• No results found

Can Visual Information be maintained Unconsciously in Working Memory?

N/A
N/A
Protected

Academic year: 2021

Share "Can Visual Information be maintained Unconsciously in Working Memory?"

Copied!
28
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Bachelor  Project  Brain  &  Cognition      

 

Can  Visual  Information  be  maintained  Unconsciously  in  

Working  Memory?  

 

Max  Philipsen   Student  #:  10545212   Universiteit  van  Amsterdam  

2  juni  2017   Timo  Stein,  Mentor  

Word  count:  5.478    

 

Abstract  

From  a  classical  point  of  view,  working  memory  (WM)  and  conscious  awareness   are  tightly  related.  The  current  view  states  that  WM  operates  only  on  conscious   input  and  that  the  contents  of  WM  reflect  the  contents  of  consciousness.  

However,  recent  studies  found  evidence  suggesting  WM  operating  on  

unconsciously  presented  information.  The  present  study  used  a  delayed  cue-­‐ target  orientation  discrimination  task  in  attempt  to  replicate  this  effect.   Contradicting  results  show  that  participants  could  not  maintain  a  subliminal   memory  cue  in  WM  and  perform  above  chance  in  an  explicit  discrimination  task.   However,  dissociation  was  found  between  actual  WM  content  and  what  we   experience  as  the  WM  content,  namely  that  an  induced  visual  WM  load  interfered   with  visibility  (subjective  measure)  only,  not  with  accuracy  (objective  measure).   These  contradictory  results  questioned  the  effectiveness  of  the  visual  WM  load;   future  studies  will  have  to  investigate  the  effect  of  different  kinds  of  WM  loads   (verbal,  auditory)  and  possible  other  memory  mechanism  involved  in  these   tasks.  

(2)

Introduction  

  How  do  we  memorize  a  phone  number?  We  can  do  this  by  rehearsing  it   ‘in  our  mind’.  While  we  do  this,  the  phone  number  becomes  a  conscious  mental   object.  But  where  do  we  keep  this  object?  Some  will  say  we  keep  this  object  in   our  short-­‐term  memory  and  –  a  more  recent  point  of  view  –  some  will  refer  to   our  working  memory.  Recent  studies  argued  that  working  memory  could   operate  on  unconscious  information.  This  would  unlikely  suggest  that  we  could   ‘unconsciously’  memorize  a  phone  number.  Before  we  continue  on  this  topic,   some  memory  theories  will  be  discussed.  

  By  the  end  of  the  1960s,  Atkinson  &  Shiffrin  (1968)  introduced  their   influential  memory  model  suggesting  three  separate,  key  systems:  a  sensory   register,  a  short-­‐term  store  (STS)  and  a  long-­‐term  store  (LTS).  Environmental   information  is  thought  to  flow  through  the  sensory  register  into  a  limited   capacity  short-­‐term  store,  also  known  as  working  or  short-­‐term  memory.  Here,   the  information  can  be  held,  for  instance  by  rehearsal.  In  this  model,  rehearsing   allows  the  information  to  be  stored  more  permanently  in  the  long-­‐term  store,  in   other  words:  to  be  encoded.  The  STS  or  WM  also  receives  and  holds  input  from   the  LTS;  this  is  called  retrieval.  This  model  implies  that  the  contents  of  STS  or   WM  reflect  the  contents  of  consciousness.  

  Whereas  the  STS  is  responsibly  for  the  short-­‐term  storage  of  information,   an  important  feature  of  working  memory  is  the  possibility  of  manipulating   stored  information.  Baddeley  and  Hitch  (1974)  proposed  a  three-­‐component   WM  model,  including  the  ‘central  executive’,  supported  by  two  subsidiary  slave   systems,  the  ‘phonological  loop’  and  the  ‘visuospatial  sketchpad’.  The  

(3)

for  holding  verbal  and  acoustic  information,  whereas  the  sketchpad  is  involved   in  the  storage  and  manipulation  of  visuospatial  information.  This  model  

proposed  the  central  executive  as  a  supervisory  system  as  it  coordinates  the  flow   of  information  from  and  to  its  slave  systems,  intended  for  controlling  and  

regulating  cognitive  processes.  Later,  a  fourth  component  of  the  working   memory  model  was  added:  the  ‘episodic  buffer’,  which  stores  information  and   thus  provides  a  temporary  interface  between  LTM  and  both  slave  systems   (Baddeley,  2000).  This  buffer  binds  information  from  multiple  sources  into   coherent  episodes.  Baddeley  suggested  that  consciousness  plays  an  important   role  in  all  WM  input  and  output.  Besides,  Baddeley  assumes  that  WM  content   reflects  our  conscious  experience.  

  Another  theory  supporting  the  idea  that  WM  content  reflects  our  

conscious  experience  is  Bernard  Baars’s  ‘’global  workspace’’  theory.  This  theory   suggests  that  we  posses  a  ‘’mental  router’’,  and  that  what  we  experience  as   consciousness  is  the  global  sharing  of  information  (Dehaene,  2014).  The  brain   has  specialized,  local  processors  that  each  perform  a  specific  type  of  operation;   the  ‘’global  workspace’’  allows  them  to  flexibly  share  information.  In  this   workspace  a  coherent  representation  of  all  the  information  together  is  formed   and  maintained.  But,  most  importantly,  whenever  information  enters  the   workspace,  it  becomes  conscious.  

 

  But  what  does  it  exactly  mean  when  something  becomes  conscious?  Every   second,  a  massive  amount  of  sensory  stimuli  reaches  our  senses,  but  our  

conscious  mind  manages  to  gain  access  to  only  a  small  part  of  them;  this  is  called  

(4)

information  enters  consciousness,  it  becomes  a  conscious  mental  object  that  we   can  ‘’keep  in  mind’’.  Bringing  the  information  to  the  forefront  of  our  thinking   enables  us  to  verbally  report  it.  What  happens  to  all  the  information  that  does   not  reach  consciousness?  Even  unattended  and  unconscious  information  can  be   processed  which  is  called  subliminal  (‘’below  threshold’’)  processing,  and  

therefore  our  human  behaviour  is  prone  to  subliminal  stimuli  that  are  not   consciously  experienced.  For  example,  when  we  briefly  flash  a  masked,   subliminal  word  followed  by  a  visual  target  word,  this  will  speed  up  the   processing  of  the  target  word  if  the  unconscious  presented  word  is  the  same.    

  So  far,  all  discussed  WM  theories  share  the  same  thought:  WM  content  is   equivalent  to  conscious  experience.  This  also  means  that  all  components  of  WM   are  reportable.  Not  every  theory  shares  this  idea,  for  instance  Cowan’s  working   memory  model  (1995),  which  was  later  extended  to  the  three-­‐embedded-­‐

components  model  by  Oberauer  (2002),  assumes  three  components  are  included   in  working  memory:  the  activated  part  of  long-­‐term  memory  (LTM),  the  region  of  

direct  access,  and  a  single-­‐item  focus  of  attention.  LTM  serves  as  a  source  for  

accessible  information,  while  the  region  of  direct  access  contains  representations   that  more  or  less  corresponds  to  the  focus  of  attention  and  has  a  limited  capacity   of  about  four  items  or  chunks.  The  focus  of  attention  will  select  one  item  or  chunk   and  uses  this  for  the  next  cognitive  operation.  This  model  implies  that  

information  can  be  maintained  in  WM  and  remain  unconscious  until  it’s  

attended.  When  information  is  attend  to,  it  becomes  accessibly  and  reportable.     Concluding,  from  a  classical  point  of  view,  WM  and  conscious  awareness   are  tightly  related.  The  current  view  states  that  WM  operates  only  on  conscious  

(5)

input  and  that  the  contents  of  WM  reflect  the  contents  of  consciousness,  which   means  that  awareness  is  essential  for  the  operation  of  WM.  However,  recent   studies  found  evidence  suggesting  working  memory  operating  on  unconsciously   presented  information  and  thus  contradicting  the  current  psychological  theories.   To  be  more  specific,  this  new  radical  view  assumes  that  even  if  information  in   WM  is  attended,  it  can  remain  unconscious.  

  Under  some  circumstances  WM  and  consciousness  can  be  fully  

dissociated.  Bona  and  colleagues  (2013)  showed  participants  a  memory  cue  (a   grating)  of  which  they  were  asked  to  hold  the  orientation  in  memory.  In  

approximately  half  of  the  trials,  a  distracter  grating  was  shown  before  the  cue   target  orientation  discrimination  task.  The  distractor’s  orientation  was  either   identical  to  that  of  the  memory  cue,  or  its  orientation  differed.  Because  the   distractors  were  masked  and  presented  briefly,  not  all  distractors  were   perceived  consciously.  After  this  delay  period,  participants  were  presented  a   memory  test  probe  and  were  asked  whether  it  was  tilted  to  the  left  or  right   relative  to  the  memory  cue.  This  was  the  objective  measurement;  visual  short-­‐ term  memory  (VSTM)  accuracy.  Participants  had  to  rate  the  vividness  of  the   original  memory  cue;  this  was  the  subjective  measurement.  In  the  end,   participants  reported  their  awareness  regarding  the  distractors.  Bona  and   colleagues  found  that  even  though  participants  were  unaware  of  the  distractors,   the  distractors  reduced  the  vividness  of  the  memory  cue  (subjective  awareness),   but  they  did  not  impair  discrimination  accuracy  (objective  measure).  The  first-­‐ mentioned  findings  suggest  that  the  introspection  of  WM  contents  is  susceptible   by  factors  that  do  not  interfere  with  WM  accuracy  and  this  suggests  a  

(6)

dissociation  between  actual  WM  content  and  what  we  experience  as  the  WM   content.  

  In  summary,  our  conscious  memory  experience  does  not  always  reflect   the  actual  memory  content.  Does  this  suggest  that  WM  can  operate  on  

nonconscious  information?  Soto  and  colleagues  (2011)  found  evidence   supporting  this  idea.  Similar  to  Bona  et  al.,  they  used  a  delayed  cue-­‐target   orientation  discrimination  task.  Observers  were  presented  with  a  masked   memory  cue  and  were  encouraged  to  attend  and  hold  the  cue  in  memory.  After   the  delay  period  participants  had  to  perform  a  memory  test  followed  by  an   awareness  rating  (1-­‐4  scale)  regarding  the  memory  cue.  These  awareness   ratings  were  used  to  assess  conscious  experience;  a  rating  of  ‘1’  meaning  that   participants  were  unaware  of  the  memory  cue.  The  results  of  their  first   experiment  showed  that  discrimination  performance  on  unaware  trials  was   above  chance.  This  was  interpreted  as  showing  that  observers  could  maintain  a   subliminal  memory  cue  in  WM  and  perform  above  chance  in  an  explicit  

discrimination  task,  in  which  a  supraliminal  orientation  probe  is  compared   (clockwise  or  counter-­‐clockwise)  with  an  unconsciously  perceived  orientation   cue.    

  Thus,  the  dissociation  between  the  performance  in  the  memory  test   (objective  measure)  and  subjective  awareness  of  the  memory  cue  (subjective   measure)  implies  that  information  can  be  nonconsciously  encoded  in  WM,  to  be   later  used  in  the  memory  test.  Therefore,  this  contradicts  the  earlier  statement   regarding  that  WM  content  needs  to  be  conscious.  

(7)

  But,  the  interpretation  of  these  findings  supporting  the  idea  of  

unconscious  working  memory  has  some  potential  problems.  First,  the  response   on  the  subjective  awareness  rating  is  prone  to  response  biases  (Schmidt,  2015).   For  instance,  a  conservative  observer  tends  to  respond  ‘’stimulus  absent’’  or  ‘’not   seen’’  more  often,  also  known  as  a  not-­‐seen  judgement  (NSJ),  compared  to  a  more   liberal  approach  (tendency  to  respond  ‘’stimulus  present’’).  In  Soto’s  experiment   (2011)  this  includes  the  ‘1’-­‐rating  on  the  awareness  scale  of  the  memory  cue.   Second,  even  true  non-­‐conscious  perception  does  not  necessarily  mean  non-­‐ conscious  WM.  Stein  and  colleagues  (2016)  argue  that  a  conscious  ‘’guess’’  could   be  maintained  in  WM  during  the  delay  period,  which  is  based  on  non-­‐conscious   perception  of  the  memory  cue.  Then,  this  guess  could  be  used  in  the  objective   memory  test.  So,  this  would  suggest  ‘’blindsight-­‐like  non-­‐conscious  perception’’,   not  non-­‐conscious  WM.  Third,  an  additional  methodological  problem  arises   regarding  the  isolation  of  trials  on  which  participants  rated  the  stimulus   awareness  with  ‘1’  on  the  1-­‐4  scale  (NSJ’s);  in  order  to  perform  an  correct  

analysis  concerning  the  detection  sensitivity  –  the  sensitivity  measure  d’  in  signal   detection  theory  (SDT)  –  both  frequencies  of  misses  and  correct  rejections,  and   hits  and  false  alarms  are  required  to  compute  the  actual  d’  score.  Soto  and   colleagues  considered  only  frequencies  of  misses  and  correct  rejections,  which   resulted  in  the  computation  of  a  so-­‐called  pseudo-­‐d’.  This  new  index  is  not   invariant  to  bias,  underestimates  actual  sensitivity  and  thus  is  an  incorrect   measurement  of  detection  sensitivity  for  the  memory  cue  (Stein  et  al.,  2016).  

  Beside  these  misinterpretations  other  potential  problems  exist,  for   instance  the  use  of  subjective  visibility  ratings  in  general.  Nieuwenhuis  and   Kleijn  (2011)  argue  that  different  measures  of  consciousness  determine  the  

(8)

outcome  of  an  experiment.  Sergent  and  Dehaene  (2004)  presented  target  words   during  an  attentional  blink  and  asked  their  participants  to  rate  the  subjective   visibility  of  these  words  on  a  continuous  scale.  They  found  a  bimodal  perception   rating  suggesting  a  discontinuous  transition  between  nonconscious  and  

conscious  processing.  When  Niewenhuis  and  Kleijn  replicated  this  study  using  an   alternative  measure  of  consciousness,  namely  post-­‐decision  wagering,  this  

bimodal  perception  rating  disappeared.  So,  using  a  specific  consciousness   measure  (subjective  visibility)  does  not  always  generalize  to  another   consciousness  measure  (wagering).  

  An  experiment  similar  to  Soto  et  al.  (2011)  was  done  by  Trübutschek  and   colleagues  (2016)  including  a  spatial  masking  paradigm,  trying  to  replicate   Soto’s  experiment  (2011)  using  a  different  task.  Participants  were  shown  a   masked  target  square  on  1of  20  location  (in  a  circle)  and  were  asked  to  localize   the  target  after  a  delay  (2.5  –  4  s)  and  rate  its  visibility  on  a  scale  from  1  (not   seen)  to  4  (clearly  seen).  In  the  second  experiment  an  additional  task  was   integrated:  1  (low  load)  or  5  (high  load)  digits  were  shown  at  the  beginning  of   each  trial,  followed  by  the  same  sequences  as  in  experiment  1.  At  the  end  of  these   trials,  participants  localized  the  target,  recalled  the  digits  and  rated  the  target   visibility.  This  additional  task  was  intended  to  create  a  memory  load  depleting   ‘conscious’  WM  and  not  affect  non-­‐conscious  (WM)  performance.  Their  first   results  support  Soto’s  finding  and  they  conclude  that  the  above  chance  

performance  on  unseen  trials  reflect  maintenance  of  non-­‐conscious  information.   Second,  they  concluded  that  even  when  ‘conscious’  WM  was  depleted  by  a   concurrent  memory  load,  unseen  information  could  be  maintained  (because  of   no  interference  on  ‘unconscious’  WM).  

(9)

  However,  implications  exist  regarding  these  interpretations.  First,  they   concluded  that  the  conscious  verbal  WM  load  decreased  the  precision  with   which  non-­‐conscious  spatial  information  was  maintained.  So,  the  significant   difference  in  target  accuracy  between  high  and  low  memory  WM  load  in  unseen   trials  is  contradicting  the  idea  of  WM  having  a  conscious  and  unconscious  part:   while  unseen  stimuli  are  processed  by  the  unconscious  part  of  WM,  a  conscious   dual  task  WM  load  (processed  by  the  conscious  part)  should  not  interfere  with   precision  of  ‘unconscious’  WM.  Thus,  this  suggests  that  all  WM  content  is  

processed  by  one  conscious  mechanism,  suggesting  all  WM  content  is  conscious.   Second,  they  added  an  additional  dual  task  in  order  to  show  that  this  would  only   be  affective  on  seen  trial  (2-­‐4  ratings)  and  not  unseen  trial  (1  rating),  

respectively  conscious  WM  processing  and  unconscious  WM  processing.  

However,  the  conscious  verbal  WM  load  did  not  affect  the  performance  on  seen   trial  at  all,  indicating  that  this  additional  verbal  task  was  simply  un-­‐affective,   which  could  explain  why  the  above  chance  performance  on  unseen  trials  were   not  diminished  in  the  first  place.  Perhaps,  the  non-­‐interfering  of  the  WM  load  is   the  result  of  the  load  being  verbal  instead  of  spatial.  Perhaps,  to  interfere  on  the   localization  (spatial)  task  mentioned  above,  a  spatial  WM  load  is  required.     In  conclusion,  due  to  these  methodological  implications  and  previous   discussed  limitations  regarding  Soto’s  experiment,  replication  is  necessary.  The   present  study  is  going  to  replicate  Soto’s  experiment  (2011)  using  the  delayed   cue-­‐target  orientation  discrimination  task.  In  addition  to  this  original  

experimental  design  a  visual  dual  task  will  be  added,  that  is  an  additional   discrimination  task.  Imitating  Trübutschek’s  approach,  with  the  exception  of   Trübutschek’s  load  being  verbal,  this  additional  dual  task  will  form  a  visual  WM  

(10)

load.  This  means  that  the  following  sequence  will  be  used:  an  (1)  the  original   orientation  cue  is  shown,  which  is  (2)  masked,  followed  by  a  (3)  delay.  During   the  delay  period  an  (4)  additional  orientation  cue  is  presented.  The  delay  period   will  end  with  the  (5)  memory  test  (left  or  right  relative  to  the  original  orientation   cue).  After  (6)  subjective  visibility  of  the  original  orientation  cue  is  rated  using   the  perceptual  awareness  scale  (PAS),  participants  perform  a  (7)  second  

memory  test  regarding  the  additional  orientation  cue  (the  additional  orientation   cue  has  to  be  reproduced  using  the  computer  mouse).  The  additional  orientation   cue  is  showed  for  200  ms,  which  means  this  cue  is  consciously  perceived.  For  the   subjective  visibility  the  following  ratings  are  possible:  1  did  not  see  anything,  2   maybe  saw  something,  3  saw  the  stimulus  but  not  its  orientation  and  4  saw  the   stimulus  and  its  orientation.  

This  study  has  two  possible  outcomes  that  will  be  discussed.  The  first   possible  outcome  (Soto’s  approach)  would  support  the  idea  that  WM  can  operate   on  unconscious  stimuli.  This  implies  that  WM  content  is  made  up  of  a  conscious   part,  implying  conscious  WM  content,  and  an  unconscious  part,  implying  

unconscious  WM  content.  The  conscious  visual  WM  load,  which  is  part  of  the   additional  dual  task,  is  expected  to  affect  only  the  conscious  part  of  WM,  meaning   that  the  unconscious  part  stays  untouched  and  thus  performance  on  unseen   trials  will  be  above  chance.  Besides,  affecting  or  in  other  words  constraining  of   the  conscious  part  as  a  result  of  the  visual  WM  load  will  result  in  a  decrease  of   performance  on  the  memory  test  on  conscious  seen  trials.  So,  dissociation  is   made  between  conscious  and  unconscious  WM  content  (see  Figure  1;  Recent   view).  The  second  possible  outcome  (alternative  approach)  would  support  the   idea  that  all  WM  content  is  conscious,  assuming  that  the  visual  WM  load  will  

(11)

affect  performance  on  both  conscious  seen  (visible)  and  non-­‐conscious  unseen   (invisible)  trials,  the  latter  meaning  non-­‐conscious  perception.  So,  independent   of  the  subjective  visibility  rating,  the  visual  WM  load  will  reduce  performance  on   the  memory  test  (see  Figure  1;  Classical  view).  Figure  2  shows  an  overview  of   these  possible  expectations.  

               

Figure  1.  Visualizing  WM  approaches  regarding  either  the  overlap  of  or  

dissociation  between  WM  content  and  what  we  experience  as  the  WM  content.   This  figure  shows  on  which  parts  of  WM/consciousness  the  different  memory   cues  load.  In  this  example  the  original  memory  cue  was  not  consciously   perceived,  so  it’s  labeled  invisible.  The  additional  memory  cue  is  always  

perceived  consciously,  so  this  cue  always  loads  on  the  conscious  part  of  WM.  The   latter  does  not  always  apply  to  the  original  memory  cue;  because  this  cue  is   masked  and  presented  for  only  17  ms,  it  is  not  always  perceived  consciously.    

(12)

 

Figure  2.  Possible  outcomes  regarding  memory  test  performance  (%  correct)  on  

the  cue-­‐target  orientation  discrimination  task.  During  single  task  trials  only  the   original  memory  cue  test  is  performed,  while  during  dual  task  trials  an  

additional  to-­‐be-­‐remembered  memory  cue  is  presented.  Assuming  horizontal  50   gridline  represents  chance  line  (left/right;  50%).  So,  the  visual  WM  load  induced   during  the  dual  task  will  affect  performance  on  memory  cue  visible  trials  

assuming  both  approaches  (Soto’s  and  alternative).  But,  on  memory  cue  invisible   trials  Soto  et  al.  argue  that  performance  will  be  unaffected,  while  the  alternative   approach  expects  a  decrease  in  performance.  On  the  left  side  (green  bars)  we   expect  to  replicate  Soto’s  effect  (2011),  namely  above  chance  performance  on   the  memory  cue  invisible  trials  and  logically  high  performance  on  visible  trials   due  to  the  absence  of  an  interfering  visual  WM  load  (single  task).  Note.  The   performance  on  all  the  invisible  trials  is  expected  to  be  significantly  above   chance.  

(13)

Method    

Participants  

In  the  experiment  17  subjects  participated.  Participants  had  to  be   between  the  age  of  18  and  35  years  old.  Participants  had  to  meet  the  screening   criteria,  which  included  having  no  eye  disorders  (corrections  are  allowed),  not   being  colour  blind  and  being  able  to  see  depth.  Participants  studying  at  

Universiteit  van  Amsterdam  received  two  participation  points  as  a  reward.    

Materials  

On  a  computer,  using  Matlab  Student  Version  12,  the  trials  were  

presented.  The  arrow  keys  were  used  for  indicating  if  the  memory  probe  was   tilted  left  or  right  compared  to  the  memory  cue.  The  number  keys  were  used  for   rating  the  visibility  of  the  memory  cue.  The  computer  mouse  was  used  for   reproducing  the  additional  memory  cue  in  the  dual  task  trials.  The  software  IBM  

SPSS  Statistics  version  23  was  used  for  analyzing  the  data.  

 

Manipulation:  Single  vs.  Dual  Task  

As  mentioned  earlier  the  experiments  consist  of  two  different  tasks.  De   dual  task  trials  consist  of  a  grey  circle  with  black  gratings  indicating  the   (original)  orientation  to  be  remembered.  The  mask  forms  a  grey  with  black   radial  sinusoid.  The  additional  orientation  cue  is  the  same  as  the  original  

memory  cue,  except  that  this  grating  has  a  greenish  cover  for  a  clear  distinction   of  the  original  grating.  The  memory  probe  is  identical  to  the  memory  cue,  except   that  its  orientation  is  tilted  to  the  left  or  right  relative  to  the  memory  cue.  During  

(14)

the  dual  task,  the  reproducing  of  the  additional  memory  cue  is  done  by  a  green   line  that  has  to  be  rotated  by  hand  using  the  computer  mouse.  In  the  single  task   trials  participants  were  instructed  to  ignore  the  additional  memory  cue.  This  cue   is  shown  anyway  in  order  to  control  for  any  unexpected  influence  regarding  the   additional  green  cue.  For  instance,  to  rule  out  any  purely  visual  effect.  

Interference  could  originate  from  the  green  ‘flash’  alone,  and  not  from  the  WM   load  formed  due  to  the  additional  task.  

 

Measurement:  Perceptual  Awareness  Scale  

Response  accuracy  regarding  the  original  memory  cue  and  probe  is   measured  (left/right).  Furthermore,  subjective  visibility  of  the  original  memory   cue  is  rated  using  the  perceptual  awareness  scale  (PAS),  developed  by  Ramsøy   and  Overgaard  in  2004.  It  is  believed  that  the  PAS  is  among  the  best  suggestions   to  measure  subjective  experience  (Sandberg  &  Overgaard,  2015).  Participants   are  shown  the  following  question:  ‘’Awareness  of  memory  cue?’’  (see  Figure  2;   PAS).  The  following  answers  are  possible:  1)  did  not  see  anything,  2)  maybe  saw  

something,  3)  saw  the  stimulus  but  not  its  orientation,  4)  saw  the  stimulus  and  its   orientation.  It  is  important  to  emphasize  that  all  trials  in  which  the  awareness  of  

the  memory  cue  is  rated  with  1,  these  trials  are  considered  invisible,  meaning   that  the  memory  cue  was  not  consciously  perceived.  All  trials  rated  higher  than  1   are  considered  visible.  

For  the  reproducing  task  of  the  additional  cue  the  error  is  measured:  0   error  indicating  a  precise  replication  of  the  additional  cue  with  a  maximum  error   of  90o  degrees.  

(15)

Procedure  

Participants  were  invited  personally  to  participate  in  the  experiment.   After  acceptation,  participants  were  summoned  to  the  lab  at  Roeterseiland   Campus.  Next,  participants  received  an  information  brochure  serving  as  an   introduction  to  the  research  topic  and  including  instructions  regarding  the   experiment.  After  signing  the  informed  consent,  they  were  told  that  the   experiment  consists  of  four  blocks:  two  dual  tasks  and  two  single  tasks.  Each   block  consists  of  144  trials,  which  on  there  turn  takes  approximately  9  seconds   per  trial.  So,  the  experiment  takes  90  minutes  average  in  total.  During  the  dual   task  participants  had  to  do  two  tasks.  First,  comparing  the  original  memory  cue   to  the  original  memory  probe.  Second,  during  the  delay  a  second,  additional   memory  cue  was  shown  which  orientation  had  to  be  reproduced  in  the  end  of   each  trial.  Participants  were  told  that  the  memory  cue  is  absent  in  50%  of  the   trials.  The  memory  cue  is  oriented  at  10,  40  or  70  degrees  and  the  probe  offset  is   tilted  10  degrees  to  left  or  right  compared  to  this  memory  cue.  For  the  single   task,  participants  were  instructed  to  ignore  the  additional  memory  cue  and  no   reproducing  had  to  be  done  at  the  end  of  each  trial.  An  example  sequence  is   shown  in  Figure  3.  

(16)

Figure  3.  Example  of  the  dual  task  trial.  During  single  task  response  2  is  absent  

and  participants  were  instructed  to  ignore  the  additional  cue.    

Results   Participants  

  The  individuals  that  participated  in  this  experiment  were  Dutch  students   studying  at  the  following  institutes:  Universiteit  van  Amsterdam,  Hogeschool  van   Amsterdam,  Nyenrode  New  Business  School  Amsterdam,  Vrije  Universiteit   Amsterdam  and  Inter  College  Business  School,  with  the  exception  of  one  

professional  tennis  player  and  one  Dutch  soldier.  De  group  consisted  of  15  men   and  two  women  (N  =  17)  with  an  average  age  of  21  years  old  (M  =  21.71,  SD  =   1.36).  In  some  analysis’s  participants  had  to  be  removed  because  of  their   inability  to  perceive  the  memory  cue  and  thus  rated  all  trials  with  1  (did  not  see  

anything).       ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 500!ms! 17!ms! 100!ms! 800!ms! 200!ms! 1000!ms! 200!ms! Response! PAS! Response!2! Fixation! Memory!cue! Mask! Delay! Additional!cue! Delay! Probe!

(17)

Cue  Visibility:  Effect  of  Cue  Presence  and  Task  

A  2x2  repeated  measures  ANOVA  was  conducted  for  inspecting  the  effect   of  cue  presence  and  task  (independent  variables)  on  visibility  (dependent  

variable).  These  factors  had  two  levels;  the  cue  presence  factor  including  present   vs.  absent  and  the  task  factor  including  single  vs.  dual.  The  analysis  showed  that   the  main  effect  of  cue  presence  was  significant,  F(1,16)  =  4.65,  p  =  .047,  logically   meaning  that  the  visibility  was  higher  in  memory  cue  present  trials  compared  to   absent  trials.  Also,  the  main  effect  of  the  task  was  significant,  F(1,16)  =  25.01,  p  <   .001,  indicating  that  during  the  single  task  visibility  was  higher  compared  to  the   dual  task.  Finally,  a  significant  interaction  effect  was  found  between  task  and  cue   presence,  F(1,16)  =  6.07,  p  =  .025,  showing  that  the  effect  of  the  task  is  only   visible  in  the  memory  cue  present  trials.  This  is  favourable,  because  we  expected   participants  to  rate  visibility  with  1  during  memory  cue  absent  trials,  

independent  of  the  task.  In  Figure  1  an  overview  is  shown.  

For  the  dual  task  trials  mean  visibility  of  memory  cue  was  measured  for   memory  cue  present  and  absent  trials.  Using  a  paired  sample  t-­‐test  we  found  that   mean  visibility  was  higher  in  the  memory  cue  present  trials  (M  =  1.59,  SD  =  .44)   than  absent  trials  (M  =  1.13,  SD  =  .18),  t(16)  =  4.91,  p  <  .001.  Logically,  this  was   expected  because  memory  cue  absent  trials  should  have  been  rated  with  1,  while   during  memory  cue  present  trials  higher  ratings  could  be  possible.  The  same  was   done  for  the  single  task  trials  and  similar  results  were  found;  higher  visibility  (M   =  1.71,  SD  =  .53)  was  reported  in  memory  cue  present  trials  compared  to  

memory  cue  absent  trials  (M  =  1.10,  SD  =  .13),  t(16)  =  4.81,  p  <  .001.  

Finally,  we  conducted  a  paired  sample  t-­‐test  to  compare  mean  visibility  of   memory  cue  present  single  task  trials  with  memory  cue  present  dual  task  trials.  

(18)

Higher  visibility  of  memory  cue  was  reported  during  the  single  task  trials  (M  =   1.71,  SD  =  .53)  compared  to  the  dual  task  trials  (M  =  1.59,  SD  =  .44),  t(16)  =  -­‐2.93,  

p  =  .01.  This  suggests  that  the  visual  WM  load,  which  is  induced  by  the  additional  

memory  cue  in  the  dual  task  trials,  is  interfering  with  introspection  of  subjective   visibility.  In  Table  1  and  Figure  1  overviews  are  shown.  

  Table  1  

Mean  visibility,  ranking  from  1  to  4,  on  the  single  and  dual  task  for  memory  cue   present  and  absent  trials.  

      Present     Absent     Single       1.71  (.53)     1.10  (.13)   Dual       1.59  (.44)     1.13  (.18)                       Figure  1.  Mean  visibility  on  memory  cue  present  and  absent  trials  

(19)

WM  Accuracy:  Effect  of  Task  on  Cue  Present  Trials  

  We  conducted  a  paired  sample  t-­‐test  to  compare,  during  memory  cue   present  trials,  mean  WM  accuracy  in  dual  vs.  single  trials.  No  significant  different   was  found  between  single  task  trials  (M  =  .67,  SD  =  .15)  and  dual  task  trials  (M  =   .64,  SD  =  .13),  t(16)  =  1.57,  p  =  .14.  This  suggests  that  the  visual  WM  load,  as  a   result  of  the  additional  task,  does  not  interfere  with  WM  accuracy  on  the  

memory  cue  present  trials  during  the  dual  task.  However,  this  WM  load  did  have   effect  on  visibility;  this  dissociation  was  not  expected.  Furthermore,  both  dual   task,  t(16)  =  4.63,  p  <  .001,  and  single  task,  t(16)  =  4.63,  p  <  .001,  did  differ   significantly  from  50%  chance.  An  overview  is  shown  in  Table  2.  

  Finally,  the  mean  error  on  the  additional  memory  cue  reproducing  task   was  measured  (M  =  19.46,  SD  =  7.01).  The  error  includes  the  difference  between   the  to-­‐be-­‐reproduced  green  line  and  the  actual  response  of  the  participant  in   degrees.  This  indicates  that  participants  performed  fairly  well  on  this  task,  given   that  the  maximal  possible  error  is  90o  degrees.  This  also  implies  that  the  

additional  dual  task  induced  a  visual  load  that  depleted  on  the  resources  of  WM.  

 

Table  2  

Mean  WM  accuracy  on  single  and  dual  task  on  memory  cue  present  trials,   independent  of  visibility.  

      Present      

 

Single       0.67  (.15)      

Dual       0.64  (.13)      

(20)

WM  Accuracy:  Effect  of  Task  and  Cue  Visibility  on  Cue  Present  Trials   A  second  2x2  repeated  measures  analysis  of  variance  was  conducted  for   inspecting  the  effect  of  the  task  and  visibility  (independent  variables)  on  WM   accuracy  (dependent  variable).  Both  factors  had  two  levels;  the  task  factor   including  dual  vs.  single  and  the  visibility  factor  including  invisible  trials  (rating   1)  vs.  visible  trials  (rating  2-­‐4).  The  analysis  showed  that  the  main  effect  of   visibility  was  significant,  F(1,14)  =  31.30,  p  <  .001,  as  we  expected.  No  interaction   effect  was  found  and  the  analysis  showed  no  significant  main  effect  of  the  task.   The  latter  was  not  expected;  a  larger  decrease  in  WM  accuracy  was  expected   during  the  dual  task  due  to  the  visual  WM  load.  An  overview  is  shown  in  Figure   2.    

For  memory  cue  present  trials  WM  accuracy  was  measured  depending  on   the  subjective  visibility  rating.  During  the  dual  task,  when  visibility  was  rated   higher  than  1  –  meaning  that  the  participants  were  aware  of  the  memory  cue  –   WM  accuracy  was  significantly  higher  (M  =  .76,  SD  =  .14)  compared  to  trials   where  the  participants  were  unaware  (rating  1)  of  the  cue  (M  =  .52,  SD  =  .08),  

t(14)  =  -­‐6.19,  p  <  .001.  During  the  single  task  similar  results  were  found;  higher  

WM  accuracy  was  measured  when  the  participants  were  aware  (rating  2-­‐4)  of   the  cue  (M  =  .73,  SD  =  .19)  compared  to  when  the  participants  were  unaware   (rating  1)  of  the  cue  (M  =  .48,  SD  =  .11).  

Furthermore,  during  the  memory  cue  present  dual  task  trials,  when   visibility  was  rated  with  1,  WM  accuracy  did  not  significantly  differ  from  50%   chance,  t(16)  =  .94,  p  =  .36.  The  same  applies  to  memory  present  single  task   trials,  t(16)  =  .92,  p  =  .37.  Finally,  no  significant  different  in  WM  accuracy  was   found  between  dual  (M  =  .52,  SD  =  .08)  and  single  (M  =  .48,  SD  =  .11)  task  trials  

(21)

when  the  memory  cue  was  present  and  participants  were  unaware  of  the   memory  cue,  t(16)  =  1.70,  p  =  .11.  An  overview  is  shown  in  Table  3.    

Table  3  

Mean  WM  accuracy  on  single  and  dual  task  for  memory  cue  present  trials  only  (!),   depending  on  visibility.  

      Invisible  (1)     Visible  (2-­‐4)     Single       0.48  (.11)     0.73  (.19)   Dual       0.52  (.08)     0.76  (.14)                  

Figure  2.  Mean  WM  accuracy  on  single  and  dual  task  both  for  invisible  and  visible  

trials.  Invisible  meaning  the  participant  was  unaware  of  the  memory  cue  (rating   1);  visible  meaning  the  participant  was  aware  of  the  memory  cue  (rating  2-­‐4).   The  50%  chance  gridline  is  shown.  

(22)

Discussion    

Effect  of  Task  and  Visibility  on  WM  Accuracy  on  Target-­‐Present  Trials   In  conclusion,  some  unexpected  results  were  found.  First,  during  the   analysis  of  variance  for  performance  on  target-­‐present  trials  (task  vs.  visibility),   we  found  no  significant  main  effect  for  the  task.  This  suggests  that  the  additional   memory  task,  which  had  to  induce  a  visual  WM  load  on  conscious  working   memory,  did  not  have  any  effect.  Besides,  the  mean  WM  accuracy  on  the  dual   task  lies  a  bit  higher  than  the  mean  accuracy  on  the  single  task,  both  during   memory  cue  visible  and  invisible  trials.  

  Furthermore,  neither  during  the  single  nor  dual  task  did  participants   performed  above  50%  chance  on  the  invisible  present  memory  cue  trials.  From  a   Soto  and  colleagues’  (2011)  point  of  view  we  expected  participants  to  perform   both  during  single  and  dual  task  above  50%  chance,  and  because  an  invisible   memory  cue  is  processed  by  unconscious  WM  we  did  not  expect  any  interference   during  the  dual  task  with  the  visual  WM  load  that  is  processed  by  conscious  WM;   however  no  interference  was  observed  at  all  (in  the  form  of  a  decrease  in  WM   accuracy  during  the  dual  task).  The  first  contradicts  the  assumption  that  invisible   information  can  be  processed  by  unconscious  WM.  The  second  either  contradicts   the  notion  that  conscious  and  unconscious  WM  can  be  dissociated  or  it  suggests   that  the  visual  WM  load  was  not  sufficient  to  interfere  with  WM  accuracy.  The   latter  is  more  likely,  because  also  during  visible  cue  trials  the  visual  WM  load  did   not  interfere  with  WM  accuracy  during  the  dual  task.  

  To  conclude,  the  present  results  do  not  support  the  notion  of  processing   invisible  visual  information  by  unconscious  WM.  Further,  the  results  emphasize  

(23)

a  methodological  implication  regarding  the  visual  WM  load  that  should  have   interfered  with  WM  accuracy  during  the  memory  cue  present  dual  task  trials.    

Effect  of  Visual  WM  Load  on  Visibility  and  WM  Accuracy  

The  results  of  the  first  ANOVA  showed  that  a  main  effect  was  found  for   the  task  (on  visibility).  This  implies  that  during  memory  cue  present  trials   participants  were  more  likely  to  perceive  the  cue  during  the  single  task  

compared  to  the  dual  task.  So,  contrary  to  the  former  conclusion,  this  suggests   that  the  visual  WM  load  interfered  with  introspection  of  the  WM  content.  This   could  be  seen  as  the  subjective  measurement.  

  However,  the  second  ANOVA  shows  different  results.  Here,  no  main  effect   is  found  for  the  task  (on  WM  accuracy),  meaning  that  the  visual  WM  load  does   not  influence  WM  accuracy.  In  other  words,  the  visual  load  is  not  interfering  with   WM  accuracy;  this  could  be  seen  as  the  objective  measurement.  

  Thus,  this  suggests  that  dissociation  could  be  made  between  the   subjective  and  objective  measure.  Namely,  as  Bona  et  al.  (2013)  showed,  a   dissociation  between  actual  WM  content  (objective;  accuracy)  and  what  we  

experience  as  the  WM  content  (subjective;  visibility).  

 

Evaluation  of  Visual  WM  Load:  Dual  Task  

  There  is  some  uncertainty  about  the  effect  of  the  dual  task,  regarding  the   visual  WM  load.  There  are  alternative  explanations  for  the  dissociation  that  is   mentioned  above.  First,  as  mentioned  earlier,  during  the  single  trials  the  green   additional  memory  cue  was  still  presented  to  control  for  any  purely  visual  effect.   There  is  a  possibility  that  this  ‘green  flash’  alone,  presented  during  the  delay,  

(24)

interfered  with  WM  accuracy.  So,  if  this  was  true,  the  actual  visual  load  was   present  in  both  dual  and  single  trials.  This  could  explain  why  no  significant   difference  was  found  between  WM  accuracy  in  dual  versus  single  trials;  because   during  both  tasks  the  additional  memory  cue  could  have  interfered  with  WM   accuracy,  even  if  participants  were  instructed  to  ignore  this  additional  cue   during  the  single  trials.  This  could  have  been  tested  if  trials  were  added  where   nothing  is  presented  during  the  delay.  

  This  brings  us  to  the  next  question,  namely:    was  this  additional  memory   cue  actually  depleting  on  WM  or  is  there  maybe  another  type  of  memory  

involved?  A  clear  distinction  has  to  be  made  between  visual  WM  (VWM)  and   other  visual  short-­‐term  memory  (VSTM)  stores.  Sperling  (1960)  for  instance   proposed  an  iconic  memory:  a  high-­‐capacity  store,  reflecting  an  entire  

representation  of  the  visual  field,  which  decays  rapidly  (<1000  ms).  Attention   allows  a  few  items  to  be  selected  for  a  more  durable  and  robust  representation   in  VWM.  

  Sligte  and  colleagues  (2010)  proposed  another  VSTM  store,  namely   fragile  visual  short-­‐term  memory  (fragile  VSTM).  Fragile  VSTM  supposedly  has  a   lower  capacity  than  iconic  memory,  but  stores  high-­‐resolution  representations.   Subsequent,  VWM  stores  only  one  or  a  few  high-­‐resolution  representations.  In   Soto’s  experiment  (2011)  a  to-­‐be-­‐remembered  orientation  cue  had  to  be   maintained  until  the  end  of  the  trial  where  it  was  compared  with  a  target   stimulus.  However,  no  manipulation  was  involved  which  excludes  the  use  of   VWM  but  rather  some  kind  of  VSTM  (Persuh  et  al.,  2017).  

  To  conclude,  if  assumed  that  the  additional  memory  cue  used  in  this  study   depletes  on  some  kind  of  VSTM,  this  could  explain  why  the  additional  memory  

(25)

cue  interferes  in  both  the  single  and  dual  trials.  To  be  more  specific,  this  would   mean  that  the  original  memory  cue  is  held  in  this  VSTM  and  that,  during  both   single  and  dual  trials,  the  additional  memory  cue  is  interfering  with  this  VSTM.   Consecutive,  this  would  result  in  similar  accuracy  during  both  single  and  dual   trials.  

 

Subliminal  Processing:  Priming  Effects  

  We  have  to  take  into  account  different  types  of  non-­‐conscious  processing,   which  are  subliminal  and  preconscious  processes.  Kouider  and  Dehaene  (2007)   assume  that  during  subliminal  processing  the  strength  of  the  stimulus  is  too   weak  and  insufficient  to  induce  global  ignition,  in  other  words  large-­‐scale   reverberation,  which  means  that  the  information  cannot  enter  the  global   workspace  and  thus  consciousness.  Respectively,  during  preconscious  

processing  the  inability  of  the  information  to  enter  consciousness  is  the  result  of   a  lack  of  top-­‐down  attention  rather  than  bottom-­‐up  strength.  So,  the  information   is  accessibly  but  not  accessed  due  to  the  absence  of  attentional  amplification.   According  to  Kouider  and  Dehaene  masking  prevents  the  bottom-­‐up  stimulus   activation  and  therefore  masking  makes  it  impossible  for  information  to  enter   global  workspace  and  thus  (‘unconscious’)  WM.  In  that  way,  masked  stimuli   reflect  behavioural  priming  effects.  This  suggests  that  the  masked  cue  used  in   Soto’s  experiment  (2011)  is  processed  subliminally  resulting  in  priming  effects   rather  than  the  use  of  an  unconscious  WM  process.  

     

(26)

Conclusion  

  Taking  together  the  results  outlined  above,  we  can  conclude  that  we   failed  to  obtain  robust  evidence  supporting  the  notion  that  unconsciously   perceived  visual  information  could  be  maintained  in  WM  to  be  later  used  in  an   explicit  discrimination  task.  However,  the  observed  dissociation  between  WM   content  and  the  introspection  of  this  WM  content  is  promising  for  future  

research  into  the  possible  ability  of  WM  operating  on  unconscious  information.                                      

(27)

References    

Atkinson,  R.  C.,  &  Shiffrin,  R.  M.  (1968).  Human  memory:  A  proposed  system  and   its  control  processes.  Psychology  of  learning  and  motivation,  2,  89-­‐195.   Baddeley,  A.  (2000).  The  episodic  buffer:  a  new  component  of  working  

memory?.  Trends  in  cognitive  sciences,  4(11),  417-­‐423.  

Cowan,  N.  (1988).  Evolving  conceptions  of  memory  storage,  selective  attention,   and  their  mutual  constraints  within  the  human  information-­‐processing   system.  Psychological  bulletin,  104(2),  163.  

Dehaene,  S.  (2014).  Consciousness  and  the  brain:  Deciphering  how  the  brain  codes  

our  thoughts.  Penguin.  

Kouider,  S.,  &  Dehaene,  S.  (2007).  Levels  of  processing  during  non-­‐conscious         perception:  a  critical  review  of  visual  masking.  Philosophical  Transactions  

    of  the  Royal  Society  B:  Biological  Sciences,  362(1481),  857-­‐875.  

Nieuwenhuis,  S.,  &  de  Kleijn,  R.  (2011).  Consciousness  of  targets  during  the   attentional  blink:  a  gradual  or  all-­‐or-­‐none  dimension?.  Attention,  

Perception,  &  Psychophysics,  73(2),  364-­‐373.  

Oberauer,  K.  (2002).  Access  to  information  in  working  memory:  exploring  the   focus  of  attention.  Journal  of  Experimental  Psychology:  Learning,  Memory,  

and  Cognition,  28(3),  411.  

Oberauer,  K.,  &  Hein,  L.  (2012).  Attention  to  information  in  working  

memory.  Current  Directions  in  Psychological  Science,  21(3),  164-­‐169.   Schmidt,  T.  (2015).  Invisible  Stimuli,  Implicit  Thresholds:  Why  Invisibility  

Judgments  Cannot  be  Interpreted  in  Isolation.  Advances  in  Cognitive  

(28)

Sligte,  I.  G.,  Vandenbroucke,  A.  R.  E.,  Scholte,  H.  S.,  &  Lamme,  V.  A.  F.  (2010).   Detailed  sensory  memory,  sloppy  working  memory.  Frontiers  in  Psychology,  1,       175-­‐175.    

Soto,  D.,  Mäntylä,  T.,  &  Silvanto,  J.  (2011).  Working  memory  without   consciousness.  Current  Biology,  21(22),  R912-­‐R913.  

Sperling,  G.  (1960).  The  information  available  in  brief  visual  presentations.         Psychological  monographs:  General  and  applied,  74(11),  1-­‐29.    

Stein,  T.,  Kaiser,  D.,  &  Hesselmann,  G.  (2016).  Can  working  memory  be  non-­‐ conscious?.  Neuroscience  of  Consciousness,  2016(1),  niv011.  

Trübutschek,  D.,  Marti,  S.,  Ojeda,  A.,  King,  J.  R.,  Mi,  Y.,  Tsodyks,  M.,  &  Dehaene,  S.       (2016).  A  theory  of  working  memory  without  consciousness  or  sustained       activity.  bioRxiv,  093815.  

Persuh,  M.,  LaRock,  E.,  Berger,  J.  (2017).  Working  memory  and  consciousness:       The  current  state  of  play.    

Referenties

GERELATEERDE DOCUMENTEN

Utilizing a low-frequency output spectrum analysis of an integrated self-mixer at the upconversion mixer output for calibration, eliminates the need for expensive microwave

I wish to thank Jean-Paul van Oosten (JP) for sharing ideas during the PhD project and helping me to translate many letters in Dutch.. Thanks to Michiel Holtkamp and Gyuhee Lee

Reduction in TNT concentration was shown to be 20% for non-inoculated mixtures, while it was almost 100% in inoculated compost mixtures operated at C/N ¼ 20 and 5 L min 1

The superior tolerability of DTX-CCL-PMs is likely attributed to the blood circulation profile of the intact nanoparticles and thereby the absence of high DTX blood levels

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright

Die Folge ist, dass sich durch diese Fokussierung Strukturen für einen ‚elitären‘ Kreis gebildet haben, die oftmals nicht nur eine Doppelstruktur zu bereits vorhandenen

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

In this regression it has a negative value that indicates that for the first shock in oil price the effect of the size in downgrade results in lower probability that a company