmarklevelsat thebest10%,thebest20%,orthebest25%ofIran’scropproduction. Usinglesssurfacewaterandgroundwater,whilemaintaining produc-tionlevels,increasestheeconomicoutputperunitofwaterallocatedto thepurposeofcropgrowing.Weestimatetheincreaseineconomic wa-terproductivity(EWP,$m− 3 )ifproducersweretoadheretobenchmark levelscalculatedearlierinthisstudy.

2.5. Data

Allrequireddatahadtobeobtainedpercropandperyearforthe studyperiod1980–2010,atthe5×5″resolution.Anoverviewofthe datasourcesused,includingdownscalingandresampling procedures appliedincaseofdeviatingresolutions,isgiveninTable1.Whileall analysesaredoneatthe5×5′gridlevel,resultsareaggregatedtoand shownattheclimatezonelevelforclarity.

Dailyweatherdataat5×5′resolutionwerederivedfrom observa-tionsat52weatherstations(KarandishandHoekstra,2017)locatedin fiveclimatezones(IRIMO,2016).ETo wascalculatedbasedontheFAO– Penman–Monteithequation(Allenetal.,1998).Soiltexturedataand thetotalsoilwaterholdingcapacitywereobtainedfromBatjes(2012). Forhydrauliccharacteristicsforeachtypeofsoil,theindicativevalues providedbyAquaCropwereused.Weconsidered26cropscommonly growninIran,classifiedintoeightcropcategoriesbasedontheFAO classification(Allenet al.,1998):cereals (wheat; barley;rice),roots andtubers(potato),sugarcrops(sugarbeet;sugarcane),pulses(bean; pea;lentil),nuts(pistachio;walnuts;almond;hazelnut),oilcrops (cot-tonseed;soybean;canola),vegetables(tomato;onion)andfruits(apple; banana;date;grape;andcitrusfruitsincludinglime,lemon,tangerine, orangeandgrapefruit).WheatinIranisallwinterwheat.Agricultural datafortheirrigatedandrain-fed crops,includingcrop sowingarea (ha),irrigatedarea(ha),cropplantingandharvestingdates,cropyield (kgha− 1 ),andN-applicationrateswerecollectedpercropperprovince peryearfromIran’sMinistryofAgricultureJihad(IMAJ,2016).Dataon thefractionsgroundwaterversussurfacewaterforirrigationat munici-pallevelwereobtainedfromWRM(2016).DataonIran’sinternational

tradepercrop(ty−1 )weretakenfromFAO(2017).Dataonannualcrop priceswereretrievedfromFAO(2017).

3. Results

3.1. BlueandgreyWFbenchmarklevels

TableS-1showsthetotalblueWFbenchmarksofdifferentcrops,at differentproductionpercentilesforeachclimatezone.Whenweshow, forexample,thatthe25thpercentileofthetotalblueWFofwheatin thesemi-aridzoneis1067m3 t− 1 ,wemeanthatthebest25%ofwheat productioninthisclimatezone(‘best’intermsof‘havingthesmallest totalblueWFs’)hasatotalblueWFof1067m3 t− 1 orless.Significant differencesbetweenthebenchmarksfordifferentclimatezonescanbe observed.Regardlessof croptype,totalblueWFbenchmarksforthe hyper-arid,aridandsemi-aridzonesarehigherthanforthehumidand drysub-humidzones.Exceptforcitrusanddate,thehighesttotalblue WFbenchmarklevelsareobserved inthehyper-aridzone,while the lowestoccurinthehumidzone.ThehighertotalblueWFbenchmarks in thedrier(semi-arid,aridandhyper-arid)zonesarecausedbythe relativelyhighET0 andactualETandgreaterfractionoftotalbluewater inthetotalwaterconsumption.Theresultsconfirmthefindingsfrom previousstudiesthatthetotalblueWFofcropsisnegativelycorrelated withprecipitation,andpositively withET0 (Zwartetal.,2010;Zhuo etal.,2014).

TableS-2showsthegreyGWFbenchmarksofdifferentcropsat dif-ferentproductionpercentilesforeachclimatezone.Thevariationacross climatezonesissmallerthaninthecaseofthetotalblueWF bench-marks,becausegreyGWFbenchmarksdon’trelatetoET,butratherto fertilizerapplicationratesandyields.

Sinceatthenationalscalewheatisresponsibleforarelativelyhigh fractionofbothtotalblueWFandgreyGWF,weshowthespatial dis-tributionoftotalblueWFsandgreyGWFsofwheatproductionforthe year2010inFig.2.Withinthedrierregions,totalblueWFsbelowthe 25thpercentilebenchmarklevelweremostlylocatedinEsfahan(arid), Tehran(arid),Yazd(hyper-arid),Chaharmahal(semi-arid)and Kerman-shah(semi-arid)provinces.Theseprovinceshavearelativelyhigh irri-gationdensity.Inthewaterabundantregions,WFsbelowthe25th per-centilebenchmarklevelareobservedinGilanprovince(humidzone),

(5)

Fig. 2. Spatialdistributionofthetotalbluewaterfootprint(a)andgrey ground-waterfootprint(b)ofwheatInIran,classifiedbasedontheWFsatthedifferent productionpercentilesperclimatezone.Spatialresolution:5×5′.Year:2010.

whereET0 islowerthanintheotherplaces.Thenationalaveragetotal blueWFbenchmarkforwheatinIranasawholereflectsthetotalblue WFbenchmarksforaridandsemi-aridzones,whichcanbeexplainedby thefactthatmostofthecropproductioninIranoccursinthesezones.

GreyGWFsbelowthe25thpercentilebenchmarklevelarelocated inEsfahan(arid),Fars(arid), Qom(arid),Hormozgan(arid), Khuzes-tan(arid),North-Khorasan(arid),Yaz(hyper-arid),Chaharmahal (semi-arid),Hamedan(semi-arid),Lorestan(semi-arid) andMarkazi (semi-arid)provincesandMazandaranprovince(humidzone).

3.2. Groundwatersavingpotential

Fig.3 showsthetemporalvariabilityofthegroundwatersavingthat wouldbeachievedifthetotalblueWFsofthevariouscropswere re-ducedtotheclimate-specifictotalblueWFbenchmarklevelssetbythe 25thpercentiles ofproduction,foreach climatezoneandwithinthe wholecountry.Thesavingofgroundwaterspecificallywhenreducing overallbluewaterconsumptiontothebenchmarkleveldependsonthe groundwaterfractioninthetotalbluewatervolumeused.Thepotential groundwatersavingwhenloweringtotalblueWFsdowntothe25th per-centilebenchmarklevelwere3.2billionm3 y− 1 in1980and10.2billion m3 y− 1 in2010.Potentialgroundwatersavingtogroundwater consump-tionratiosvariedbetween30%and34%duringtheperiod1980–2010. Thehighestgroundwatersavingsovertheperiod1980–2010were pos-sibleinthearid(1.7–5.4billionm3 y− 1 )andsemi-arid(1.4–3.6billion m3 y− 1 )zones,whereirrigatedagriculturemainlyreliesongroundwater resourcesandwheremostofthecropproductiontakesplace.

Thepronouncedincreaseingroundwatersavingpotentialovertime isattributedtosignificantlyhighergroundwaterconsumptionin2010 relativeto1980.Thisincreaseiscausedbyarapidgrowthofareaunder irrigationinparticularlythewater-scarcearidandsemi-aridregionsof

thecountry.Previousstudiesconfirmsuchsubstantialincreaseinoverall bluewaterconsumptioninirrigatedagricultureinIranovertheperiod 1980–2010(KarandishandHoekstra,2017).

Fig.4 showsthatthereisanexpresseddifferencebetweenvarious cropclassesintermsoftheabsolutegroundwatersavingpotentialupon loweringtotalblueWFsdowntothe25thpercentilebenchmarklevel. Thelargestgroundwatersavingcanbeachievedincerealproduction (1.7–4.5billionm3 y− 1 ),especiallywheat,whilerootsandtubers(0.04– 0.16billionm3 y− 1 )showthelowestabsolutepotential.Savingpotential acrosscropclassesis– asexpected– correlatedwiththeareaofirrigated landattributedtoeachclass.

Table 2 shows groundwaterscarcitycausedbygroundwater con-sumptionforthereferenceyear2010.Whilegroundwaterresourcesare underseverestressinthehyper-arid,aridandsemi-aridzones,thedry sub-humidzoneexperiencesalowpressureontherenewable groundwa-terresources.Thiscanbeexplainedbythefactthatirrigatedagriculture inthelatterclimatezonemainlyreliesonsurfacewater.Aquifersinthe humidzonearesignificantlywaterstressedundercurrentagricultural managementpractices.Themainreasonisthatricegrownhererequires largeamountsofmostlygroundwater(cf.Karandishetal.,2017a).As showninTable2,lowerscarcitylevelsmaybeachievedwhenWFsare reducedtothebenchmarklevelsinallclimatezones.Theexceptionis inthehyper-aridzone,whereaquiferswillremainunderseverewater stressinanyscenario.Atnationallevel,a32%reductioningroundwater scarcityispossiblecomparedtothereferenceyear2010whenreducing waterconsumptiontothe25thpercentilebenchmarklevels.Thenstill, Iran’saquiferswillremainundersignificantwaterstress-especiallyin aridandhyper-aridzones-indicatingthattoomuchwaterisbeingused intotal,evenifthewaterwouldbeusedmuchmoreefficiently.

3.3. Groundwaterpollutionreductionpotential

Iran’s aquifersaremainlylocated in areaswithintensive agricul-ture,andsufferfromdiffusenitratepollutionfromtheexcessiveuseof Nfertilizers,particularlyincerealfields(Fig.5).Intensiveagriculture inpredominantlyaridandsemi-aridzonesresultsinthelargest ground-waterpollutionbynitrateintheseareas.LoweringgreyGWFsdownto climate-specificbenchmarklevelssetbythe25thpercentileof produc-tionwillreducethegreyGWFofagriculturalproductionby23% com-paredtotheactualgreyGWFin2010(11%inthedrysub-humidand 38%inthehyper-aridzone).Inabsolutesense,thebiggestreductionin waterpollutionatnationalscalecanbeachievedincerealproduction.

Table3 showsthewaterpollutionlevelofaquifersforeachclimate zoneforthereferenceyear2010andforthescenariosinwhichgrey GWFswouldbereducedtothebenchmarklevelssetbythe25th,20th and10thproductionpercentiles.Theaveragewaterpollutantlevelsper climatezoneremainsmallerthan1inthereferenceyear,indicatingthat thewasteassimilationcapacityhasnotyetbeenfullyreached. Never-theless,nitratepollutionissevereinaquiferslocatedwithinthe semi-aridandhumidzones,where50%and70%ofgroundwaterisrequired, respectively,toassimilatethepollutantload.

3.4. Increasingeconomicwaterproductivity

Fig.6 showstheeconomicwaterproductivity($m− 3 )foreachcrop classandclimatezone,bothmeanEWPin2010andEWPsforthe10th, 20th and25th productionpercentileinthesameyear.EWPofcrops variedacrossthecountryfollowingvariationsinbothpriceandwater consumption,withthelargestabsolute EWPvaluesin thehumid re-gion.Fruits(1.6–3.2$m− 3 ),vegetables(0.9–1.8$m− 3 )androotsand fibres(1.3–1.7$m− 3 )generatedthehighesteconomicvalueperdrop, whilepulsesandoilcrops– themostwaterintensivecrops– yielded thelowestEWP.In2010,cerealshadthelargestshareinnationalwater consumption,but,forIranasawhole,productionyielded62.3%,32.2% and26.3%lessvalueperdropthanproductionoffruits,vegetablesand

(6)

Fig. 3. Groundwatersaving(bluegroundwaterfootprintreduction)andgroundwaterpollutionreduction(greygroundwaterfootprintreduction)foreachclimate zoneandIranasawholeovertheperiod1980–2010,iftotalblueWFswereloweredto25thpercentilebenchmarklevels.

Table 2

Groundwaterscarcityastheratioofbluegroundwaterfootprinttogroundwateravailability(annualrecharge),perclimatezone,for thereferenceyear2010andincasethetotalblueWFsin2010wereloweredtodifferentbenchmarklevels(pertainingtothe25th, 20thand10thproductionpercentiles).

Climate zone Blue groundwater footprint (10 9 m 3 y −1 )

Groundwater availability (10 9 m 3 y −1 )

Ground water scarcity Level of water scarcity

Reference year 2010 Hyper-arid 4.7 6.7 0.7 Severe

Arid 15.1 24.4 0.6 Severe

Semi-arid 9.1 15.2 0.6 Severe

Humid 0.4 1.0 0.4 Significant

Dry sub-humid 0.5 2.2 0.2 Low

Iran 29.8 49.5 0.6 Severe

25th percentile Hyper-arid 3.6 6.7 0.5 Severe

Arid 10.1 24.4 0.4 Significant

Semi-arid 6.0 15.2 0.4 Significant

Humid 0.4 1.0 0.4 Significant

Dry sub-humid 0.4 2.2 0.2 Low

Iran 20.4 49.5 0.4 Significant

20th percentile Hyper-arid 3.5 6.7 0.5 Severe

Arid 10.3 24.4 0.4 Significant

Semi-arid 5.6 15.2 0.4 Significant

Humid 0.3 1.0 0.3 Moderate

Dry sub-humid 0.4 2.2 0.2 Low

Iran 20.2 49.5 0.4 Significant

10th percentile Hyper-arid 3.2 6.7 0.5 Severe

Arid 9.7 24.4 0.4 Significant

Semi-arid 4.8 15.2 0.3 Moderate

Humid 0.3 1.0 0.3 Moderate

Dry sub-humid 0.4 2.2 0.2 Low

Iran 18.4 49.5 0.4 Significant

rootandfibres,respectively,causedbytheirlowyieldandhigh wa-terconsumption.ReducingtheWFsto25thpercentilebenchmark lev-elsimprovesfarmeconomics,throughincreasingaverageEWPinIran by19.5%forcereals,55.1%forvegetables,25.2%forrootsandfibres, 31.1%forpulses,21.4%forsugarcrops,58.8%fornuts,29.3%foroil crops,and36.7%forfruits.ThehighestincreasesinEWParegenerally foundintheprovinceslocatedinthearidandsemi-aridzones.

4. Discussion

ThisstudyintothedevelopmentandapplicationofWFbenchmarks forcropproductioninIranincludesvariouslimitationsand uncertain-ties. First, we used the AquaCrop model to estimate ET and yield, using default parametersper crop.Calibration andvalidatingmodel

(7)

Table 3

Groundwaterpollutionlevelastheratioofgreygroundwaterfootprinttogroundwateravailability,per climatezone,forthereferenceyear2010andincasethegreygroundwaterfootprintsin2010werelowered todifferentbenchmarklevels(pertainingtothe25th,20thand10thproductionpercentiles).

Climate zone Grey groundwater footprint (10 9 m 3 y −1 )

Groundwater availability (10 9 m 3 y −1 )

Water pollution level

Reference year 2010 Hyper-arid 0.5 2.0 0.2

Arid 3.6 9.3 0.4 Semi-arid 2.8 6.1 0.5 Humid 0.4 0.6 0.7 Dry sub-humid 0.3 1.7 0.2 Iran 7.7 19.7 0.4 25th percentile Hyper-arid 0.3 3.1 0.1 Arid 2.7 14.3 0.2 Semi-arid 2.2 9.2 0.2 Humid 0.4 0.6 0.6 Dry sub-humid 0.3 1.8 0.2 Iran 5.9 29.1 0.2 20th percentile Hyper-arid 0.3 3.2 0.1 Arid 2.6 14.1 0.2 Semi-arid 2.2 9.6 0.2 Humid 0.4 0.7 0.6 Dry sub-humid 0.3 1.8 0.2 Iran 5.8 29.3 0.2 10th percentile Hyper-arid 0.3 3.5 0.1 Arid 2.5 14.7 0.2 Semi-arid 2.1 10.4 0.2 Humid 0.3 0.7 0.5 Dry sub-humid 0.3 1.8 0.1 Iran 5.5 31.1 0.2

parametrizationstothelocalcontext,basedonlocalorfielddata,would improvetrustintheoutcomes(KarandishandŠimůnek,2018).

Theuseofdatasourcesofdifferingspatialscalescancause inconsis-tenciesintheresults.Mostoftheavailabledatawerereportedatthe mu-nicipallevelandsubsequentlydownscaledtoa5×5′resolution,thereby potentiallyaffectingtheresults.Acomparisonwithapreviousstudyby MekonnenandHoekstra(2011)inFig.7showsthatourresultsdifferin therangeof±40%fortotalblueWFs,to±60%forgreyWFs,whichcan beexplainedbydifferencesinmodelsanddatasourcesused,butalso bytheinputdataresolutionused.Mostofourinputdatawerereported atthemunicipallevel,whileMekonnenandHoekstra(2011)used pre-dominantlynationalleveldata.

Wedeterminedthebenchmarklevelsspecificallyforvariousclimatic zones,ratherthanconsideringotherenvironmentalfactorssuchassoil typeandslope,followingZhuoetal.(2016).Includingtheeffectofsoils, slopesandotherlocal environmentalfactorson ETandyieldswhen formulatingbenchmarkscouldpossiblyrefinetheresultsofthisstudy, butbytakingbenchmarksatthe25thpercentileofbestproductionwas areattheconservativesidewhenestimatingpotentialwatersavingsand pollutionreduction.

Inorder toexplorethesensitivityofourresults,wecarriedouta sensitivityanalysisforselectedmodelparametersforasimulationfor wheat.WeanalysedthemostsensitiveparametersaccordingtoHui-Min etal.(2017).Intheiraglobalassessmentforwinterwheat,theyfound thateightparameterstobemostsensitive:growingdegreedaysfrom sowingtoflowering(FLO),upperthresholdofsoilwaterdepletion fac-torforcanopysenescence(PSEN),totallengthofcropcycleingrowing degree-days(MAT),cropcoefficientwhencanopyiscompletebutprior tosenescence(KCB),normalizedwaterproductivity(WP),harvestindex (HI),maximumcanopycoverinfractionsoilcover(MCC),andgrowing degreedaydecreaseincanopycover(CDC).Weassessedtherelative changein model-simulatedwheat yieldandcropwater consumption ifeachoftheselectedeightparameterswereadjustedby±20%alone. Table4showsthattheoutputparameterschangedintherangeof−70%

to21%and−16%to3%,respectively.Sensitivitiesvariedperclimatic region.Such adjustmentintheselectedeightparametersmay conse-quently resultin a −17%to178% change in theestimated ground-watersavinganda−17%to219%changeinthereducedgreyGWF. Table4 alsoshowsthatMATisthemostsensitiveparameter,causing thelargestrelativechange incropyieldandwaterconsumption,and consequentlyingroundwatersavingandgreyGWFreduction.

Basedonthese limitationsanduncertaintiesweconsiderthe cur-rent studyasexplorative.FormulatingWFreductiontargetsforcrop production,asageneralnationalpolicy,andtodownscaletargetsper climatezonetospecifictargetsatfarmlevelstillawaitpractical imple-mentation.Thefieldisstillinitsinfancy,withonlyafewearlierstudies availablefortotalblueWFbenchmarks(Hoekstra,2013;Mekonnenand Hoekstra,2014;Chukallaetal.,2015,2017;Zhuoetal.,2016b)orgrey WFbenchmarks(MekonnenandHoekstra,2014;Chukallaetal.,2018). Furtherstudies,usingdifferentmodelsandremotesensing,and validat-ingfindingsbasedonfielddata,willbenecessarytoassessuncertainties inmoredetail,andtestthefeasibilityofloweringtheWFsofcropsto benchmarklevelsatlargescale.

Regardingtheresults,wefoundthatreducingWFs tobenchmark levelshasthelargestwatersavingeffectwhenappliedforcereals,nuts andfruitsandinthearidandsemi-aridzones.Ariskofwatersaving isthatfarmersincreasetheirproductionvolumeoncetheyrequireless waterperunitofcropproduction,therebyundoingtheoriginalsaving (Hoekstra,2013).Besides,whileanoverallalleviationofgroundwater scarcitymaybeachievedbyreducingcropWFstothebenchmark lev-els,regionalaquiferswillstillremainunderseverestress,particularly inthehyper-aridzone.Hence,benchmarkingWFsofcropneedstobe integratedwiththeotherpossiblegroundwatermanagementsolutions toachievesustainableagriculture.

Unsustainablegroundwaterconsumptionwilllimitfuture groundwa-teravailability,therebyposingaseriousthreattofoodsecurity.Hence, newpoliciesshouldaimatslowingdowngroundwaterdepletionto pro-tectnationalfoodsecurity.Giventhatunderclimatechangeirrigation

(8)

Fig. 4. Temporalvariationofgroundwatersavingforvariouscropclasses,for eachclimatezoneandIranasawholeovertheperiod1980–2010,iftotalblue WFswereloweredto25thpercentilebenchmarklevels.

waterrequirementsareexpectedtoincreaseinIran(Karandishetal., 2017b;KarandishandMousavi,2016),groundwaterwillbeamore valu-ableresourcestill.Additionally,rain-fedagricultureislikelyto experi-enceincreasedperiodsofdrought,asindicatedbyasignificantincrease ingreen waterdeficitsunderglobalwarminginIran (Karandishand Mnousavi,2016).Undersuchcircumstances,groundwaterbecomes a valuablesupplementalwatersourcein rain-fedcultivation, tosecure adequatecropyieldsinthefuture.

Economic water productivity (EWP) is another factor that deci-sionmakersshouldtakeintoconsiderationwhenallocatingwater re-sources(Mekonnenetal.,2012;Hoekstra,2013;Schynsetal., 2015; HogeboomandHoekstra,2017).OurresultssuggestthatIran’s ground-watercan beusedmoreeconomicallyefficientifactualWFsofcrops arelowereddowntotheclimate-specificbenchmarklevels.The poten-tialincreaseinproductivityishigherinthearidthaninthehumidzone. Whilenutspotentiallyhavethehighestincreaseinvalueperdropwhen theconsumptiveWFsofcropsarelowereddowntobenchmarklevels, thehighestnationalincomeincreaseinabsoluteterms($y− 1 )canbe

Fig. 5. Temporalvariationofgreygroundwaterfootprintreductionforvarious cropclasses,foreachclimatezoneandIranasawholeovertheperiod1980– 2010,ifactualgreygroundwaterfootprintswereloweredto25thpercentile benchmarklevels.

achievedwhenefficienciesareimprovedincerealproductionbecause ofthevolumeofcerealproduction.

Marstoneetal.(2015)proposedpayingapremiumon groundwater-irrigatedcrops,tobeusedtostoregroundwaterforfutureuse,a so-lution that maybe considered as a payment for ecosystem services (Naeem et al., 2015) and may be well-received by policy makers (Qureshietal.,2012).Thiswouldalsoprovideapricesignalofwater scarcitytoconsumers. Anyincreaseintheprice ofdomestically pro-ducedcrops,however,mayleadconsumerstobuyimportedfood com-moditiesatcheaperrates(Marstoneetal.,2015).Thiswouldincrease thedependencyonothercountries’waterresources,therebypotentially posinganotherrisktofoodsecurity.Anotheradaptationsolutionto re-ducethepressureonaquifersistoreconsiderwhichcropscanbestbe grownwhere,basedonwaterresourcesavailabilityperclimatezone, andtheirrigationrequirementsandeconomicwaterproductivityof dif-ferentcrops.

(9)

Fig. 6. Meaneconomicwaterproductivity(EWP)(inUS$m−3)forvariouscropclassesin2010,perclimatezone,aswellasEWPforthe10th,20thand25th

productionpercentile.

Thecurrentstudyhasbeenabletoquantifytheeffectoflowering waterfootprintstocertainbenchmarklevelsonalleviating groundwa-terscarcityandpollution.Besides,wequantifiedtheeconomicbenefits associatedwithmoreefficientwaterconsumptionduetobenchmarking.

Ourmethodisnovelinawaythatthebenchmarklevelsforthetotalblue WFsaredevelopedfordifferentclimaticregions,allowingspatially dis-aggregatedquantificationofpotentialwatersavings,thusbetter reflect-ingobservedregionalWFdifferences.Unlikepreviousstudiesthatonly

(10)

Table 4

RelativechangeinAquaCrop-simulatedyieldandwaterconsumptionofwheatinresponsetoa±20%changeinsensitivecropparametersfordifferentclimatic regions,andtheconsequentchangeingroundwatersavingandgreygroundwaterfootprintreductioniftotalblueWFsareloweredtothebenchmarklevels.

Climatic regions Parameter ∗ Change in crop yield (%) Change in water

consumption (%)

Change in groundwater saving (%) Change in grey groundwater footprint reduction (%)

0.2 − 0.2 0.2 − 0.2 0.2 − 0.2 0.2 − 0.2

Hyper arid FLO − 4.9 3.6 0.5 − 1.2 5.7 − 4.6 5.2 − 3.5

PSEN 0.9 0.6 0.0 0.0 − 0.9 − 0.6 − 0.9 − 0.6 MAT − 60.5 − 9.5 − 14.2 − 14.8 117.2 − 5.9 153.2 10.5 KCB − 6.6 − 7.5 − 3.0 − 2.4 3.9 5.5 7.1 8.1 WP 20.9 − 19.4 0.0 0.0 − 17.3 24.1 − 17.3 24.1 HI 19.7 − 20.2 0.0 0.0 − 16.5 25.3 − 16.5 25.3 MCC − 11.2 − 11.2 − 3.8 − 3.8 8.3 8.3 12.6 12.6 CDC − 11.2 3.5 − 3.8 2.8 8.3 − 0.7 12.6 − 3.4 Arid FLO − 5.5 2.5 1.1 − 1.8 7.0 − 4.2 5.8 − 2.4 PSEN 0.1 − 0.1 0.0 0.0 − 0.1 0.1 − 0.1 0.1 MAT − 60.6 − 10.8 − 15.1 − 15.8 115.5 − 5.6 153.8 12.1 KCB − 4.9 − 9.6 − 3.1 − 2.7 1.9 7.6 5.2 10.6 WP 20.0 − 20.0 0.0 0.0 − 16.7 25.0 − 16.7 25.0 HI 20.9 − 20.8 0.0 0.0 − 17.3 26.3 − 17.3 26.3 MCC 0.1 − 21.3 − 3.5 − 3.7 − 3.6 22.4 − 0.1 27.1 CDC − 9.2 3.4 − 4.0 2.8 5.7 − 0.6 10.1 − 3.3 Semi-arid FLO − 6.2 3.8 0.5 − 0.9 7.1 − 4.5 6.6 − 3.7 PSEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MAT − 68.6 − 11.4 − 12.8 − 13.6 177.7 − 2.5 218.5 12.9 KCB − 6.6 − 9.7 − 2.7 − 2.3 4.2 8.2 7.1 10.7 WP 20.0 − 20.0 0.0 0.0 − 16.7 25.0 − 16.7 25.0 HI 20.8 − 20.8 0.0 0.0 − 17.2 26.3 − 17.2 26.3 MCC 1.0 − 23.5 − 3.1 − 3.4 − 4.1 26.3 − 1.0 30.7 CDC − 13.5 3.9 − 3.4 2.2 11.7 − 1.6 15.6 − 3.8 Humid FLO − 4.7 2.3 1.6 − 2.0 6.6 − 4.2 4.9 − 2.2 PSEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MAT − 56.5 − 11.9 − 13.7 − 14.4 98.4 − 2.8 129.9 13.5 KCB − 4.3 − 9.8 − 2.7 − 2.4 1.7 8.2 4.5 10.9 WP 20.0 − 20.0 0.0 0.0 − 16.7 25.0 − 16.7 25.0 HI 20.8 − 20.8 0.0 0.0 − 17.2 26.3 − 17.2 26.3 MCC − 0.4 − 21.4 − 3.6 − 2.6 − 3.2 23.9 0.4 27.2 CDC − 9.4 3.6 − 3.3 2.3 6.7 − 1.3 10.4 − 3.5

Dry sub-humid FLO − 4.9 2.2 1.2 − 1.7 6.4 − 3.8 5.2 − 2.2

PSEN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MAT − 56.9 − 10.7 − 15.1 − 15.7 97.0 − 5.6 132.0 12.0 KCB − 4.4 − 9.6 − 3.0 − 2.5 1.5 7.9 4.6 10.6 WP 19.9 − 20.0 0.0 0.0 − 16.6 25.0 − 16.6 25.0 HI 20.8 − 20.8 0.0 0.3 − 17.2 26.6 − 17.2 26.3 MCC − 0.5 − 21.3 − 3.5 − 3.2 − 3.0 23.0 0.5 27.1 CDC − 9.2 3.4 − 3.8 2.6 5.9 − 0.8 10.1 − 3.3

FLO:growingdegreedaysfromsowingtoflowering,PSEN:upperthresholdofsoilwaterdepletionfactorforcanopysenescence,MAT:totallengthofcrop

cycleingrowingdegree-days,KCB:cropcoefficientwhencanopyiscompletebutpriortosenescence,WP:normalizedwaterproductivity,HI:harvestindex,MCC: maximumcanopycoverinfractionsoilcover,CDC:growingdegreedaydecreaseincanopycover

(11)

focusedonalimitednumberofagriculturalcrops(Chukallaetal.,2015; Zhuoetal.,2016a),weconsideredawiderangeofcommonagricultural andhorticulturalcropscultivatedallovertheworld.

5. Conclusion

GroundwaterplaysacentralroleinIran’sirrigatedagriculture.Of allbluewaterconsumptionintheperiod1980–2010,upto83%was suppliedbygroundwaterresources,withthehighestcontribution typi-callyinthearidzonesofthecountry.WefoundthatIran’sgroundwater resourcesareunderseverestressinthehyper-arid,aridandsemi-arid zones,andundersignificantstressinthehumidzone(Table3). More-over,Iran’saquiferssufferfromseverenitratecontaminationwithinthe semi-aridandhumidzones.Ourfindingsrevealthatcereals,and espe-ciallywheat,makeupthemajorityofgroundwaterconsumption.

Theresultsshowthatsignificantgroundwatersavingsand ground-waterpollutionreductioncanbeachievedwhenfarmerswouldreduce totalblueWFsandgreyGWFsofcropproductiontocertainreasonable benchmarklevels.IfWFsoftheconsidered26cropshadbeenreduced tobenchmarklevelsasdefinedbythe25thbestproductionpercentile, groundwaterconsumptioninIran’scropproductionwouldhavebeen 3.2billionm3 y− 1 lessthantheactualgroundwaterconsumptionin1980 and9.3billionm3 y− 1 lessin2010.Althoughweexpectthemtobe rel-ativelysmall,othergroundwaterconsumingactivitiesnotconsideredin thisstudy(e.g.minorcrops)mayaggravateourconservative ground-waterscarcityestimates.ReducingWFsto25thpercentilebenchmark levelswouldhaveresultedingroundwatersavingsbetween30%and 34%overtheperiod1980–2010.GreyGWFreductionwouldhavebeen 0.7billionm3 y− 1 in1980and1.9billionm3 y− 1 in2010.Overthe pe-riod1980–2010,greyGWFreductionasafractionofthetotalgreyWF wouldhavevariedbetween22%and24%.Thehighestpriorityshould begiventocerealproductioninthearidzone.

Withthis study,we providea narrativefor howtouse WFsand benchmarkingofWFstoassesspotentialwatersavings,potential wa-terpollutionreduction,andpossible economicwaterproductivity in-crease.AlthoughwetookIranasacaseanditsaquifersasanexample, webelievethemethodsputforthinthisstudycanbeappliedtoother regionsandsurfacewaterresourcesaswell.Thisresearchmayserve asanextsteptowardsactualuptakeofWFbenchmarkingintonational waterpolicy.

Acknowledgement

FatemehKarandishwouldliketothanktheUniversityofZabol for financingtheproject(GrantNumber:UOZ_GR_9517_6).

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.advwatres.2018.09.011.

References

Aldaya, M.M. , Garrido, A. , Llamas, M.R. , Varelo-Ortega, C. , Novo, P. , 2010. Water foot- print and virtual water trade in Spain. In: Garrido, A, Llamas, MR (Eds.), Water Policy in Spain. CRC Press, Leiden, pp. 49–59 .

Allen, R.G. , Pereira, L.S. , Raes, D. , Smith, M. , 1998. Crop Evapotranspiration Guidelines For Computing Crop Water requirements-FAO Irrigation and Drainage Paper 56, 300. FAO, Rome 1998 .

Batjes, N.H. , 2012. ISRIC-WISE Global Data Set of Derived Soil Properties on a 5 by 5 Arc-minutes Grid (Version 1.2). Report 2012/01. ISRIC World Soil Information, Wa- geningen, the Netherlands .

Bouwer, H , 1977. Land subsidence and cracking due to ground-water depletion. Ground- water 15, 358–364 .

Brauman, K.A. , Siebert, S. , Foley, J.A. , 2013. Improvements in crop water productivity increase water sustainability and food security: a global analysis. Environ. Res. Lett. 8 024030, 2013 .

Chukalla, A.D. , Krol, M.S. , Hoekstra, A.Y. , 2015. Green and blue water footprint reduc- tion in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19 (12), 4877–4891 .

Chukalla, A.D. , Krol, M.S. , Hoekstra, A.Y. , 2017. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level. Hydrol. Earth Syst. Sci. 21, 3507–3524 . Chukalla, A.D. , Krol, M.S. , Hoekstra, A.Y. , 2018. Grey water footprint reduction in irri- gated crop production: effect of nitrogen application rate, nitrogen form, tillage prac- tice and irrigation strategy. Hydrol. Earth Syst. Sci. 22 (6), 3245–3259 .

Dalin, C. , Wada, Y. , Kastner, T. , Puma, M.J. , 2017. Groundwater depletion embedded in international food trade. Nature 543, 700–704 .

FAO, 2017. FAOSTAT. Food and Agriculture Organization, Rome, Ital .

FAO, 2016. AQUASTAT. Food and Agriculture Organization, Rome, Italy http://www.fao.org/nr/water/aquastat/main/index.stm .

Franke, N. , Boyacioglu, H. , Hoekstra, A. , 2013. Value of Water Research Report Series No. 65. UNESCO-IHE, Delft, the Netherlands .

Ghale, Y.A.G., Baykara, M., Unal, A., 2017. Analysis of decadal land cover changes and salinization in Urmia Lake Basin using remote sensing techniques. Nat. Hazards Earth Syst. Sci. Discuss. https://doi.org/10.5194/nhess-2017-212 .

Hoekstra, A.Y. , 2013. The Water Footprint of Modern Consumer Society. Routledge, Lon- don, UK .

Hoekstra, A.Y. , 2014. Sustainable, efficient, and equitable water use: the three pillars under wise freshwater allocation. Wiley Interdiscip. Rev. 1, 31–40 .

Hoekstra, A.Y. , Chapagain, A.K. , Aldaya, M.M. , Mekonnen, M.M. , 2011. The Water Foot- print Assessment Manual: Setting the Global Standard. Earthscan, London, UK . Hoekstra, A.Y. , Mekonnen, M.M. , 2012. The water footprint of humanity. Proc. Natl. Acad.

Sci. 109 (9), 3232–3237 .

Hoekstra, A.Y. , Mekonnen, M.M. , Chapagain, A.K. , Mathews, R.E. , Richter, B.D. , 2012. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7 (2), e32688 .

Hogeboom, R.J. , Hoekstra, A.Y. , 2017. Water and land footprints and economic produc- tivity as factors in local crop choice: the case of silk in Malawi. Water 9 (10), 802 . Hui-Min, X., Xin-gang, X., Zhen-hai, L., Yi-jin, C., Hai-kuan, C., Gui-jun, Y., Zhao-xia,

C. 2017. Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Hsiao, T.C. , Heng, L. , Steduto, P. , Rojas-Lara, B. , Raes, D. , Fereres, E. , 2009. AquaCrop-the

FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J. 101, 448–459 .

IRIMO, 2016. Iran Meteorological Organization, Tehran, Iran. www.irimo.ir/far . IMAJ 2016 Iran’s Ministry of Agriculture Jihad www.maj.ir .

Karandish, F. , Darzi-Naftchali, A. , Asgari, A. , 2017a. Application of machine-learning models for diagnosing health hazard of nitrate toxicity in shallow aquifers. Paddy Water Environ. 15 (1), 201–215 .

Karandish, F. , Hoekstra, A.Y. , 2017. Informing national food and water security policy through water footprint assessment: The case of Iran. Water 9 (11), 831 .

Karandish, F. , Mousavi, S.S. , 2016. Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis. Theoretical Appl. Climatol. 1–15 .

Karandish, F., Mousavi, S.S., Tabari, H., 2017b. Climate change impact on precipita- tion and cardinal temperatures in different climatic zones in Iran: analyzing the probable effects on cereal water-use efficiency. Stoch. Environ. Res. Risk Assess. https://doi.org/10.1007/s00477-016-1355-y .

Karandish, F. , Š im ů nek, J. , 2018. An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS. Agric. Water. Manage. 208, 67–82 .

Konikow, L.F. , Kendy, E. , 2005. Groundwater depletion: a global problem. Hydrogeol. J. 13, 317–320 .

Madani, K. , 2014. Water management in Iran: what is causing the looming crisis? J. Env- iron. Stud. Sci. 4 (4), 315–328 .

Marston, L. , Konar, M. , Cai, X. , Troy, T. , 2015. Virtual groundwater transfers from over- exploited aquifers in the United States. Proc. Natl. Acad. Sci. 112 (28), 8561–8566 . Mekonnen, M.M. , Hoekstra, A.Y. , 2011. The green, blue and grey water footprint of crops

and derived crop products. Hydrol. Earth Syst. Sci. 15 (5), 1577–1600 .

Mekonnen, M.M. , Hoekstra, A.Y. , 2014. Water footprint benchmarks for crop production: a first global assessment. Ecol. Indic. 46, 214–223 .

Mekonnen, M.M. , Hoekstra, A.Y. , 2016. Four billion people facing severe water scarcity. Sci. Adv. 2 (2), e1500323 .

Mekonnen, M.M. , Hoekstra, A.Y. , Becht, R. , 2012. Mitigating the water footprint of ex- port cut flowers from the Lake Naivasha Basin, Kenya. Water Resour. Manage. 26, 3725–3742 .

Monteny, G.J. , 2001. The EU Nitrates directive: a European approach to combat water pollution from agriculture. Scientific World J. 1, 927–935 .

Naeem, S. , et al. , 2015. Environment and development. Get the science right when paying for nature’s services. Science 347 (6227), 1206–1207 .

Qureshi, M.E. , Reeson, A. , Reinelt, P. , Brozovic, N. , Whitten, S. , 2012. Factors determining the economic value of groundwater. Hydrogeol. J. 20 (5), 821–829 .

Raes, D., Steduto, P., Hsiao, T.C., Fereres, E., 2009. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron J. 101, 438–447. https://doi.org/10.2134/agronj2008.0140s , 2009.

Rahnema, H. , Mirassi, S. , 2014. Crisis management concerning underground water falling and land subsidence occurrence in the plains of Iran. Adv. Environ. Biol. 8 (5), 1453–1465 .

Schyns, J.F. , Hoekstra, A.Y. , 2014. The added value of water footprint assessment for national water policy: a case study for Morocco. PLOS ONE 9 (6), e99705 . Schyns, J.F. , Hoekstra, A.Y. , Booij, M.J. , 2015. Review and classification of indicators of

green water availability and scarcity. Hydrol. Earth Syst. Sci. 19, 4581–4608 . Siebert, S. , Doll, P. , 2010. Quantifying blue and green virtual water contents in global

crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 .

(12)

Siebert, S., Henrich, V., Frenken, K., Burke, J., 2013. Update of the global map of irrigation areas to version 5. University of Bonn/FAO, Bonn, Germany / Rome, Italy, p. 178. https://doi.org/10.13140/2.1.2660.6728 .

Steduto, P. , Hsiao, T.C. , Raes, D. , Fereres, E. , 2009. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101, 426–437 .

Wada, Y. , van Beek, L.P.H. , Bierkens, M.F.P. , 2012. Nonsustainable groundwater sustain- ing irrigation: a global assessment. Water Resour. Res. 48 (6) W00L06 .

WRM 2016. Iran water resources management company http://www.wrm.ir/ . Zhuo, L. , Mekonnen, M.M. , Hoekstra, A.Y. , 2014. Sensitivity and uncertainty in crop water

footprint accounting: a case study for the Yellow River Basin. Hydrol. Earth Syst. Sc. 18 (6), 2219–2234 .

Zhuo, L. , Mekonnen, M.M. , Hoekstra, A.Y. , Wada, Y. , 2016a. Inter- and intra-annual vari- ation of water footprint of crops and blue water scarcity in the Yellow River Basin (1961–2009). Adv. Water Resour. 87, 21–41 .

Zhuo, L. , Mekonnen, M.M. , Hoekstra, A.Y. , 2016b. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China. Hydrol. Earth Syst. Sci. 20 (11), 4547–4559 .

Zwart, S.J. , Bastiaanssen, W.G.M. , de Fraiture, C. , Molden, D.J. , 2010. A global benchmark map of water productivity for rainfed and irrigated wheat. Agric. Water Manage. 97, 1617–1627 .

Referenties

GERELATEERDE DOCUMENTEN

Emery and Simons (2001) found that exposure to westernisation was a good predictor of' dicling status, and Miller and Pumaricga (2001) recently indicated evidence o l

There is a real irony in this situation, for our vision of an effective mental health service does not involve vast numbers of trained psychological therapists, but a programme

This conclusion was backed up by the authors’ observations in two maintenance depots (i.e., Leidschendam and Haarlem, NL), and was asserted by maintenance technicians

These results validate the newly developed Tandem Electrospinning method to create an in vitro platform that exhibits nanofibre topographical guidance cues and selective

To evaluate the effects of the CAHE-training on PCNPs attitudes towards cultural specific care and intended behavior change, the participants were requested to fill out

We can look at BCI as a means to process brain activity information (from EEG) that has to be integrated with information that is obtained simultaneously from other input

b,d,f: Average level of muscle activity and standard deviations (μV) during treadmill walking (left panel) and Lokomat guided walking (right panel), for the affected limb (black

The purpose of the present study was to inves- tigate the effects of three different cadences, 52, 60, and 70 rpm, and three resistance settings, +0 W, +10 W, and +20 W, on both