• No results found

On sufficient spectral radius conditions for hamiltonicity of k-connected graphs

N/A
N/A
Protected

Academic year: 2021

Share "On sufficient spectral radius conditions for hamiltonicity of k-connected graphs"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Linear

Algebra

and

its

Applications

www.elsevier.com/locate/laa

On

sufficient

spectral

radius

conditions

for

hamiltonicity

of

k-connected

graphs

Qiannan Zhoua,b, Hajo Broersmab,∗, Ligong Wanga, Yong Luc aSchoolofMathematicsandStatistics,NorthwesternPolytechnicalUniversity,

Xi’an,Shaanxi710129,People’sRepublicofChina

b

FacultyofEEMCS,UniversityofTwente,P.O.Box217,7500AEEnschede, the Netherlands

cSchoolofMathematicsandStatistics,JiangsuNormalUniversity,Xuzhou,

Jiangsu221116,People’sRepublicofChina

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received20December2019 Accepted11June2020 Availableonline20June2020 Submittedby S.M.Cioaba MSC: 05C50 05C45 05C40 Keywords: k-Connected Hamiltonian Traceable Spectralradius

In this paper, we present two new sufficient conditions on thespectralradiusρ(G) thatguaranteethehamiltonicityand traceability of a k-connected graph G of sufficiently large order,respectively,unlessG isaspecifiedexceptionalgraph. Inparticular,ifk≥ 2,n≥ k3+k+2,andρ(G)> n−k−11

n, then G is hamiltonian, unless G is a specified exceptional graph.Ifk≥ 1,n≥ k3+ k2+ k + 3,andρ(G)> n− k − 21

n, thenG istraceable,unlessG isaspecifiedexceptionalgraph. ©2020TheAuthors.PublishedbyElsevierInc.Thisisan openaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Researchsupportedbythe NationalNaturalScienceFoundationof China(No.11871398,11901253),

theNatural ScienceBasicResearchPlaninShaanxiProvinceofChina(Program No.2018JM1032),the FundamentalResearch Funds forthe CentralUniversities (No.3102019ghjd003), the ChinaScholarship Council(No.201806290178)andtheNaturalScienceFoundationforCollegesandUniversitiesinJiangsu ProvinceofChina(No.19KJB110009).

* Correspondingauthor.

E-mailaddresses:qnzhoumath@163.com(Q. Zhou),h.j.broersma@utwente.nl(H. Broersma),

lgwangmath@163.com(L. Wang),luyong@jsnu.edu.cn(Y. Lu).

https://doi.org/10.1016/j.laa.2020.06.012

0024-3795/©2020TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

1. Introduction

We usethe textbook of Bondyand Murty [3] for any terminologyand notation not definedhere.Throughoutthis paper,weconsideronlyfinite undirectedsimplegraphs.

Let G= (V (G),E(G)) beagraphwithvertex set V (G) andedge setE(G).We use

n(G) =|V (G)| to denote the order of G, and e(G) = |E(G)| to denote the size of G.

For X⊆ V (G),theinducedsubgraphG[X] isthesubgraphofG whose vertexset isX

and whoseedgeset consistsofalledgesofG whichhavebothends inX.Forv∈ V (G)

and subgraphs H and R of G, we let NH(v) and NH(R) denotethe neighbors of the vertex v and the subgraph R in H, thatis, NH(v) = {u ∈ V (H) | uv ∈ E(G)} and

NH(R)= (u∈V (R)NH(u))\ V (R).WhenH = G, |NH(v)| is called thedegree of the vertex v, simply written as d(v). Denote by δ(G) the minimum degree of G. For two subsets S and T of V (G), we say S isadjacent to T if every vertex of S is adjacent to every vertex of T . Let Puv and Pwz be two disjoint paths. Denote by Puv



Pwz a path obtainedfrom Puv and Pwz byjoiningv and w with anedge. Aconnected graph

G is saidto be k-connected (or k-vertex connected)if ithas morethan k verticesand

remains connectedwheneverfewer thank vertices areremoved.Theconnectivityκ(G)

ofG isthemaximumvalueofk forwhichG isk-connected.Theindependencenumberof

G,denotedbyα(G),isthecardinalityofalargestindependent(mutuallynonadjacent) set of vertices. Denote by ω(G) the clique number of G, that is, the cardinality of a largest clique, i.e., a set of mutually adjacent vertices. For two graphsG1 and G2, we useG1+ G2todenote thedisjoint unionofG1 andG2,andG1∨ G2 todenotethejoin of G1 and G2.

For a graph G with vertex set {v1,v2,. . . ,vn}, the adjacency matrix A(G) is the symmetric n× n matrix with entries A(i,j)= 1 if and onlyif vivj ∈ E(G) and zeros elsewhere.Thelargest eigenvalueofA(G) iscalled thespectral radiusofG,denotedby

ρ(G).

Agraphishamiltonian(traceable)ifitcontainsaHamiltoncycle(Hamiltonpath),i.e., acycle(path)containingallverticesofG.Decidingwhetheragivengraphishamiltonian (traceable) is an NP-complete problem.Many graph theorists have focused on finding sufficientconditionsfortheexistenceofaHamiltoncycle(orpath).In2010,Fiedlerand Nikiforov[6] gavesomeboundsonρ(G) thatimplytheexistenceofHamiltoncyclesand pathsinG.Thisworkmotivatedfurtherresearch,asin[1,10,12,13,15,16,18].

For graphs with minimum degree δ(G) ≥ k, Nikiforov [15] presented the following resultonthespectralradiusguaranteeingthehamiltonicityofG.

Theorem1.1([15]). LetG beagraph ofordern withδ(G)≥ k.Ifk≥ 2,n≥ k3+ k + 4

and ρ(G) ≥ n− k − 1, then G is hamiltonian unless G = K1 ∨ (Kn−k−1 + Kk) or

G= Kk∨ (Kn−2k+ kK1).

Recently, Ge and Ning [7] showed that the statement in the abovetheorem due to Nikiforovalsoholdsfork≥ 1 andn≥ max{21k3+ k +52,6k + 5}.

(3)

ForthetraceabilityofG,LiandNing[10] obtainedthefollowing resultinvolvingthe spectralradius.

Theorem1.2([10]). LetG beagraphof ordern withδ(G)≥ k.If k≥ 0,n≥ max{6k +

10,(k2+ 7k + 8)/2} and ρ(G) ≥ ρ(K

k ∨ (Kn−2k−1+ (k + 1)K1)), then G is traceable

unless G= Kk∨ (Kn−2k−1+ (k + 1)K1).

Recently, for graphs with connectivity κ and minimum degree δ, Li [11] presented thefollowingsufficientconditionsonthespectralradiusimplyingthehamiltonicityand traceabilityofG,respectively.

Theorem1.3([11]). LetG be agraphof order n≥ 3 withconnectivity κ≥ 2.If ρ(G)≤ δ

 κ+1

n−κ−1,thenG ishamiltonian orG isKκ,κ+1.

Theorem 1.4 ([11]). Let G be a graph of order n ≥ 12 with connectivity κ ≥ 1. If

ρ(G)≤ δ κ+2

n−κ−2,thenG is traceableorG isKκ,κ+2.

In this paper, we present new sufficient conditions based onthe spectral radius for the hamiltonicity and traceability of k-connected graphs. Since being k-connected is a stronger condition than having minimum degree at least k, our motivation was to improve on the bounds for ρ(G) in Theorems 1.1 and 1.2. Obviously, we still haveto excludeKk∨ (Kn−2k+ kK1) andKk∨ (Kn−2k−1+ (k + 1)K1),respectively,sincethese graphsarek-connected.

Before stating our results, we introduce some families of graphs based on the two exceptionalgraphsKk∨(Kn−2k+ kK1) andKk∨(Kn−2k−1+ (k + 1)K1).Forn≥ 2k +1, wedefine

G1n,k= Kk∨ (Kn−2k+ kK1).

Forn ≥ 2k + 2,we startwith agraph consisting ofvertex-disjoint graphskK1 and

Kn−k−1,andanadditionalnewvertexv,andweletV (kK1)= X andV (Kn−k−1)= Y . WechooseY2⊆ Y with|Y2|= k.Now,weletG2n,k denotethegraphobtainedfrom this

kK1+ Kn−k−1+{v} byjoiningX toY2,andv toY2andanarbitraryvertexinX (see thegraphsketchedintheleft partofFig.1).Wealso define G3

n,k = Kk∨ (Kn−2k−1+ (k + 1)K1).

Forn≥ 2k+3,westartwithagraphconsistingofvertex-disjointgraphs(k+1)K1and

Kn−k−1,and weletV ((k + 1)K1)= X and V (Kn−k−1)= Y . WechooseX1⊆ X with

|X1|= k,andX2= X\X1,sowith|X2|= 1,andY1⊆ Y with|Y1|= k,andY2⊆ Y \Y1

with |Y2| = 1.Now, we let Gn,k4 denote thegraphobtained from (k + 1)K1+ Kn−k−1 byaddingedgesfrom X toY1andX2toY2(see thegraphsketchedintherightpartof Fig.1).WealsodefineGn,k5 = Kk+1∨ (Kn−2k−2+ (k + 1)K1).

(4)

Fig. 1. Some of the graphs appearing in our proofs.

Additionally, we denote by G1n,k,G2n,k,G3n,k,G4n,k,G5n,k the graphs obtained from

G1n+1,k+1, G2n+1,k+1,G3n+1,k+1,G4n+1,k+1,G5n+1,k+1 by deleting onevertex of degree n,

respectively,i.e.,

G1n,k = Kk∨ (Kn−2k−1+ (k + 1)K1),

G3n,k = Kk∨ (Kn−2k−2+ (k + 2)K1),

G5n,k = Kk+1∨ (Kn−2k−3+ (k + 2)K1).

One easilychecks thatG2n,k is(again)the leftgraphinFig.1with |X|= k + 1,|Y | =

n−k−2,and|Y2|= k.Similarly,G4n,kis(again)therightgraphinFig.1with|X|= k+2,

|X1|= k + 1,|Y |= n− k − 2,and|Y1|= k.

InSection3,weprovethefollowingtwomain results.

Theorem 1.5.Let G be a k-connected graph of order n≥ k3+ k + 2, where k ≥ 2. If

ρ(G)> n− k − 1−n1,then G ishamiltonian, unless G= G1

n,k. NotethattheexceptionalgraphG1

n,kintheabovetheoremispreciselythek-connected graphKk∨ (Kn−2k−1+ (k + 1)K1) thatwasexcludedintheconclusionofTheorem1.1. Theconditionρ(G)> n−k −1−1n intheabovetheoremlooksbetterthanthecondition

ρ(G) > n− k − 1 in Theorem 1.1, but one should note the different meaning of k:

Theorem 1.1involves graphswithminimum degreeat leastk,whereastheaboveresult dealswithk-connected graphs.Inthissense,thetworesultsareincomparable.

Theorem 1.6. LetG be ak-connected graph of ordern≥ k3+ k2+ k + 3, wherek≥ 1.

If ρ(G)> n− k − 2−n1,then G istraceable, unlessG= G1n,k.

Similar remarks pertain to the comparison of the abovetheorem and Theorem 1.2. The exceptional graph G1n,k in the above theorem is precisely the k-connected graph

(5)

Kk∨ (Kn−2k−1+ (k + 1)K1) thatwasexcludedintheconclusionof Theorem1.2. The conditionsonρ(G) inthetworesultsareincomparable,inthesensethatk inourresult refersto k-connectedgraphs,whereask inTheorem 1.2referstographswith minimum degreeatleastk.

Therest of the paper isorganized as follows. InSection 2, we will givesome useful techniquesand lemmasthatwillbe usedinourproofs. InSection3,wepresentseveral othernecessary lemmas,togetherwithourproofsofTheorems1.5 and1.6.

2. Preliminaries

We start this section by introducing a techniquebased on the concept of equitable partitions.Let M be asymmetric real n× n matrix. Therows and columns of M are

indexed byX = {1,. . . ,n}.Supposeπ = {X1,. . . ,Xm} is a partitionof X.Let M be partitionedaccordingto{X1,. . . ,Xm},i.e.,

M = ⎛ ⎜ ⎝ M11 . . . M1m .. . ... Mm1 . . . Mmm ⎞ ⎟ ⎠ ,

where Mij denotes theblock of M formed by therows in Xi and the columns in Xj. Let bij = 1

T

Mij1

|Xi| , i.e., the average row sum of Mij, where 1 is the column vector (of

thecorrectdimension)withallentries equalto 1.ThenthematrixM/π = (bij)m×m is called the quotientmatrix of M . If therow sumof eachblock Mij is aconstant, then thepartitioniscalled equitable.

The following lemma shows that equitable partitions can provide a simple way to calculateeigenvalues.

Lemma 2.1 ([8]).Let G be a graph, and let π be an equitable partition of G. Then ρ(G)= ρ(A(G))= ρ(A(G)/π).

TheconceptoftheclosureofagraphwasintroducedbyBondyandChvátal[2].The

k-closureofagraphG isdenotedbyclk(G),andistheuniquegraphthatcanbeobtained

from G by recursivelyjoiningnonadjacent vertices withdegree sumat leastk until no suchpairremainsinthecurrent graph.Whenk = n, weusecl(G) insteadof cln(G).A graphiscalled closedifG= cl(G).

Lemma2.2([2]).A graph G ishamiltonianif andonlyif cl(G) ishamiltonian.

Thenextlemmais oneof thegeneralizationsofDirac’stheorem dueto Chvátaland Erdős.

(6)

Sinceweconsiderhamiltonicity(andtraceability)ofk-connectedgraphs,wecanmake use of Lemma2.3 (and its counterpart for traceable graphs) ifwe are ableto use the conditions on ρ(G) to obtain upper bounds on the independence number of G in our proofs. This is the main difference between our approachand the appliedmethods in [15] and[10].

Wewill alsofrequentlyusethefollowing knownlemmasinvolving ρ(G).

Lemma 2.4 ([4,8]). LetG be aconnected graph. If H is asubgraph of G, thenρ(H)

ρ(G), withstrict inequalityin caseH isaproper subgraphofG.

Lemma 2.5([14]). LetG beagraph on n vertices andm edgeswith minimum degree δ.

Then ρ(G)≤ δ−12 +



2m− nδ +(δ+1)4 2.

Inconjunction withLemma2.5,we alsousethefollowing property.

Lemma 2.6 ([9,14]). Fornonnegative integers p and q with 2q≤ p(p− 1) and 0≤ x

p− 1, thefunctionf (x)= x−12 +



2q− px +(x+1)4 2 isdecreasingwith respecttox.

3. Theproofsofourresults

In this section, we first give two results involving alower bound on the numberof edges, the first of which is known and implies a lower bound on the clique number. This is then used inthesecond result to characterizeexceptional, i.e., nonhamiltonian

k-connected graphsmeeting the conditions, which is oneof the key ingredients of our

proofofTheorem1.5.Theproofiscompletedbydeterminingupperboundsonρ(G) for

(subgraphsof)theexceptionalgraphs,thecontentofLemma3.3below.Forourproofof Theorem 1.6,we takeasimilarapproachandneedacounterpartofTheorem 3.2below ontraceability.

From Lemma 1in[10],wehavethefollowing lemma.

Lemma 3.1.Let G be a closed graph of order n ≥ 6k + 11, where k ≥ 0. If e(G) >

n− k − 2

2

+ (k + 2)2,thenω(G)≥ n− k − 1.

Using theabove,wecanprovethefollowingstructure theorem.

Theorem 3.2. Let G be a k-connected graph of order n ≥ 6k + 11, where k

2. If e(G) >

n− k − 2

2

+ (k + 2)2, then G is hamiltonian unless cl(G)

{G1

n,k,G2n,k,G3n,k,G4n,k,G5n,k}.

Proof. LetH = cl(G).IfH ishamiltonian,thensoisG byLemma2.2.Now,weassume thatH isnothamiltonian.NotethatH isk-connectedande(H)≥ e(G).ByLemma3.1,

(7)

wehaveω(H)≥ n−k −1.Weclaimthatω(H)≤ n−k.Infact,ifω(H)≥ n−k +1,then

α(H)≤ k. Then, byLemma2.3,H is hamiltonian, whichcontradicts ourassumption.

Notethatδ(G)≥ κ(G)≥ k.Nextwe distinguishtwocases.

Case 1. ω(H)= n− k.

Inthis case,we have α(H)= k + 1. Set V (H) = X∪ Y , where X∩ Y = ∅, |X| = k,

|Y |= n− k,H[Y ]= Kn−k andX togetherwithonevertex inY ,sayw,isamaximum

independentset inH.Note thatδ(H)≥ κ(H)≥ k.From thefactthatH isclosed and

dH(w)= n− k − 1,wehavedH(x)= k foreveryx∈ X.LetF ⊆ Y betheneighborsof

X inY .Obviouslyw /∈ F .Theneveryvertex inF isadjacenttoeveryvertexinX,and hence|F |= k.SoH = Kk∨ (Kn−2k+ kK1)= G1n,k.

Case 2. ω(H)= n− k − 1.

Inthiscase,wehaveα(H)= k + 1 ork + 2.Wediscussthese twosubcasesseparately. Subcase 2.1 α(H)= k + 1.

Wefirstconsider thesituationthatV (H) canbedividedintotwosubsets,i.e.,V (H)=

X∪ Y , such thatX ∩ Y = ∅, |X| = k + 1, |Y | = n− k − 1, H[X] = (k + 1)K1 and

H[Y ]= Kn−k−1.Inthissituation,eachvertexofY mustbeadjacenttosomevertexin

X;otherwiseα(H)= k + 2.Set Y = Y1∪ Y2 suchthateachvertex of Y1 hasonlyone neighborinX andeach vertex ofY2 hasat leasttwo neighborsinX.Recall thatH is closed.IfY1=∅,thenH = Kn−k−1∨ (k + 1)K1, whichishamiltonian,acontradiction. IfY2=∅,thenobviouslyH hasaHamiltoncycle,acontradiction.Next,letY1 = ∅ and

Y2 = ∅.ThendH(y)= n− k − 1 fory∈ Y1,andY2isadjacenttoX sincedH(y)≥ n− k

fory∈ Y2.DenotebyX1 theneighborsetofY1 inX,andletX2= X\ X1.If|X1|≥ 2, thendH(x)= k forx∈ X1;otherwise Y1 will beadjacent toX1, andeachvertex ofY1 hasmorethanoneneighborinX.Then wehave|Y2|≤ k − 1 andhencedH(x)≤ k − 1 forx∈ X2,acontradiction.If|X1|= 1,thenthevertexx∈ X1isadjacentto Y ,which meansω(H)= n− k, acontradiction.

TheothersituationisthatV (H)= X∪ Y ∪ {v},suchthatX∩ Y ∩ {v}=∅,|X|= k,

|Y | = n− k − 1, H[Y ] = Kn−k−1, and X together with onevertex of Y , say w, is a

maximumindependentsetinH.Weusethesamenotationsasinthefirstsituation.We deducethat v is adjacentto Y2, andthatv must be adjacentto at least onevertex in

X;otherwiseα(H)= k + 2.

We first assume v is also adjacent to Y \ {Y1∪ Y2}, that is to say, all possible w have degreen− k − 1. Then dH(x) = k for all x ∈ X. In this case, we have Y1 = ∅; otherwise v is adjacent to Y and ω(H) = n− k, and hence X1 = ∅. If X2 = ∅, then

|Y2|= k− 1,v isadjacenttoX2,andeachvertexofX1hasexactlyoneneighborinY1. Hence|Y1|=|X1|≤ k − 1.Suppose|X1|= a≥ 1 and|X2|= b≥ 1,wherea+ b= k.We useG1todenotethegraphwhenv hasnoneighborsinY\(Y1∪Y2) (see theleftgraphof Fig.2).Obviously,wehaveG1⊆ H.LabeltheverticesofG1asx11,. . . ,x1a;x21,. . . ,x2b;

y11,. . . ,y1a;y21,. . . ,y2a,y31,. . . ,y3,b−1;y41,. . . ,y4c (see theleftgraphofFig.2),where

(8)

Fig. 2. The graphs G1and G2from the proof.

y31x21· · · y3,b−1x2,b−1vx2b and Q4 = y2,a−1y2ay14· · · y1ay41· · · y4cy11. Then



4i=1Qi is

aHamilton cycle.HenceH is alsohamiltonian,acontradiction.If X2=∅,then|Y2|≤

k− 2. Indeed, if |Y2| ≥ k − 1, then either v has no neighbors in X1 or the vertices in X1 have degree more than k, both leading to a contradiction. Suppose |Y2| = t. Then each x ∈ X1 \ NH[X1](v) has k− t neighbors in Y1, and each x ∈ NH[X1](v)

has k− t− 1 neighbors in Y1. When t = k− 2, we use G2 to denote the graph if v

has no neighborsin Y \ (Y1∪ Y2) (see the right graphof Fig. 2). Obviously, G2 ⊆ H. Label the vertices of G2 as x11,. . . ,x1a; x21,. . . ,x2b; y111 ,y112 ,. . . ,y11a,y1a2 ; y121,. . . ,y2b1;

y31,. . . ,y3,b−2,y41,. . . ,y4a;y51,. . . ,y5c,wherea≥ 1,b≥ 1,a+ b= k andc= n− 3k −

a+ 1.LetQ1= y111x11y112 · · · y11ax1ay1a2 ,Q2= y121x21y31· · · x2,b−2y3,b−2x2,b−1vx2by2b1 and

Q3 = y122· · · y2,b−11 y41· · · y4ay51· · · y5cy111 (see the right graphofFig.2).Then



3i=1Qi

isaHamiltoncycleofG2.HenceH isalsohamiltonian,acontradiction.Whent≤ k −3, we have thateach vertex of X1 has at least two neighbors in Y1. Obviously, H has a Hamilton cycle,acontradiction.

Next,weassumethatthereexistsavertexw suchthatitsdegreeisn− k − 2,i.e., v

is notadjacentto w.Inthiscase,dH(x)= k or k + 1 forx∈ X.

If Y1 = ∅, then X1 = ∅. If dH(x) = k + 1 for all x ∈ X2, then |Y2| = k, and v is adjacent to X2. Then we can easily find a Hamilton cycle inH, a contradiction. If

dH(x)= k forallx∈ X2,then|Y2|= k− 1 (k ≥ 2) andagainv isadjacenttoX.Hence

dH(v) ≥ 2k − 1. We see that v must have at least one neighbor in Y \ Y2; otherwise

κ(H)= k− 1.NowdH(v)≥ 2k anddH(v)+ dH(w)≥ 2k + n− k − 2= n+ k− 2≥ n,

whichmeansv isadjacenttoY \ Y2,acontradiction.IfsomeverticesinX2havedegree

k and someverticesinX2 havedegreek + 1,then|Y2|= k,andtheverticesinX2with

degree k + 1 are adjacent to v. In this case, ifv has aneighbor inY \ Y2 or v hasat least twoneighborsinX,thenH isobviously hamiltonian,acontradiction.Ifv hasno neighborinY \ Y2and hasonlyoneneighborinX,thenH = G2n,k.

(9)

IfY2=∅,itiseasytoseethatH ishamiltonian,acontradiction.

IfY1 = ∅ andY2 = ∅,when X2 = ∅,then dH(x)= k forx∈ X2 sincetheverticesin

X2 have noneighborsinY1. If |Y2|= k, then ontheonehand, there isno neighborof

v inX2;otherwiseits neighborwillbe adjacentto Y1. Ontheother hand,v cannotbe adjacenttoanyx∈ X1;otherwisedH(x)= k + 2,acontradiction.Therefore,|Y2|= k−1 andhence,X2isadjacenttov.Inthiscase,everyvertexinX1hasaone-to-oneneighbor inY1.Also,v mustbeadjacenttoatleastonevertexinY\(Y1∪Y2);otherwiseY2willbe acutsetofH.NowweconcludethatG1⊆ H.Bytheformerproof,weobtainthatH is hamiltonian,acontradiction.WhenX2=∅,thenforx∈ X1,wehavedH(x)= k.Wecan obtainthat|Y2|≤ k − 2.Let|Y2|= t.DenotebyX11= NH[X1](v) andX12= X1\ X11.

Then each vertex of X11 has k− t− 1 neighbors in Y1, and each vertex of X12 has

k− t neighborsinY1.Obviously, whent≤ k − 3,everyvertexinX1 hasmorethantwo

neighbors in Y1, and it is easy to find a Hamilton cycle inH, a contradiction. When

t= k− 2,weobtainthatG2⊆ H.Then,bytheformerproof, H isalso hamiltonian,a contradiction.

Subcase 2.2 α(H)= k + 2.

SetV (H)= X∪ Y ,where X∩ Y = ∅,|X|= k + 1, |Y |= n− k − 1,H[Y ]= Kn−k−1,

andX togetherwithonevertexinY ,sayw,isamaximumindependentsetinH.Since

dH(w)= n− k − 2,weknowthatdH(x)= k ork + 1 forx∈ X.LetX1⊆ X be theset,

eachvertexofwhichhasdegreek,andletX2= X\ X1 betheset,eachvertexofwhich hasdegreek + 1. DenotebyY1theneighborsofX1 inY , andY2= NH[Y ](X2)\ Y1.

Thefirstsituationweconsider isthatX1=∅.ThenX isadjacentto Y2, and|Y2|=

k + 1.HenceH = Kk+1∨ (Kn−2k−2+ (k + 1)K1)= G5n,k.

The second situation we consider is that X1 = ∅ and X2 = ∅. Firstly, Y1 is ad-jacent to X2 since dH(y) ≥ n− k − 1 for y ∈ Y1. So, now every vertex of Y1 has at least two neighbors in X, and hence dH(y) ≥ n− k for y ∈ Y1. Then every ver-tex inX1 is adjacent to every vertex in Y1, and hence |Y1| = k. Then every x ∈ X2 has a one-to-one neighbor in Y2, hence |X2| = |Y2|. When |X2| = |Y2| = 2, label thevertices of H asx1,x2,. . . ,xk+1;y0,y1,. . . ,yk+1;y11,y12,. . . ,y1,n−2k−3 (see Fig. 3 (1)).Let Q1= y0xkyky11y12. . . y1,n−2k−3yk+1xk+1,Q2 = y1x1y2x2. . . yk−1xk−1y0. Ob-viously P = Q1



Q2 is a Hamilton cycle, a contradiction. If |X2| = |Y2| ≥ 3, label the vertices of H as x11,. . . ,x1a; x21,. . . ,x2b; y11,. . . ,y1a, y1,a+1,. . . ,y1,a+b−1;

y21,. . . ,y2b;y31,. . . ,y3,n−2k−b−1(see Fig.3(2)),where |X1|= a, |X2|= b≥ 3,a+ b=

k + 1. Let Q1 = y11x11. . . y1ax1a. If b is even, let Q2i = y1,a+ix2,2i−1y2,2i−1y2,2ix2,2i

(1 ≤ i 2b) and Q3 = y1,b

2+1. . . y1,a+b−1y31. . . y3,n−2k−b−1. Then we obtain a

Hamilton cycle Q1



(



b/2i=1Q2i)



Q3y11, a contradiction. If b is odd, let Q3 =

y1,b−1

2 +1x2by2by1,b−12 +2. . . y1,a+b−1y31. . . y3,n−2k−b−1.Thenwe obtainaHamilton cycle

Q1



(



(bi=1−1)/2Q2i)



Q3y11, acontradiction.When|X2|=|Y2|= 1,H = G4n,k. The thirdsituation we consider is that X2 =∅. Then Y2 = ∅.Set Y1 = Y11∪ Y12, whereY11isthesetofverticeswithonlyoneneighborinX,andY12isthesetofvertices withat leasttwoneighborsinX.LetY3= Y \ Y1,i.e., Y3 istheset ofvertices withno

(10)

Fig. 3. The graph H from the proof.

neighborinX.Obviouslyw∈ Y3,dH(y)= n− k − 1 fory∈ Y11 anddH(y)≥ n− k for

y ∈ Y12.

If Y11 = ∅, then it is easy to see that X is adjacent to Y12, |Y12| = k, and hence

H = Kk∨ (Kn−2k−1+ (k + 1)K1)= G3n,k.

IfY12=∅,thenobviouslyH ishamiltonian,acontradiction.

If Y11 = ∅ and Y12 = ∅, then |Y11|+|Y12| ≥ k + 1, and X is adjacent to Y12. Let

|Y11|= a.Then1≤ a≤ k+1.If1≤ a≤ k,then|Y12|= k andeachvertexinNH[X](Y11)

hasdegreek + 1,acontradiction.Soa= k + 1,i.e., everyvertex inX has aone-to-one neighborinY11, whichleadsto |Y12|= k− 1.Ifk + 1 is even,then labeltheverticesof

H as x1,x2,. . . ,xk+1; y11,y12,. . . ,y1,k+1; y21,. . . ,y2,k+1

2 ,y2,

k+3

2 ,. . . ,y2,k−1;y31,. . . ,y3b

(see Fig.4(3)),whereb= n−3k−1.LetQi= y1,2i−1x2i−1y2,ix2iy1,2i(i= 1,2,. . . ,k+12 ) and let Q= y2,k+3

2 . . . y2,k−1y31y32. . . y3b. Then (



k+1

2

i=1 Qi)



Qy11 isaHamilton cycle inH,acontradiction.

If k + 1 is odd, label the vertices of H as x1,x2,. . . ,xk+1;y11,y12,. . . ,y1,k+1;

y21,. . . ,y2,k

2,y2,

k

2+1,. . . ,y2,k−1;y31,. . . ,y3b (see Fig. 4 (4)), where b = n− 3k − 1.

Let Q = y1,k+1xk+1y2,k 2+1y2, k 2+2. . . y2,k−1y31y32. . . y3b. Then (



k 2 i=1Qi)



Qy11 is a Hamilton cycleinH,acontradiction. 

TocompleteourproofofTheorem1.5,wealsoneedthefollowingresultonthespectral radius.

Lemma 3.3. Let G be a graph of order n with minimum degree δ(G) ≥ k, where n k3+ k + 2 andk≥ 2.

(11)

Fig. 4. The graph H from the proof.

(ii) IfG∈ {G2

n,k,G3n,k,G4n,k,G5n,k},thenρ(G)< n− k − 1−n1.

Proof. (i)ForG1n,k = Kk∨(Kn−2k+ kK1),letX bethesetofverticeswithdegreek,let

Y bethesetofneighborsofX,andletZ betheremainingsetofn−2k vertices.Assume that G is a proper subgraph obtained from G1

n,k by deleting one edge uv ∈ E(G1n,k). According to the proof of Theorem 1.6 in [15], we know that there are three possible cases,and thatthecase withu,v∈ Z yields thelargest spectral radius. It is sufficient toproveρ(G)< n− k − 1−n1 forthiscase.

Let us consider the following partition π of V (G) in X1 = X, X2 = Y , X3 = Z\

{u,v},andX4={u,v}.Itiseasytocheckthatthispartitionisequitable,andthatthe correspondingadjacency matrixofthequotientmatrixofG isasfollows:

A(G/π) = ⎛ ⎜ ⎜ ⎜ ⎝ 0 k 0 0 k k− 1 n − 2k − 2 2 0 k n− 2k − 3 2 0 k n− 2k − 2 0 ⎞ ⎟ ⎟ ⎟ ⎠.

ByusingtheLaplaceexpansionforthecalculationofthedeterminant,weobtainthe followingcharacteristicpolynomialofA(G/π).

f1(x) = x4+ (k− n + 4)x3+ (−k2+ 3k− 3n + 7)x2

+ (2k− 2n + k2n− 3k2− 2k3+ 4)x + 2k2n− 4k2− 4k3.

Then we canobtain the following derivatives of f1(x) with respect to x, by standard analysis:

(12)

f1(x) = 4x3+ 3(k− n + 4)x2+ 2(−k2+ 3k− 3n + 7)x + 2k − 2n + k2n− 3k2− 2k3+ 4,

f1(2)(x) = 12x2+ 6(k− n + 4)x + 2(−k2+ 3k− 3n + 7),

f1(3)(x) = 24x + 6(k− n + 4),

f1(4)(x) = 24.

Bysubstitutionand simplebuttediouscalculations,weobtain

f1(n− k − 1 − 1 n) = n 2− (k3+ k + 2)n +k3+ k2− 3k + 2 n + 2k2− 2 n2 + 3k n3 + 1 n4 + k4− k3− 2k2+ 2k > n2− (k3+ k + 2)n + k4− k3− 2k2+ 2k = g1(n)≥ 0,

whereg1(x)= x2− (k3+ k + 2)x+ k4− k3− 2k2+ 2k.Forthelastinequality,obviously, the functiong1(x) isstrictly increasingwhenx≥ k3+ k + 2.Usingn≥ k3+ k + 2,we obtaing1(n)≥ g1(k3+ k + 2)= k4− k3− 2k2+ 2k≥ 0. f1(n− k − 1 − 1 n) = n 3− 3kn2+ (2k2− 3)n − 4k2− 7 n 9k n2 4 n3 − k 3− k2+ 9k− 2 = g2(n)≥ g2(k3+ k + 2) = k9+ 6k6− k5+ 8k3− 3k2+ 6k− 4k 2− 7 k3+ k + 2 9k (k3+ k + 2)2 4 (k3+ k + 2)3 ≥ k9+ (6k6− k5) + (8k3− 3k2) + 6k3 4 1 8 1 432 > 0, where g2(x)= x3− 3kx2+ (2k2− 3)x−4k 2−7 x 9k x2 x43− k3− k2+ 9k− 2.Forthefirst

inequality,thefirstderivativeofg2(x) isg2(x)= 3x2− 6kx+ 2k2− 3+4k

2−7

x2 +18kx3 +12x4.

Sinceg2(x)≥ g2(k3+ k + 2)= 3k6+ 12k3−k2+ 9+ 4k2−7

(k3+k+2)2+(k3+k+2)18k 3+(k3+k+2)12 4 > 0

forx≥ k3+ k + 2,weobtainthatg

2(x) isstrictlyincreasingwhenx≥ k3+ k + 2.Using

n≥ k3+ k + 2,wehaveg 2(n)≥ g2(k3+ k + 2). f1(2)(n− k − 1 − 1 n) = 6n 2− 12kn +18k n + 12 n2 + 4k 2− 16 > 6n2− 12kn + 4k2− 16 = g3(n) > 0,

(13)

where g3(x) = 6x2 − 12kx+ 4k2− 16. For the last inequality, it is easy to see that

g3(x) is strictly increasing when x ≥ k3 + k + 2. Using n ≥ k3 + k + 2, we obtain

g3(n)≥ g3(k3+ k + 2)= 6k6+ 24k3− 2k2+ 8> 0. f1(3)(n− k − 1 − 1 n) = 6(3n− 4 n− 3k) > 0. f1(4)(n− k − 1 − 1 n) = 24 > 0.

Hence,bytheFourier-BudanTheorem(see,e.g.,[17]),thereisnorootoff1(x) inthe interval[n− k − 1−n1,+∞).Then byLemma2.4,allsubgraphs ofG1

n,k havespectral radiuslessthann− k − 1−n1.

(ii)Sincetheproofsareverysimilar,weomitthedetails. 

Proof of Theorem1.5. Notethatδ(G)≥ κ(G)≥ k. ByLemmas 2.5and2.6,wehave

n− k − 1 − 1 n < ρ(G)≤ k− 1 2 + 2e(G)− nk + (k + 1) 2 4 .

Therefore,whenn≥ k3+ k + 2,weobtain

e(G) > 1 2[n 2− (2k + 1)n + 3k + 1 n + 1 n2 + 2k 2+ k− 2] > n 2− (2k + 1)n + 2k2+ k− 2 2 > n− k − 2 2 + (k + 2)2. By Theorem 3.2, G is hamiltonian or cl(G) ∈ {G1 n,k,G2n,k,G3n,k,G4n,k,G5n,k}. Since Kn−k ⊆ G1

n,k, by Lemma 2.4, we have ρ(G1n,k) > ρ(Kn−k) = n− k − 1. Combining theabovewithLemmas 2.4and3.3,we concludethatG= G1

n,k. 

Next,weturn totraceable graphsandthecounterparts oftheaboveresultsthatwe needforourproofofTheorem1.6.

Theorem 3.4. Let G be a k-connected graph of order n ≥ 6k + 16, where k ≥ 1.

If e(G) >

n− k − 3

2

+ (k + 2)(k + 3), then G is traceable unless cln−1(G)

{G1

n,k,G2n,k,G3n,k,G4n,k,G5n,k}.

Proof. Let G = G ∨ K1. Then we have κ(G) = κ(G) + 1 ≥ k + 1, n(G) =

n+ 1 = 6(k + 1)+ 11 and e(G) = e(G)+ n >

n− k − 3 2 + (k + 2)(k + 3)+ n = n− k − 2 2

(14)

cln+1(G)∈ {G1n+1,k+1,G2n+1,k+1,G3n+1,k+1,G4n+1,k+1,G5n+1,k+1}.Hence,G istraceable unless cln−1(G)∈ {G1n,k,G2n,k,G3n,k,G4n,k,G5n,k}. 

Lemma 3.5. Let G be a graph of order n with minimum degree δ(G) ≥ k, where n k3+ k2+ k + 3 and k≥ 1.

(i) IfG isaproper subgraphof G1n,k,thenρ(G)< n− k − 2−n1.

(ii) If G∈ {G2n,k,G3n,k,G4n,k,G5n,k}, thenρ(G)< n− k − 2−n1.

Proof. (i)ForG1n,k= Kk∨(Kn−2k−1+ (k + 1)K1),letX bethesetofdegreek,Y bethe set ofneighborsofX,andZ bethesetofremainingn− 2k − 1 vertices.AssumethatG

is apropersubgraph obtainedfrom G1n,k bydeletingoneedge uv∈ E(G1n,k). Similarly as inthe proof ofLemma3.3, thecase u,v ∈ Z yieldsthe largest spectral radius. Itis sufficient toproveρ(G)< n− k − 2−n1 forthis case.

Let us consider the following partition π of V (G) in X1 = X, X2 = Y , X3 = Z\

{u,v},andX4={u,v}.Itiseasytocheckthatthispartitionisequitable,andthatthe corresponding adjacencymatrixofG/π isas follows:

A(G/π) = ⎛ ⎜ ⎜ ⎜ ⎝ 0 k 0 0 k + 1 k− 1 n − 2k − 3 2 0 k n− 2k − 4 2 0 k n− 2k − 3 0 ⎞ ⎟ ⎟ ⎟ ⎠.

ByusingtheLaplaceexpansionforthecalculationofthedeterminants,weobtainthe characteristic polynomialofA(G/π):

f2(x) = x4+ (k− n + 5)x3+ (−k2+ 2k− 3n + 10)x2

+ (kn− 2n − 2k + k2n− 6k2− 2k3+ 6)x + 2kn− 6k + 2k2n− 10k2− 4k3.

Then we can obtain the following derivatives of f2(x) with respect to x, by standard analysis: f2(x) = 4x3+ 3(k− n + 5)x2+ 2(−k2+ 2k− 3n + 10)x + kn − 2n − 2k + k2n − 6k2− 2k3+ 6, f2(2)(x) = 12x2+ 6(k− n + 5)x + 2(−k2+ 2k− 3n + 10), f2(3)(x) = 24x + 6(k− n + 5), f2(4)(x) = 24.

Bysubstitutionand simplebuttediouscalculations,weobtain

f2(n− k − 2 − 1 n) = n 2− (k3+ k2+ k + 3)n +k3+ 3k2 n + 2k2+ 5k + 1 n2 + 3k + 3 n3 + 1 n4

(15)

+ k4+ k3− 2k2− k + 1

> n2− (k3+ k2+ k + 3)n + k4+ k3− 2k2− k + 1

= h1(n)≥ 0,

whereh1(x)= x2−(k3+k2+k+3)x+k4+k3−2k2−k+1.Forthelastinequality,obviously, thefunctionh1(x) isstrictlyincreasingwhenx≥ k3+k2+k +3.Sincen≥ k3+k2+k +3, weobtainf2(n− k − 2−n1)> h1(n)≥ h1(k3+ k2+ k + 3)= k4+ k3− 2k2− k + 1≥ 0. f2(n− k − 2 − 1 n) = n 3− 3(k + 1)n2+ (2k2+ 5k)n4k2+ 10k− 1 n 9(k + 1) n2 4 n3 − k3− 3k2+ 6k + 6 = h2(n)≥ h2(k3+ k2+ k + 3) = k9+ 3k8+ 3k7+ 7k6+ 11k5+ 4k4+ 7k3+ 5k2+ 3k + 6 4k2+ 10k− 1 k3+ k2+ k + 3 9k + 9 (k3+ k2+ k + 3)2 4 (k3+ k2+ k + 3)3 ≥ k9+ 3k8+ 3k7+ 7k6+ 11k5+ 4k4+ 7k3+ 5k2+ 3k + 6 13 6 1 2 1 54 > 0, whereh2(x)= x3−3(k +1)x2+ (2k2+ 5k)x−4k 2+10k−1 x 9(k+1) x2 x43−k3−3k2+ 6k + 6.

Forthefirst inequality,the firstderivativeofh2(x) ish2(x)= 3x2− 6(k + 1)x+ (2k + 5)k +4k2+10k−1 x2 + 18(k+1) x3 +x124.Since h2(x)≥ h2(k3+ k2+ k + 3) = 3k6+ 6k5+ 3k4+ 12k3+ 11k2− k + 9 + 4k 2+ 10k− 1 (k3+ k2+ k + 3)2 + 18k + 18 (k3+ k2+ k + 3)3 + 12 (k3+ k2+ k + 3)4 > 0,

wehaveh2(x) isstrictlyincreasingwhenx≥ k3+ k2+ k + 3.Sincen≥ k3+ k2+ k + 3, weobtainh2(n)≥ h2(k3+ k2+ k + 3). f2(2)(n− k − 2 − 1 n) = 6n 2− (12k + 12)n + 18k + 18 n + 12 n2 + 4k 2+ 10k− 10 > 6n2− (12k + 12)n + 4k2+ 10k− 10 = h3(n) > 0.

(16)

Forthelast inequality,leth3(x)= 6x2− (12k + 12)x+ 4k2+ 10k− 10.Itiseasytosee thath3(x) isstrictlyincreasingwhenx≥ k3+ k2+ k + 3.Sincen≥ k3+ k2+ k + 3,we obtainh3(n)≥ h3(k3+ k2+ k + 3)= 6k6+ 12k5+ 6k4+ 24k3+ 22k2− 2k + 8> 0. f2(3)(n− k − 2 − 1 n) = 18n− 24 n − 18k − 18 > 0. f2(4)(n− k − 2 − 1 n) = 24 > 0.

Hence,bytheFourier-BudanTheorem(see,e.g.,[17]),thereisnorootoff2(x) inthe interval [n− k − 2−n1,+∞).ThenbyLemma2.4, allsubgraphsof G1n,k havespectral radius lessthann− k − 2− 1

n.

(ii)Since theproofs aresimilar,weomitthedetails. 

Proof of Theorem1.6. Notethatδ(G)≥ κ(G)≥ k.ByLemmas2.5and 2.6,wehave

n− k − 2 − 1 n < ρ(G)≤ k− 1 2 + 2e(G)− nk +(k + 1) 2 4 .

Therefore, whenn≥ k3+ k2+ k + 3,weobtain

e(G) > 1 2[n 2− (2k + 3)n +3k + 3 n + 1 n2 + 2k 2+ 4k] >n 2− (2k + 3)n + 2k2+ 4k 2 > n− k − 3 2 + (k + 2)(k + 3).

By Theorem 3.4, G is traceable or cln−1(G) ∈ {G1n,k,G2n,k,G3n,k,G4n,k,G5n,k}. Since

Kn−k−1 ⊆ G1n,k, by Lemma 2.4, we have ρ(G1n,k) > ρ(Kn−k−1) = n− k − 2. Com-biningthis withLemmas2.4and 3.5,wegetG= G1n,k. 

Declaration ofcompetinginterest

Theauthors declarethattheyhavenoconflictofinterest. Acknowledgements

We thankthe anonymous referees fortheir suggestionsthathaveimprovedthe pre-sentationofourresultsandproofs.

References

[1]V.I. Benediktovich, Spectral condition for hamiltonicity of a graph, Linear Algebra Appl. 494 (2016) 70–79.

(17)

[2]J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135.

[3]J.A. Bondy, U.S.R. Murty, Graph Theory, Grad. Texts in Math., vol. 244, Springer, New York, 2008.

[4]A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer-Verlag, 2011.

[5]V. Chvátal, P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111–113.

[6]M. Fiedler, V. Nikiforov, Spectral radius and hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170–2173.

[7] J.Ge,B.Ning,Spectralradiusandhamiltonianpropertiesofgraphs,II,LinearMultilinearAlgebra (2019),https://doi .org /10 .1080 /03081087 .2019 .1580668,publishedonline.

[8]C. Godsil, C. Royle, Algebraic Graph Theory, Springer, 2001.

[9]Y. Hong, J.L. Shu, K.F. Fang, A sharp upper bound of the spectral radius of graphs, J. Comb. Theory, Ser. B 81 (2001) 177–183.

[10]B.L. Li, B. Ning, Spectral analogues of Erdős’ and Moon–Moser’s theorems on Hamilton cycles, Linear Multilinear Algebra 64 (2016) 2252–2269.

[11]R. Li, The largest eigenvalue and some hamiltonian properties of graphs, Electron. J. Linear Algebra 34 (2018) 389–392.

[12]R.F. Liu, W.C. Shiu, J. Xue, Sufficient spectral conditions on hamiltonian and traceable graphs, Linear Algebra Appl. 467 (2015) 254–266.

[13]M. Lu, H.Q. Liu, F. Tian, Spectral radius and hamiltonian graphs, Linear Algebra Appl. 437 (2012) 1670–1674.

[14]V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Comb. Probab. Comput. 11 (2002) 179–189.

[15]V. Nikiforov, Spectral radius and hamiltonicity of graphs with large minimum degree, Czechoslov. Math. J. 66 (2016) 925–940.

[16]B. Ning, J. Ge, Spectral radius and hamiltonian properties of graphs, Linear Multilinear Algebra 63 (2015) 1520–1530.

[17]V.V. Prasolov, Polynomials, MTSNMO, Moscow, 2001.

[18]B. Zhou, Signless Laplacian spectral radius and hamiltonicity, Linear Algebra Appl. 432 (2010) 566–570.

Referenties

GERELATEERDE DOCUMENTEN

maar zoals dat heet realistische wiskunde. Je zou het ook rekenen kunnen noemen. Het gaat om realistische begrippen in plaats van abstracties. Ook het vinden van eigenschappen van

De studies die betrekking hadden op een vergelijking van 1KB en QS (incl. het voorstel tot een gecombineerde audit voor beide systemen en de analyse van de contractuele en

In keeping with this ideology, the initial aim of the research project has been to identify the disease- causing mutations in patients affected by inherited RDD and to translate

Idealiter is het zo dat bij stap 2 heel expliciet de ‘slachtoffer(s)’ van verdringing worden benoemd binnen of buiten de ICD-10 categorie zoals stoppen met het vergoeden van

Het gaat in de gezondheidszorg dus eigenlijk om dezelfde vraag als bij wetenschappelijk onderzoek: kunnen wij voor het geld dat we aan die zorg besteden uitkomen op meer waarde

The aim of this thesis is to explore to what extent it can be said that the Committee for the Convention on the Elimination of Discrimination against Women (CEDAW) has taken a

In this way, teachers get clarity about the learning outcomes as associated with practical work, and pupils experience more effective practical work which has more impact on what

Deze inkadering zorgt er wederom voor dat het bestaan van een digitaal bewustzijn niet bedreigend overkomt omdat de mens nog altijd de controle over hem heeft. Ben accepteert