• No results found

Observation of the Lambda(0)(b) -> Lambda+cK+K-pi(-) decay

N/A
N/A
Protected

Academic year: 2021

Share "Observation of the Lambda(0)(b) -> Lambda+cK+K-pi(-) decay"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Observation of the Lambda(0)(b) -> Lambda+cK+K-pi(-) decay

Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; De Bruyn, K.;

Dufour, L.; Mulder, M

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2021.136172

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Aaij, R., Adeva, B., Adinolfi, M., Ajaltouni, Z., Akar, S., Albrecht, J., Alessio, F., De Bruyn, K., Dufour, L.,

Mulder, M., Onderwater, C. J. G., Pellegrino, A., Tolk, S., van Veghel, M., & LHCb Collaboration (2021).

Observation of the Lambda(0)(b) -> Lambda+cK+K-pi(-) decay. Physics Letters B, 815, [136172].

https://doi.org/10.1016/j.physletb.2021.136172

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Physics Letters B 815 (2021) 136172

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Observation

of

the

Λ

b

0

→ Λ

+

c

K

+

K

π

decay

.

LHCb

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received4December2020

Receivedinrevisedform18February2021 Accepted18February2021

Availableonline23February2021 Editor:L.Rolandi

The Λ0b→ Λ+cK+K

π

− decay is observed for the first time using a data sample of proton-proton collisionsatcentre-of-massenergiesof√s=7 and8TeV collectedbytheLHCb detector,corresponding toanintegratedluminosityof3fb−1.TheratioofbranchingfractionsbetweentheΛ0b→ Λ+cK+K

π

− andtheΛ0b→ Λ+cDs decaysismeasuredtobe

B(Λ0b→ Λ+cK+K

π

) B(Λ0b→ Λ+cDs)

= (9.26±0.29±0.46±0.26)×10−2,

wherethefirstuncertaintyisstatistical,thesecondsystematicandthethirdisduetotheknowledgeof the DsK+K

π

− branchingfraction.Nostructureonthe invariantmassdistributionoftheΛ+cK+ systemisfound,consistentwithnoopen-charmpentaquarksignature.

©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Over the last two decades, a wealth of information has been accumulated on the decays of hadrons containing b quarks [1]. Measurementsoftheirdecayratesandpropertieshavebeenused to testthe Cabibbo-Kobayashi-Maskawamechanism [2,3] describ-ing weakinteractionswithintheStandardModel,andtoexamine various theoretical approaches, such asthe heavy quark effective theory [4] and thefactorizationhypothesis [5–8]. Althoughmany

b-hadron decays have been observed with their branching

frac-tions measured, a large number of them remains either unob-served or poorly measured, most notably decays of

Λ

0b,

Ξ

b and

Ω

b− baryons.Inthelast years,theLHCbexperimenthasobserved many new

Λ

0b decays to final states such as

Λ

+c

π

π

+

π

− [9],

Λ

+c

π

p p [10],

Λ

+c Ds [11],

χ

c1p K−,

χ

c2p K−[12],

ψ(

2S

)

p K−and

J

/

ψ

π

+

π

p K−[13].1

In thisLetter, the first observationof the

Λ

b0

→ Λ

+c K+K

π

− decay (referred to hereafter assignal channel)is reported, along with a measurement of its branching fraction relative to that of the

Λ

0b

→ Λ

+c Ds decay(normalisationchannel).Theanalysisuses a data sample of proton-proton(pp) collisions atcentre-of-mass energies of

s

=

7 and 8 TeV collectedby the LHCb experiment, corresponding to an integrated luminosity of 3 fb−1. The obser-vation ofthe

Λ

0b

→ Λ

+cK+K

π

− decay provides a laboratory to search for open-charm pentaquarks with valence quark content

1 Thecharge-conjugateprocessisimpliedthroughoutthisLetter.

Fig. 1. FeynmandiagramoftheleadingcontributiontotheΛb0→ Λ+cK+Kπ− sig-naldecay.

c

¯

suud that could decay strongly to the

Λ

+cK+ final state. These

statesareanaturalextensionofthethreenarrowpentaquark can-didateswithquark contentccuud observed

¯

in

Λ

0b

J

/

ψ

p K− de-cays [14], with the c quark

¯

replaced by an

¯

s quark. The recent discoveryofa D+K− structureinB

DD+K−decays [15,16], consistentwithopen-charmtetraquarks,alsomotivatesthesearch foropen-charmpentaquarks.

Fig.1showstheleadingdiagramcontributingtothesignal de-cay. Contributions to the companion K+K

π

− system could be through intermediate a1 mesons, such as the a1

(

1260

)

− state,

whichis found to dominatein B

D(∗)K∗0K− decays [17]. De-caysof

Σ

c0

→ Λ

+c

π

−oreven

Ξ

c0

→ Λ

+cK− could alsocontribute tothesignal.

https://doi.org/10.1016/j.physletb.2021.136172

0370-2693/©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

2. Detectorandsimulation

The LHCb detector [18,19] is a single-armforward spectrom-eter covering the pseudorapidity range 2

<

η

<

5, designed for the study ofparticles containing b or c quarks.The detector in-cludesahigh-precisiontrackingsystemconsistingofasilicon-strip vertex (VELO) detector surrounding the pp interaction region, a large-areasilicon-stripdetectorlocatedupstreamofadipole mag-net with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of themomentum,p,ofchargedparticleswitharelativeuncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a trackto a primary pp collision ver-tex (PV), the impact parameter (IP), is measured with a reso-lution of

(

15

+

29

/

pT

)

μ

m, where pT is the component of the

momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imagingCherenkovdetectors.Photons,electrons andhadrons are identified by a calorimeter systemconsisting of scintillating-pad and preshowerdetectors,an electromagneticanda hadronic calorimeter(HCAL).Muonsareidentifiedbyasystemcomposedof alternatinglayersofironandmultiwireproportionalchambers.

The onlineeventselectionis performedbya triggerbased on signal information only.The trigger consistsofa hardware stage, basedon informationfromthecalorimetersystem, followedbya software stage, whichapplies a full event reconstruction [20]. At the hardware trigger stage, referred to as L0 trigger in the fol-lowing, the

Λ

0b

→ Λ

c+K+K

π

− and

Λ

0b

→ Λ

+c Ds candidates are required to include a hadron having high transverse energy de-posited in the calorimeters. The transverse energy threshold is 3.5 GeV. Thesoftwaretrigger,alsonamedhigh-level trigger(HLT), requiresa two-,three- orfour-track vertexwithasignificant dis-placement fromany PV. At leastone charged particlemust have a large transverse momentum andbe inconsistent with originat-ing from any PV. A multivariate algorithm [21] is used for the identificationofdisplaced verticesconsistent withthedecayofa

b-hadron.

Simulation is used to model the effects of the detector ac-ceptanceandthe selection requirements,tovalidate thefit mod-els and to evaluate efficiencies. In the simulation, pp collisions

are generated using Pythia 8 [22] with a specific LHCb con-figuration [23]. Decays of unstable particles are described by EvtGen [24], in which final-state radiation is generated using Photos [25]. The interaction of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit [26] asdescribedinRef. [27].

3. Eventselection

Candidate

Λ

+c andDs hadronsarereconstructedthroughtheir decaystothe p K

π

+andK+K

π

− finalstates,respectively.The offline candidateselection isperformedbyapplyingaloose pres-election,followedbyamultivariateanalysis(MVA)tofurther sup-presscombinatorialbackgroundoriginatingfromrandom combina-tions.Toreducesystematicuncertaintiesontheratioofefficiencies betweenthe signal andthenormalisation channels, theselection criteriaof

Λ

+c candidatesareidenticalbetweenthetwochannels.

A good-quality track with pT

>

100 MeV/c and p

>

1 GeV/c is

required foreach final-stateparticle. Protonsandantiprotonsare required to have a momentum greater than 10 GeV/c to improve their identification.Allfinal-stateparticlesare alsorequiredtobe inconsistent with originating from any PV by requiring a large

χ

2

IP,where

χ

IP2 isdefined asthe difference in the

χ

2 of a given

PV fit withandwithout the trackunder consideration. Each

Λ

+c baryon candidateis required to have at leastone decayproduct

with pT

>

500 MeV/c and p

>

5 GeV/c, a good-quality vertex (i.e.

small

χ

2

vtx), andinvariant mass within

±

15 MeV/c2 of theknown

Λ

+c mass [1]. Forthe

Λ

+c candidates, thesumof transverse mo-mentaoftheirdecayproductsmustexceed1.8 GeV/c.Theselection criteriafor Ds candidates aresimilar to thoseof

Λ

+c candidates. The K+K

π

−invariantmassisrequiredtobewithin

±

35 MeV/c2

fromtheknown Ds mesonmass.

Thesignalchannelisreconstructedbycombining

Λ

+c,K+, K

and

π

− candidates, while the normalisation channel is recon-structed by combining a

Λ

+c with a Ds candidate. The combi-nationsabove form

Λ

0b candidates, whichare required to havea small

χ

2

vtx and

χ

IP2, and a decay time with respect to its

asso-ciated PV greater than 0

.

2 ps. The associated PV is the one that givesthe smallest

χ

2

IP, wherethe

χ

IP2 denotes the IP significance

ofcandidate’s trajectory returned by the kinematicalfit. The an-gle between the

Λ

b0 momentum and the vector pointing from the associated PV to the

Λ

0b decay vertex,

θ

p, is required to be smallerthan 11mrad.The

Λ

0b candidateis alsorequiredtohave atleastonefinal-state particlewith pT

>

1

.

7 GeV/c, andits decay

vertexsignificantly displaced fromanyPV. The latteris achieved byrequiringthesignificanceoftheflightdistancebetweenthe

Λ

0b decayvertexandanyPVtobe largerthan4.Final-statetracksof signal andnormalisationcandidates mustpass stringent particle-identification requirements based on the information from RICH detectors,calorimetersystemand muonstations. Toreject tracks thatsharethesamesegmentintheVELOdetector,anytwotracks withthesamechargeusedtoformthe

Λ

0b candidatearerequired tohaveanopeninganglelargerthan0.5mrad.Akinematicfit [28] ofthedecaychain constrains the

Λ

0b candidateto originate from the associated PV and the

Λ

+c candidate invariant mass to its knownvalue [1].

The

Λ

0b candidatecould originate from B0

D+K+K

π

− or

B0s

D+sK+K

π

− decays, where a pion or kaon in

D+

K+

π

π

+ or D+s

(

D+

)

K+K

π

+ decays is misidenti-fiedasaproton.Thesebackgroundcontributionsarevetoedifthe invariant massesof the

Λ

+c and

Λ

b0 candidates,evaluated by re-placingtheprotonbyeitherthepionorkaonmasshypothesis,are within

±

15 MeV/c2oftheknownD+

(

D+

s

)

massand

±

25 MeV/c2 of theknown B0

(

B0

s

)

mass [1].Thesevetoesare appliedtoboththe signal and the normalisation channels. For the signal decay, ad-ditionalvetoesare appliedifthe invariant massofthe K+

π

− or

K+K

π

− companiontracksfallswithin

±

30 MeV/c2 ofthe D0 or

Ds knownmass,respectively [1].

Reconstructedcandidates arefurther requiredtopassan MVA output threshold based upon a multilayer perceptron (MLP) fil-ter [29], designed to reject the combinatorial background. The MLP classifier is trained using a signal sample of simulated

Λ

0b

→ Λ

+cK+K

π

− decays tuned on datato reproduce correctly the

Λ

0b production kinematics based on the pT and y

distribu-tionsandabackgroundsample takenfromtheuppersidebandof the

Λ

b0 invariant mass spectrum in the range of 5.75 – 7 GeV/c2.

Afour-bodyphase-spacesimulationisusedforthesignal sample tokeeptheMLPefficiencyasuniformaspossible,asincluding in-termediate resonancesinthe simulationcould potentially leadto small MLP efficiencies for less represented phase-space regions. The lower sideband is not used to avoid potential background contributions frompartially reconstructed decays.The MLP input includes thefollowing variables: pT sumof the

Λ

+c decay prod-ucts,minimal

χ

2

IPamongthe

Λ

c+decayproducts,minimal pT and

minimal

χ

2

IPamongthekaonsoriginatingdirectlyfromthe

Λ

b0 de-cay,pTand

χ

IP2 ofthe

π

−fromthe

Λ

0bdecay,pT sumofall

π

and K originating directlyfrom the

Λ

0b decay,

χ

2

vtx of the

Λ

+c candi-date,

χ

2 ofthe flightdistancebetweenthe

Λ

0

b decayvertexand theassociatedPV,cos

θ

p,

χ

2 probabilityofthe

Λ

0

(4)

ver-LHCb Collaboration Physics Letters B 815 (2021) 136172

Fig. 2. Invariantmassdistributionof(a)Λ0

b→ Λ+cK+Kπ− and(b)Λ0b→ Λ+cDs candidates.Fitprojectionsareoverlaidasabluesolidline.For(a),theredsolidline representsthesignalcomponent,thebluedashedlineisthebackgroundduetorandomcombinations,andthevioletdottedlineisthecontributionfromΛ0

b→ Σc+K+Kπ− decays.For(b),theredsolidlineisthenormalizationchannelcomponent,thevioletdottedlineisthe Λ0b→ Λ+cD∗−s background,thegreendashed-dottedlineisthe contributionfromΛ0b→ Λ+cK+Kπ−decays,andthebluedashedlinerepresentscombinatorialbackground.

texfit,andthedifferenceoflongitudinalpositionbetweenthe

Λ

+c andthe

Λ

0b decayvertices.

The MLP response obtained from the training is also applied to the normalisation channel sample. The optimal thresholds on the MLP response are obtained for the signal and normalisation channels separately by maximising a figure-of-merit, defined as

S

/

S

+

B,whereS andB aretheexpectedsignalandbackground yieldsfor

Λ

0bcandidateswithina

±

2

.

5

σ

masswindowaroundthe known

Λ

0bmass [1],where

σ

isthemassresolutioncorresponding to about12 MeV/c2.Both S and B aredetermined bymultiplying

theinitialyieldsofsignal andbackgroundwiththecorresponding MLPselectionefficienciesestimatedfromsimulationandsideband data,respectively.Theinitialsignalandbackgroundyieldsare ob-tainedfromapreliminaryfittothepreselecteddatasamplebefore theMLPrequirementapplied,wherethesignal

Λ

b0peakisalready seeninthe

Λ

+cK+K

π

− invariantmassdistribution.Theoptimal point corresponds toa signalefficiency of90%anda background rejectionof 85%.About 0.6%eventsinthe signal channelcontain multiple candidates, onlyone candidate is retainedby a random selection.

4. Signalyieldsandsearchforintermediatestates

The yields in both the signal andnormalisation channels are determined from an unbinned extended maximum-likelihood fit to the corresponding invariant mass spectraof the

Λ

+c K+K

π

− system. The signal component is modelled by a sum of two Crystal Ball functions [30] with a common mean of the Gaus-sian cores, with tail parameters fixed to the values obtained from simulation. For both the signal and normalisation chan-nels, the combinatorial background is described by an expo-nential function, whose parameters are varied freely and al-lowed to be different between the signal and normalisation channels. For the signal channel, a significant contribution from

Λ

0b

→ Σ

c+

[→ Λ

+c

π

0

]

K+K

π

− decays ispresentin thelower in-variant mass region, which has the same final state as the

π

0

is not reconstructed. The shape of this background is obtained from a simulation of

Λ

b0

→ Σ

c

(

2455

)

+K+K

π

− decays. For the normalisation channel, the

Λ

0b

→ Λ

+c D∗−s decay may be recon-structed as

Λ

0b

→ Λ

+cDs− due to photon emission in the D∗−s

decay. The shape of thisbackground is obtained from simulated

Λ

0b

→ Λ

+cDs∗− decays. The signal decay can also contribute to the normalisation channel forming a background under the Ds

mass peak. This background contribution is estimated from the

Ds sidebandsofthenormalisationdatasample,wherethewidth of the sideband is chosen to be the same as that of the Ds

mass window used in the normalisation channel selection. The

Fig. 3. InvariantmassdistributionsofΛ+cK+candidatesintheΛ0b→ Λ+cK+Kπ− signalchannelforthe simulation(red line)andthe background-subtracteddata (bluepointswitherrorbars).

invariantmassdistributionsforthesignalandnormalisation chan-nelsare showninFig.2 withthefitprojects overlaid.The signal yieldsareobtainedtobeN

0b

→ Λ

+c K+K

π

)

=

3400

±

80 and

N

0b

→ Λ

+cDs

[

K+K

π

])

=

2550

±

60, respectively,wherethe uncertaintiesarestatisticalonly.

Anopen-charmpentaquarkstate couldbe revealedasa struc-ture in the invariant mass distribution of the

Λ

+c K+ system, shownin Fig.3 fordata andsimulation. The datadistribution is backgroundsubtractedthroughthesPlot weightingtechnique [31], usingthe

Λ

+c K+K

π

− invariantmassasdiscriminating variable. Nostructureisobserved.Afullamplitudeanalysisisneededto es-timatethe limitof thepentaquark contribution,whichis beyond thescopeofthisLetter.

Instead,arich structureofknownhadroncontributions is vis-ible in thebackground-subtracted invariant mass distributions of the

Λ

+c

π

−, K+

π

− and K+K

π

− systems, shown inFig. 4. The

Σ

c

(

2455

)

0and

Σ

c

(

2520

)

0resonancesarevisibleinthe

Λ

+c

π

− dis-tribution. A large K

(

892

)

0 resonance is observed in the K+

π

projection.In the K+K

π

− system,a broadpeakingstructure at about1

.

5 GeV/c2 isalsoobserved.Asimilar structureis alsoseen inB

D(∗)K∗0K−decaysbytheBelleexperiment [17],andis ex-plainedasthetailcontributionofthea1

(

1260

)

−resonance.

5. Branchingfractionratioandefficiencies

Theratioofthebranchingfractionsofthe

Λ

b0

→ Λ

+cK+K

π

− decayincludingresonance contributionswith respectto the nor-malisationchannelisdeterminedby

(5)

Fig. 4. Invariantmassdistributionsof(a)theΛ+−,(b)K+π−,and(c)K+Kπ− systemsintheΛ0b→ Λ+cK+Kπ−signalchannel,forthebackground-subtracteddata. ThereddashedverticallinesindicatethevetomassintervalsforD0mesonsintheK+πdistribution,andD

s intheK+Kπ−distribution.

B

0b

→ Λ

+c K+K

π

)

B

b0

→ Λ

+c Ds

)

=

N

0b

→ Λ

+c K+K

π

)

N

b0

→ Λ

+c Ds

[

K+K

π

])

×

(1)

tot

0b

→ Λ

+c Ds

[

K+K

π

])

tot

0b

→ Λ

+c K+K

π

)

×

B

(

Ds

K+K

π

),

where

B

standsforthebranchingfractionofthecorresponding de-cay.ThesignalandnormalisationyieldsarereportedinSec.4.The totalefficiencies

tot ofthesignalandthenormalisationchannels

aredeterminedbytheproduct

tot

=

acc

×

sel

×

L0

×

HLT

×

PID

,

(2)

where

acc accountsfor the LHCb geometrical acceptance,

sel is

the efficiency of reconstructing and selecting a candidate within the acceptance,

L0 is the L0 trigger efficiency for the selected

candidates,

HLT is the HLT efficiency for the selected

candi-dates passingtheL0triggerrequirement,and

PID isthe

particle-identification(PID)efficiencyfortheselectedcandidatesthat sur-vive all trigger requirements. All efficiencies except for

L0 and

PIDaredeterminedfromsimulation,andthe

(

pT

,

y

)

distributions

ofthe simulated

Λ

0b baryonsareweighted tomatchthat ofdata, where y istherapidityofthecandidate.Theweightsareobtained usingthenormalisationchannelandappliedtothesignaldecay.

To take into account the resonance contributions to the sig-nal decay channel, the simulation uses a mixture of three de-cay modes:

Λ

b0

→ Λ

+ca1

(

1260

)

(

K∗0K

)

,

Λ

+c K∗0K− and non-resonant four-body phase space. The fractions are determined by fitting the two-dimensional data distribution of K+

π

− and

K+K

π

− invariantmasses.

The L0 efficiency of each hadron is computed using samples of well identified pions and kaons from D0

K

π

+ decays and protons from

Λ

− decays [32]. The efficiency is cal-culated in bins of transverse energy for the particles incident on the HCAL surface, separately for its inner and outer regions. The PID efficiency is determined by the calibration samples of

D∗+

D0

(

K

π

+

)

π

+ and

Λ

decays andis evaluated asafunctionoftrackmomentum,trackpseudorapidityandevent multiplicity,wherethelatterisrepresentedbythenumberofthe reconstructedtracksintheevent.

Theratiobetweenthetotalefficiencies forthesignal and nor-malisation channels in Eq. (1), is determined to be 0

.

78

±

0

.

02, where the uncertainty accounts only for the size of the simula-tionsample.Thevaluediffersfromunityprimarilyduetodifferent selectionefficienciesontheMVAresponsesforthesignaland nor-malisationchannels.

External inputs are used for the branching fractions

B(

Ds

K+K

π

)

= (

5

.

39

±

0

.

15

)

×

10−2 [1] and

B(Λ

0

b

→ Λ

+c Ds

)

= (

1

.

10

±

0

.

10

)

×

10−2 [11]. In the latter case, whilethevalueismeasuredbytheLHCbcollaboration [11],its un-certainty isdominated by thebranching fractionof B0

D+D

s decays,andisessentially uncorrelatedwiththepresent measure-ment.

6. Systematicuncertainties

Allsystematicuncertaintiesonthemeasurementoftheratioof branching fractions are listed inTable 1. The total uncertaintyis determined fromthe sumofall contributions in quadrature.The dominantuncertaintyisrelatedtotheresonancestructurethatis notperfectlymodelled bythesimulation.

Uncertaintiesduetothefitmodelareconsidered.Forthe back-groundduetorandomcombinationsoffinal-stateparticlesinboth

(6)

LHCb Collaboration Physics Letters B 815 (2021) 136172

Table 1

Summaryofsystematicuncertaintiesontheratioofbranchingfractions.

Source Uncertainty (%)

Combinatorial background 0.9

Shape ofΛ0

b→ Σc+K+Kπ−contribution 0.3

Λ0

b→ Λ+cK+Kπ−background in normalisation channel 0.8

Signal fit model 0.5

Simulation sample size 2.5

PID efficiency 0.4

Trigger efficiency 0.1

(pT, y)weight 0.8

Track multiplicity weight 0.8

Λ+c Dalitz structure 1.4

Mixture fraction in simulation 0.2

Resonance structure 3.6

Multiple candidates 0.3

MVA selection 0.5

Total 4.9

thesignalandnormalisationchannels, theexponentialfunctionis replaced by a second-order polynomial function. From the com-parison tothedefaultresult, therelativeuncertaintyon theratio of branching fractions is 0.9%. In the signal channel, the uncer-tainty duetothe

Λ

b0

→ Σ

c+K+K

π

− background contributionis assessedbyperformingthefitwithawidenedmassregion, result-inginarelativeuncertaintyof0.3%.Forthenormalisationchannel, changingtheyieldofthe

Λ

0b

→ Λ

+cK+K

π

− contributionwithin itsuncertaintyresultsinarelative0

.

8% variation.

Thesystematicuncertaintyduetothemodelforbothsignaland normalisationchannels,isstudiedbychangingtoasingleHypatia function [33],wherethemeanandwidthparametersareleftfree whileallother parametersaretakenfromsimulation.Thisresults inarelativeuncertaintyof0

.

5%.

Theuncertaintiesontheratioofefficienciesareevaluated.The uncertainty dueto the finite simulationsample size isevaluated fromtheexpectedefficiencyvariation inbins of pT and y of the

Λ

0bcandidateas

σ

=



i

i

(

1

i

)

Niwi





i Niwi

,

(3)

for each bin i, where Ni isthe number of generated events, wi isacorrectionweight,and

i isthecandidateefficiency.The nor-malisationof theweightsis chosensuch that thedenominator is equaltototalnumberofgeneratedeventswithouttheweighting. Therelativeuncertaintyisfoundtobe2

.

5%.

Pseudoexperiments areused toevaluate thesystematiceffects due to uncertainties on the weights or efficiencies in different bins. Foragiven source,manypseudoexperimentsare generated, in which each produces a new set ofweights or efficiencies ac-cordingtothecentralvaluesanduncertaintiesfollowingGaussian distributions.Theefficiencyratiobetweenthesignaland normali-sationchannelsisrecomputed.Theresultingefficiencyratiosfrom manypseudoexperimentsofthissourceproduceaGaussian distri-bution centering atthe baseline value. The standard deviationof the Gaussian distributionis takenasabsolute uncertaintyon the efficiency ratiofor the givensource. The procedure is applied to obtainthesystematicuncertaintyrelatedtothePIDandtrigger ef-ficienciesandto

(

pT

,

y

)

andtrackmultiplicityweighting.

Thetrackingefficiencyreturnedby thesimulationiscalibrated using adata-driven method [34].The uncertainty onthe calibra-tionsamplesizeispropagatedtotheefficiencyratiousing pseudo-experiments,resultinginasystematicuncertaintyof0.8%.Because the final states forsignal and normalisation modesare identical,

possible data-simulation differences in hadron interactions with thedetectormaterialareassumedtobenegligible.

The agreement between data and simulation for the

Λ

+c

p K

π

+ channel is tested by comparing the Dalitz structure. The signal simulation sample is weighted in the m

(

p K

)

versus

m

(

K

π

+

)

plane to match the distribution of the background-subtracteddata.Theuncertaintyrelatedtothelimitedsamplesize used for obtaining these weights is 1.1%, obtained from pseudo-experiments. The uncertainty related to the choice of binning is 0.8%,determinedbyusinganalternativebinning.Atotalof1.4%is assignedassystematicuncertainty.

Thecontributionsofthe

Λ

0b decaysthroughthemixtureofthe threedecaymodesareconsideredwhengeneratingthesimulated eventsofthesignalchannel,andtheirfractionsareobtainedby fit-tingthetwo-dimensionaldistributionoftheK+K

π

−andK+

π

systemsinthebackground-subtractedsignaldata.Thefractionsare changed according to the statistical uncertainty of the fit result, yielding0.2%ofrelativeuncertainty.

The simulation does not fully model the resonance structure,

e.g. the contribution of

Σ

c0 resonances, which is clearly seen in

the

Λ

+c

π

− invariant mass distribution, as illustrated in Fig. 4. Byweighting thesimulation tomatchthem

+c

π

)

distribution in the data, a 1.3% variation of the ratio of branching fractions is found and assigned as systematic uncertainty. Besides, differ-ences between background-subtracted data andsimulated signal eventsarealsoobservedintheinvariantmassdistributionsofthe

Λ

+c K+K− and K+K− systems. To account for this discrepancy, the simulatedsample is weighted according to the

Λ

+c K+K− or

K+K− mass distribution of background-subtracted data, andthe ratioofbranchingfractionsisreevaluated.Thetwoprocedures re-turnchanges of 2.6%and 2.0%,respectively. The three valuesare added inquadrature to account for the uncertainty dueto reso-nancestructure.

Simulation does not account well for multiple candidates, whichisfoundto beabout0.6%ofthe datasampleinthe signal channel.Halfofthisfractionisassignedassystematicuncertainty duetotherandomchoicetoretainonlyonecandidate.

TheMVAselectioncriteriaareoptimizedseparatelyforthe sig-nalandnormalisationchannels.Asanalternativechoice,theMVA selectionofthe normalisationchannel isfixed tobe thesameas thatofthesignalchanneltotesttherobustnessoftheMVA selec-tion.Therelative variationofthe branchingfractionratiois0.5%, whichisassignedassystematicuncertainty.

7. Resultsandsummary

The first observation of the

Λ

0b

→ Λ

c+K+K

π

− decay is presented, and the branching fraction is determined using the

Λ

0b

→ Λ

+cDs decay as a normalisation channel. The relative branchingfractionismeasuredtobe

B

0b

→ Λ

+c K+K

π

)

B

0b

→ Λ

+c Ds

)

= (

9

.

26

±

0

.

29

±

0

.

46

±

0

.

26

)

×

10−2

,

wherethefirstuncertaintyisstatistical,thesecondsystematic,and thethirdisduetotheknowledgeofthe Ds

K+K

π

− branch-ingfraction [1].Usingthisratio,the

Λ

b0

→ Λ

+c K+K

π

−branching fractionisdeterminedtobe

B

b0

→ Λ

+c K+K

π

)

= (

1

.

02

±

0

.

03

±

0

.

05

±

0

.

10

)

×

10−3

,

where the third term includes the uncertainty on the branching fractionofthe

Λ

0b

→ Λ

+c Ds decay [1]. Theinvariant mass distri-butionofthe

Λ

+cK+systemisinspectedforpossiblestructuredue toopen-charmpentaquarks,andnocontributionisobserved.

(7)

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC. We thankthe technicaland administrative staff at the LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF andSER (Switzerland); NASU(Ukraine); STFC (United King-dom); DOE NP and NSF (USA). We acknowledge the computing resourcesthatareprovidedbyCERN,IN2P3(France),KITandDESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom),RRCKIandYandexLLC(Russia), CSCS (Switzer-land),IFIN-HH(Romania),CBPF(Brazil),PL-GRID(Poland)andOSC (USA). We are indebtedto the communities behind the multiple open-source software packages on which we depend. Individual groups or members havereceived support fromAvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of FrontierSciencesofCAS,CASPIFI,ThousandTalentsProgram,and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yan-dex LLC (Russia); GVA,XuntaGal and GENCAT (Spain); The Royal Society andtheLeverhulmeTrust(UnitedKingdom).

Appendix A. Supplementarymaterial

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttps://doi.org/10.1016/j.physletb.2021.136172.

References

[1]ParticleDataGroup,P.A.Zyla,etal.,Reviewofparticlephysics,tobepublished inProg.Theor.Exp.Phys.6(2020)083C01.

[2]N.Cabibbo,Unitarysymmetryandleptonicdecays,Phys.Rev.Lett.10(1963) 531.

[3]M.Kobayashi,T.Maskawa,CP-violationintherenormalizabletheoryofweak interaction,Prog.Theor.Phys.49(1973)652.

[4]E.Eichten,B.Hill,Aneffectivefieldtheoryforthecalculationofmatrix ele-mentsinvolvingheavyquarks,Phys.Lett.B234(1990)511.

[5]D.Fakirov,B.Stech,FandDdecays,Nucl.Phys.B133(1978)315.

[6]N.Cabibbo,L.Maiani,Two-bodydecaysofcharmedmesons,Phys.Lett.B73 (1978)418,Erratum:Phys.Lett.B76(1978)663.

[7]T.Mannel,W.Roberts,Z.Ryzak,Factorizationhypothesisandthenon-leptonic decaysofheavyhadrons,Phys.Lett.B259(1991)359.

[8]M.Beneke,G.Buchalla,M.Neubert,C.T.Sachrajda,QCDfactorizationfor exclu-sivenon-leptonicb-mesondecays:generalargumentsandthecaseofheavy– lightfinalstates,Nucl.Phys.B591(2000)313.

[9]LHCbcollaboration,R.Aaij,etal.,Measurementsofthebranchingfractionsfor B0

(s)D(s)π π πandΛb0→ Λ+cπ π π,Phys.Rev.D84(2011)092001,Erratum:

Phys.Rev.D85(2012)039904,arXiv:1109.6831.

[10]LHCbcollaboration,R.Aaij,etal.,ObservationofthedecayΛ0

b→ Λ+cp pπ−,

Phys.Lett.B784(2018)101,arXiv:1804.09617.

[11]LHCbcollaboration,R.Aaij,etal.,Studyofbeautyhadrondecaysintopairsof charmhadrons,Phys.Rev.Lett.112(2014)202001,arXiv:1403.3606. [12]LHCbcollaboration,R.Aaij,etal.,ObservationofthedecaysΛ0bχc1p K−and

Λ0

bχc2p K−,Phys.Rev.Lett.119(2017)062001,arXiv:1704.07900.

[13]LHCbcollaboration,R.Aaij,etal.,ObservationofΛ0

b→ ψ(2S)p K− andΛ0b

J/ψπ+πp K− decays andameasurementoftheΛb0baryonmass,J.High

EnergyPhys.05(2016)132,arXiv:1603.06961.

[14]LHCbcollaboration,R.Aaij,etal.,Observationofanarrowpentaquarkstate, Pc(4312)+,andoftwo-peakstructureofthe Pc(4450)+,Phys.Rev.Lett.122

(2019)222001,arXiv:1904.03947.

[15]LHCb collaboration,R. Aaij,et al., Model-independentstudyofstructure in B+p

D+DK+ decays, Phys. Rev.Lett. 125 (2020) 242001, arXiv:2009. 00025.

[16]LHCbcollaboration,R.Aaij,etal.,AmplitudeanalysisoftheB+→D+DK+ decay,Phys.Rev.D102(2020)112003,arXiv:2009.00026.

[17]Bellecollaboration,A.Drutskoy,etal.,ObservationofBD(∗)KK0(∗)decays,

Phys.Lett.B542(2002)171,arXiv:hep-ex/0207041.

[18]LHCbcollaboration,A.A.AlvesJr.,etal.,TheLHCbdetectorattheLHC,J. In-strum.3(2008)S08005.

[19]LHCbcollaboration,R.Aaij,etal.,LHCbdetectorperformance,Int.J.Mod.Phys. A30(2015)1530022,arXiv:1412.6352.

[20]R.Aaij,etal.,TheLHCbtriggeranditsperformancein2011,J.Instrum.8(2013) P04022,arXiv:1211.3055.

[21]V.V.Gligorov,M.Williams,Efficient,reliableandfasthigh-leveltriggeringusing abonsaiboosteddecisiontree,J.Instrum.8(2013)P02013,arXiv:1210.6861. [22]T.Sjöstrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput.

Phys.Commun.178(2008)852,arXiv:0710.3820.

[23]I.Belyaev,etal.,HandlingofthegenerationofprimaryeventsinGauss,the LHCbsimulationframework,J.Phys.Conf.Ser.331(2011)032047.

[24]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152.

[25]P.Golonka,Z.Was,PHOTOSMonteCarlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97,arXiv:hep-ph/0506026. [26]Geant4collaboration,J.Allison,etal.,Geant4developmentsandapplications,

IEEETrans.Nucl.Sci.53(2006)270;

Geant4collaboration,S.Agostinelli,etal.,Asimulationtoolkit,Nucl.Instrum. MethodsA506(2003)250.

[27]M.Clemencic,etal.,TheLHCbsimulationapplication,Gauss:design,evolution andexperience,J.Phys.Conf.Ser.331(2011)032023.

[28]W.D.Hulsbergen,DecaychainfittingwithaKalmanfilter,Nucl.Instrum. Meth-odsA552(2005)566,arXiv:physics/0503191.

[29]A.Hoecker,etal.,TMVA4—toolkitformultivariatedataanalysiswithROOT. Usersguide,arXiv:physics/0703039.

[30]T.Skwarnicki,Astudyoftheradiativecascadetransitionsbetweenthe Upsilon-primeandUpsilonresonances,PhDthesisInstituteofNuclearPhysics,Krakow, 1986,DESY-F31-86-02.

[31]M.Pivk,F.R.LeDiberder,sPlot:astatisticaltooltounfolddatadistributions, Nucl.Instrum.MethodsA555(2005)356,arXiv:physics/0402083.

[32]A. Martin Sanchez, P. Robbe, M.-H. Schune, Performances ofthe LHCb L0 CalorimeterTrigger,LHCb-PUB-2011-026,CERN-LHCb-PUB-2011-026,2012. [33]D. MartínezSantos,F.Dupertuis,Mass distributionsmarginalizedover

per-eventerrors,Nucl.Instrum.MethodsA764(2014)150,arXiv:1312.5000. [34]LHCbcollaboration,R.Aaij,etal.,Measurementofthetrackreconstruction

ef-ficiencyatLHCb,J.Instrum.10(2015)P02007,arXiv:1408.1251.

LHCbCollaboration

R. Aaij

31

,

C. Abellán Beteta

49

,

T. Ackernley

59

,

B. Adeva

45

,

M. Adinolfi

53

,

H. Afsharnia

9

,

C.A. Aidala

84

,

S. Aiola

25

,

Z. Ajaltouni

9

,

S. Akar

64

,

J. Albrecht

14

,

F. Alessio

47

,

M. Alexander

58

,

A. Alfonso Albero

44

,

Z. Aliouche

61

,

G. Alkhazov

37

,

P. Alvarez Cartelle

47

,

S. Amato

2

,

Y. Amhis

11

,

L. An

21

,

L. Anderlini

21

,

A. Andreianov

37

,

M. Andreotti

20

,

F. Archilli

16

,

A. Artamonov

43

,

M. Artuso

67

,

K. Arzymatov

41

,

E. Aslanides

10

,

M. Atzeni

49

,

B. Audurier

11

,

S. Bachmann

16

,

M. Bachmayer

48

,

J.J. Back

55

,

S. Baker

60

,

P. Baladron Rodriguez

45

,

V. Balagura

11

,

W. Baldini

20

,

J. Baptista Leite

1

,

R.J. Barlow

61

,

S. Barsuk

11

,

W. Barter

60

,

M. Bartolini

23

,

i

,

F. Baryshnikov

80

,

J.M. Basels

13

,

G. Bassi

28

,

B. Batsukh

67

,

A. Battig

14

,

A. Bay

48

,

M. Becker

14

,

F. Bedeschi

28

,

I. Bediaga

1

,

A. Beiter

67

,

V. Belavin

41

,

S. Belin

26

,

V. Bellee

48

,

(8)

LHCb Collaboration Physics Letters B 815 (2021) 136172

K. Belous

43

,

I. Belov

39

,

I. Belyaev

38

,

G. Bencivenni

22

,

E. Ben-Haim

12

,

A. Berezhnoy

39

,

R. Bernet

49

,

D. Berninghoff

16

,

H.C. Bernstein

67

,

C. Bertella

47

,

E. Bertholet

12

,

A. Bertolin

27

,

C. Betancourt

49

,

F. Betti

19

,

e

,

M.O. Bettler

54

,

Ia. Bezshyiko

49

,

S. Bhasin

53

,

J. Bhom

33

,

L. Bian

72

,

M.S. Bieker

14

,

S. Bifani

52

,

P. Billoir

12

,

M. Birch

60

,

F.C.R. Bishop

54

,

A. Bizzeti

21

,

s

,

M. Bjørn

62

,

M.P. Blago

47

,

T. Blake

55

,

F. Blanc

48

,

S. Blusk

67

,

D. Bobulska

58

,

J.A. Boelhauve

14

,

O. Boente Garcia

45

,

T. Boettcher

63

,

A. Boldyrev

81

,

A. Bondar

42

,

v

,

N. Bondar

37

,

S. Borghi

61

,

M. Borisyak

41

,

M. Borsato

16

,

J.T. Borsuk

33

,

S.A. Bouchiba

48

,

T.J.V. Bowcock

59

,

A. Boyer

47

,

C. Bozzi

20

,

M.J. Bradley

60

,

S. Braun

65

,

A. Brea Rodriguez

45

,

M. Brodski

47

,

J. Brodzicka

33

,

A. Brossa Gonzalo

55

,

D. Brundu

26

,

A. Buonaura

49

,

C. Burr

47

,

A. Bursche

26

,

A. Butkevich

40

,

J.S. Butter

31

,

J. Buytaert

47

,

W. Byczynski

47

,

S. Cadeddu

26

,

H. Cai

72

,

R. Calabrese

20

,

g

,

L. Calefice

14

,

L. Calero Diaz

22

,

S. Cali

22

,

R. Calladine

52

,

M. Calvi

24

,

j

,

M. Calvo Gomez

83

,

P. Camargo Magalhaes

53

,

A. Camboni

44

,

P. Campana

22

,

D.H. Campora Perez

47

,

A.F. Campoverde Quezada

5

,

S. Capelli

24

,

j

,

L. Capriotti

19

,

e

,

A. Carbone

19

,

e

,

G. Carboni

29

,

R. Cardinale

23

,

i

,

A. Cardini

26

,

I. Carli

6

,

P. Carniti

24

,

j

,

L. Carus

13

,

K. Carvalho Akiba

31

,

A. Casais Vidal

45

,

G. Casse

59

,

M. Cattaneo

47

,

G. Cavallero

47

,

S. Celani

48

,

J. Cerasoli

10

,

A.J. Chadwick

59

,

M.G. Chapman

53

,

M. Charles

12

,

Ph. Charpentier

47

,

G. Chatzikonstantinidis

52

,

C.A. Chavez Barajas

59

,

M. Chefdeville

8

,

C. Chen

3

,

S. Chen

26

,

A. Chernov

33

,

S.-G. Chitic

47

,

V. Chobanova

45

,

S. Cholak

48

,

M. Chrzaszcz

33

,

A. Chubykin

37

,

V. Chulikov

37

,

P. Ciambrone

22

,

M.F. Cicala

55

,

X. Cid Vidal

45

,

G. Ciezarek

47

,

P.E.L. Clarke

57

,

M. Clemencic

47

,

H.V. Cliff

54

,

J. Closier

47

,

J.L. Cobbledick

61

,

V. Coco

47

,

J.A.B. Coelho

11

,

J. Cogan

10

,

E. Cogneras

9

,

L. Cojocariu

36

,

P. Collins

47

,

T. Colombo

47

,

L. Congedo

18

,

A. Contu

26

,

N. Cooke

52

,

G. Coombs

58

,

G. Corti

47

,

C.M. Costa Sobral

55

,

B. Couturier

47

,

D.C. Craik

63

,

J. Crkovská

66

,

M. Cruz Torres

1

,

R. Currie

57

,

C.L. Da Silva

66

,

E. Dall’Occo

14

,

J. Dalseno

45

,

C. D’Ambrosio

47

,

A. Danilina

38

,

P. d’Argent

47

,

A. Davis

61

,

O. De Aguiar Francisco

61

,

K. De Bruyn

77

,

S. De Capua

61

,

M. De Cian

48

,

J.M. De Miranda

1

,

L. De Paula

2

,

M. De Serio

18

,

d

,

D. De Simone

49

,

P. De Simone

22

,

J.A. de Vries

78

,

C.T. Dean

66

,

W. Dean

84

,

D. Decamp

8

,

L. Del Buono

12

,

B. Delaney

54

,

H.-P. Dembinski

14

,

A. Dendek

34

,

V. Denysenko

49

,

D. Derkach

81

,

O. Deschamps

9

,

F. Desse

11

,

F. Dettori

26

,

f

,

B. Dey

72

,

P. Di Nezza

22

,

S. Didenko

80

,

L. Dieste Maronas

45

,

H. Dijkstra

47

,

V. Dobishuk

51

,

A.M. Donohoe

17

,

F. Dordei

26

,

A.C. dos Reis

1

,

L. Douglas

58

,

A. Dovbnya

50

,

A.G. Downes

8

,

K. Dreimanis

59

,

M.W. Dudek

33

,

L. Dufour

47

,

V. Duk

76

,

P. Durante

47

,

J.M. Durham

66

,

D. Dutta

61

,

M. Dziewiecki

16

,

A. Dziurda

33

,

A. Dzyuba

37

,

S. Easo

56

,

U. Egede

68

,

V. Egorychev

38

,

S. Eidelman

42

,

v

,

S. Eisenhardt

57

,

S. Ek-In

48

,

L. Eklund

58

,

S. Ely

67

,

A. Ene

36

,

E. Epple

66

,

S. Escher

13

,

J. Eschle

49

,

S. Esen

31

,

T. Evans

47

,

A. Falabella

19

,

J. Fan

3

,

Y. Fan

5

,

B. Fang

72

,

N. Farley

52

,

S. Farry

59

,

D. Fazzini

24

,

j

,

P. Fedin

38

,

M. Féo

47

,

P. Fernandez Declara

47

,

A. Fernandez Prieto

45

,

J.M. Fernandez-tenllado Arribas

44

,

F. Ferrari

19

,

e

,

L. Ferreira Lopes

48

,

F. Ferreira Rodrigues

2

,

S. Ferreres Sole

31

,

M. Ferrillo

49

,

M. Ferro-Luzzi

47

,

S. Filippov

40

,

R.A. Fini

18

,

M. Fiorini

20

,

g

,

M. Firlej

34

,

K.M. Fischer

62

,

C. Fitzpatrick

61

,

T. Fiutowski

34

,

F. Fleuret

11

,

b

,

M. Fontana

47

,

F. Fontanelli

23

,

i

,

R. Forty

47

,

V. Franco Lima

59

,

M. Franco Sevilla

65

,

M. Frank

47

,

E. Franzoso

20

,

G. Frau

16

,

C. Frei

47

,

D.A. Friday

58

,

J. Fu

25

,

Q. Fuehring

14

,

W. Funk

47

,

E. Gabriel

31

,

T. Gaintseva

41

,

A. Gallas Torreira

45

,

D. Galli

19

,

e

,

S. Gambetta

57

,

Y. Gan

3

,

M. Gandelman

2

,

P. Gandini

25

,

Y. Gao

4

,

M. Garau

26

,

L.M. Garcia Martin

55

,

P. Garcia Moreno

44

,

J. García Pardiñas

49

,

B. Garcia Plana

45

,

F.A. Garcia Rosales

11

,

L. Garrido

44

,

D. Gascon

44

,

C. Gaspar

47

,

R.E. Geertsema

31

,

D. Gerick

16

,

L.L. Gerken

14

,

E. Gersabeck

61

,

M. Gersabeck

61

,

T. Gershon

55

,

D. Gerstel

10

,

Ph. Ghez

8

,

V. Gibson

54

,

M. Giovannetti

22

,

k

,

A. Gioventù

45

,

P. Gironella Gironell

44

,

L. Giubega

36

,

C. Giugliano

20

,

g

,

K. Gizdov

57

,

E.L. Gkougkousis

47

,

V.V. Gligorov

12

,

C. Göbel

69

,

E. Golobardes

83

,

D. Golubkov

38

,

A. Golutvin

60

,

80

,

A. Gomes

1

,

a

,

S. Gomez Fernandez

44

,

F. Goncalves Abrantes

69

,

M. Goncerz

33

,

G. Gong

3

,

P. Gorbounov

38

,

I.V. Gorelov

39

,

C. Gotti

24

,

j

,

E. Govorkova

31

,

J.P. Grabowski

16

,

R. Graciani Diaz

44

,

T. Grammatico

12

,

L.A. Granado Cardoso

47

,

E. Graugés

44

,

E. Graverini

48

,

G. Graziani

21

,

A. Grecu

36

,

L.M. Greeven

31

,

P. Griffith

20

,

L. Grillo

61

,

S. Gromov

80

,

L. Gruber

47

,

B.R. Gruberg Cazon

62

,

C. Gu

3

,

M. Guarise

20

,

P.A. Günther

16

,

E. Gushchin

40

,

A. Guth

13

,

Y. Guz

43

,

47

,

T. Gys

47

,

T. Hadavizadeh

68

,

G. Haefeli

48

,

C. Haen

47

,

J. Haimberger

47

,

S.C. Haines

54

,

T. Halewood-leagas

59

,

P.M. Hamilton

65

,

Q. Han

7

,

X. Han

16

,

T.H. Hancock

62

,

S. Hansmann-Menzemer

16

,

N. Harnew

62

,

T. Harrison

59

,

C. Hasse

47

,

M. Hatch

47

,

J. He

5

,

M. Hecker

60

,

K. Heijhoff

31

,

K. Heinicke

14

,

A.M. Hennequin

47

,

K. Hennessy

59

,

L. Henry

25

,

46

,

J. Heuel

13

,

A. Hicheur

2

,

D. Hill

62

,

M. Hilton

61

,

S.E. Hollitt

14

,

P.H. Hopchev

48

,

J. Hu

16

,

J. Hu

71

,

W. Hu

7

,

W. Huang

5

,

X. Huang

72

,

W. Hulsbergen

31

,

R.J. Hunter

55

,

M. Hushchyn

81

,

D. Hutchcroft

59

,

D. Hynds

31

,

P. Ibis

14

,

M. Idzik

34

,

D. Ilin

37

,

P. Ilten

64

,

A. Inglessi

37

,

A. Ishteev

80

,

(9)

K. Ivshin

37

,

R. Jacobsson

47

,

S. Jakobsen

47

,

E. Jans

31

,

B.K. Jashal

46

,

A. Jawahery

65

,

V. Jevtic

14

,

M. Jezabek

33

,

F. Jiang

3

,

M. John

62

,

D. Johnson

47

,

C.R. Jones

54

,

T.P. Jones

55

,

B. Jost

47

,

N. Jurik

47

,

S. Kandybei

50

,

Y. Kang

3

,

M. Karacson

47

,

M. Karpov

81

,

N. Kazeev

81

,

F. Keizer

54

,

47

,

M. Kenzie

55

,

T. Ketel

32

,

B. Khanji

47

,

A. Kharisova

82

,

S. Kholodenko

43

,

K.E. Kim

67

,

T. Kirn

13

,

V.S. Kirsebom

48

,

O. Kitouni

63

,

S. Klaver

31

,

K. Klimaszewski

35

,

S. Koliiev

51

,

A. Kondybayeva

80

,

A. Konoplyannikov

38

,

P. Kopciewicz

34

,

R. Kopecna

16

,

P. Koppenburg

31

,

M. Korolev

39

,

I. Kostiuk

31

,

51

,

O. Kot

51

,

S. Kotriakhova

37

,

30

,

P. Kravchenko

37

,

L. Kravchuk

40

,

R.D. Krawczyk

47

,

M. Kreps

55

,

F. Kress

60

,

S. Kretzschmar

13

,

P. Krokovny

42

,

v

,

W. Krupa

34

,

W. Krzemien

35

,

W. Kucewicz

33

,

l

,

M. Kucharczyk

33

,

V. Kudryavtsev

42

,

v

,

H.S. Kuindersma

31

,

G.J. Kunde

66

,

T. Kvaratskheliya

38

,

D. Lacarrere

47

,

G. Lafferty

61

,

A. Lai

26

,

A. Lampis

26

,

D. Lancierini

49

,

J.J. Lane

61

,

R. Lane

53

,

G. Lanfranchi

22

,

C. Langenbruch

13

,

J. Langer

14

,

O. Lantwin

49

,

80

,

T. Latham

55

,

F. Lazzari

28

,

t

,

R. Le Gac

10

,

S.H. Lee

84

,

R. Lefèvre

9

,

A. Leflat

39

,

S. Legotin

80

,

O. Leroy

10

,

T. Lesiak

33

,

B. Leverington

16

,

H. Li

71

,

L. Li

62

,

P. Li

16

,

X. Li

66

,

Y. Li

6

,

Y. Li

6

,

Z. Li

67

,

X. Liang

67

,

T. Lin

60

,

R. Lindner

47

,

V. Lisovskyi

14

,

R. Litvinov

26

,

G. Liu

71

,

H. Liu

5

,

S. Liu

6

,

X. Liu

3

,

A. Loi

26

,

J. Lomba Castro

45

,

I. Longstaff

58

,

J.H. Lopes

2

,

G. Loustau

49

,

G.H. Lovell

54

,

Y. Lu

6

,

D. Lucchesi

27

,

m

,

S. Luchuk

40

,

M. Lucio Martinez

31

,

V. Lukashenko

31

,

Y. Luo

3

,

A. Lupato

61

,

E. Luppi

20

,

g

,

O. Lupton

55

,

A. Lusiani

28

,

r

,

X. Lyu

5

,

L. Ma

6

,

S. Maccolini

19

,

e

,

F. Machefert

11

,

F. Maciuc

36

,

V. Macko

48

,

P. Mackowiak

14

,

S. Maddrell-Mander

53

,

O. Madejczyk

34

,

L.R. Madhan Mohan

53

,

O. Maev

37

,

A. Maevskiy

81

,

D. Maisuzenko

37

,

M.W. Majewski

34

,

J.J. Malczewski

33

,

S. Malde

62

,

B. Malecki

47

,

A. Malinin

79

,

T. Maltsev

42

,

v

,

H. Malygina

16

,

G. Manca

26

,

f

,

G. Mancinelli

10

,

R. Manera Escalero

44

,

D. Manuzzi

19

,

e

,

D. Marangotto

25

,

o

,

J. Maratas

9

,

u

,

J.F. Marchand

8

,

U. Marconi

19

,

S. Mariani

21

,

47

,

h

,

C. Marin Benito

11

,

M. Marinangeli

48

,

P. Marino

48

,

J. Marks

16

,

P.J. Marshall

59

,

G. Martellotti

30

,

L. Martinazzoli

47

,

j

,

M. Martinelli

24

,

j

,

D. Martinez Santos

45

,

F. Martinez Vidal

46

,

A. Massafferri

1

,

M. Materok

13

,

R. Matev

47

,

A. Mathad

49

,

Z. Mathe

47

,

V. Matiunin

38

,

C. Matteuzzi

24

,

K.R. Mattioli

84

,

A. Mauri

31

,

E. Maurice

11

,

b

,

J. Mauricio

44

,

M. Mazurek

35

,

M. McCann

60

,

L. Mcconnell

17

,

T.H. Mcgrath

61

,

A. McNab

61

,

R. McNulty

17

,

J.V. Mead

59

,

B. Meadows

64

,

C. Meaux

10

,

G. Meier

14

,

N. Meinert

75

,

D. Melnychuk

35

,

S. Meloni

24

,

j

,

M. Merk

31

,

78

,

A. Merli

25

,

L. Meyer Garcia

2

,

M. Mikhasenko

47

,

D.A. Milanes

73

,

E. Millard

55

,

M. Milovanovic

47

,

M.-N. Minard

8

,

L. Minzoni

20

,

g

,

S.E. Mitchell

57

,

B. Mitreska

61

,

D.S. Mitzel

47

,

A. Mödden

14

,

R.A. Mohammed

62

,

R.D. Moise

60

,

T. Mombächer

14

,

I.A. Monroy

73

,

S. Monteil

9

,

M. Morandin

27

,

G. Morello

22

,

M.J. Morello

28

,

r

,

J. Moron

34

,

A.B. Morris

74

,

A.G. Morris

55

,

R. Mountain

67

,

H. Mu

3

,

F. Muheim

57

,

M. Mukherjee

7

,

M. Mulder

47

,

D. Müller

47

,

K. Müller

49

,

C.H. Murphy

62

,

D. Murray

61

,

P. Muzzetto

26

,

P. Naik

53

,

T. Nakada

48

,

R. Nandakumar

56

,

T. Nanut

48

,

I. Nasteva

2

,

M. Needham

57

,

I. Neri

20

,

g

,

N. Neri

25

,

o

,

S. Neubert

74

,

N. Neufeld

47

,

R. Newcombe

60

,

T.D. Nguyen

48

,

C. Nguyen-Mau

48

,

E.M. Niel

11

,

S. Nieswand

13

,

N. Nikitin

39

,

N.S. Nolte

47

,

C. Nunez

84

,

A. Oblakowska-Mucha

34

,

V. Obraztsov

43

,

D.P. O’Hanlon

53

,

R. Oldeman

26

,

f

,

M.E. Olivares

67

,

C.J.G. Onderwater

77

,

A. Ossowska

33

,

J.M. Otalora Goicochea

2

,

T. Ovsiannikova

38

,

P. Owen

49

,

A. Oyanguren

46

,

47

,

B. Pagare

55

,

P.R. Pais

47

,

T. Pajero

28

,

47

,

r

,

A. Palano

18

,

M. Palutan

22

,

Y. Pan

61

,

G. Panshin

82

,

A. Papanestis

56

,

M. Pappagallo

18

,

d

,

L.L. Pappalardo

20

,

g

,

C. Pappenheimer

64

,

W. Parker

65

,

C. Parkes

61

,

C.J. Parkinson

45

,

B. Passalacqua

20

,

G. Passaleva

21

,

A. Pastore

18

,

M. Patel

60

,

C. Patrignani

19

,

e

,

C.J. Pawley

78

,

A. Pearce

47

,

A. Pellegrino

31

,

M. Pepe Altarelli

47

,

S. Perazzini

19

,

D. Pereima

38

,

P. Perret

9

,

K. Petridis

53

,

A. Petrolini

23

,

i

,

A. Petrov

79

,

S. Petrucci

57

,

M. Petruzzo

25

,

T.T.H. Pham

67

,

A. Philippov

41

,

L. Pica

28

,

M. Piccini

76

,

B. Pietrzyk

8

,

G. Pietrzyk

48

,

M. Pili

62

,

D. Pinci

30

,

J. Pinzino

47

,

F. Pisani

47

,

A. Piucci

16

,

P.K. Resmi

10

,

V. Placinta

36

,

S. Playfer

57

,

J. Plews

52

,

M. Plo Casasus

45

,

F. Polci

12

,

M. Poli Lener

22

,

M. Poliakova

67

,

A. Poluektov

10

,

N. Polukhina

80

,

c

,

I. Polyakov

67

,

E. Polycarpo

2

,

G.J. Pomery

53

,

S. Ponce

47

,

A. Popov

43

,

D. Popov

5

,

47

,

S. Popov

41

,

S. Poslavskii

43

,

K. Prasanth

33

,

L. Promberger

47

,

C. Prouve

45

,

V. Pugatch

51

,

A. Puig Navarro

49

,

H. Pullen

62

,

G. Punzi

28

,

n

,

W. Qian

5

,

J. Qin

5

,

R. Quagliani

12

,

B. Quintana

8

,

N.V. Raab

17

,

R.I. Rabadan Trejo

10

,

B. Rachwal

34

,

J.H. Rademacker

53

,

M. Rama

28

,

M. Ramos Pernas

55

,

M.S. Rangel

2

,

F. Ratnikov

41

,

81

,

G. Raven

32

,

M. Reboud

8

,

F. Redi

48

,

F. Reiss

12

,

C. Remon Alepuz

46

,

Z. Ren

3

,

V. Renaudin

62

,

R. Ribatti

28

,

S. Ricciardi

56

,

K. Rinnert

59

,

P. Robbe

11

,

A. Robert

12

,

G. Robertson

57

,

A.B. Rodrigues

48

,

E. Rodrigues

59

,

J.A. Rodriguez Lopez

73

,

A. Rollings

62

,

P. Roloff

47

,

V. Romanovskiy

43

,

M. Romero Lamas

45

,

A. Romero Vidal

45

,

J.D. Roth

84

,

M. Rotondo

22

,

M.S. Rudolph

67

,

T. Ruf

47

,

J. Ruiz Vidal

46

,

A. Ryzhikov

81

,

J. Ryzka

34

,

J.J. Saborido Silva

45

,

N. Sagidova

37

,

N. Sahoo

55

,

B. Saitta

26

,

f

,

Referenties

GERELATEERDE DOCUMENTEN

Bij ouderen met een depressieve stoornis is het effect van bewegen op het beloop van depressie minder sterk dan bij jongere volwassenen (dit proefschrift). Beperkte fysieke

Patients who met all of the following criteria were included into the study: (1) proven rectal adenocarcinoma with digital rectal examination, colonoscopy and biopsy; (2) the

To assess the ef ficacy of early rituximab intensification during first-line treatment in patients with DLBCL, we performed a prospective randomized phase III study to compare

However, the number of both men and women reporting an ADR was somewhat higher for those who completed all six assessments (25.1% and 36.0%, respectively, at the first

Female patients were found to have a significantly higher incidence of respiratory symptoms as RFE (230/1000 patient years) compared with male patients (186/1000 patient years)..

It is used wage replacement method for calculating the cost of voluntary work using the minimum wage of workers in Iran in 2020.. Volunteer Investment and Value Audit (VIVA) rate

[r]

er is een belangrijke basis gelegd voor een nieuwe (klimaatrobuuste) methode om te voorspellen welke gevolgen veran­ deringen in het waterbeheer hebben voor de