• No results found

Registration of magnetic resonance and computed tomography images in patients with oral squamous cell carcinoma for three-dimensional virtual planning of mandibular resection and reconstruction

N/A
N/A
Protected

Academic year: 2021

Share "Registration of magnetic resonance and computed tomography images in patients with oral squamous cell carcinoma for three-dimensional virtual planning of mandibular resection and reconstruction"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Research

Paper

Imaging

Registration

of

magnetic

resonance

and

computed

tomography

images

in

patients

with

oral

squamous

cell

carcinoma

for

three-dimensional

virtual

planning

of

mandibular

resection

and

reconstruction

M.Polfliet,M.S.Hendriks,J.-M.Guyader,I.tenHove,H.Mast,J.

Vandemeulebroucke,A.vanderLugt,E.B.Wolvius,S.Klein:Registrationof magneticresonanceandcomputedtomographyimagesinpatientswithoralsquamous cellcarcinomaforthree-dimensional virtualplanningofmandibularresectionand reconstruction. Int.J.OralMaxillofac.Surg.2019;xxx:xxx–xxx.ã2021TheAuthor (s). PublishedbyElsevierInc.onbehalfofInternationalAssociationofOraland MaxillofacialSurgeons.ThisisanopenaccessarticleundertheCCBYlicense(http:// creativecommons.org/licenses/by/4.0/).

M.Polfliet1,2,3,M.S.Hendriks4,

J.-M.Guyader3,5,I.tenHove4,

H.Mast4,J.Vandemeulebroucke1,2,

A.vanderLugt6,E.B.Wolvius4,

S.Klein3

1DepartmentofElectronicsandInformatics

(ETRO),VrijeUniversiteitBrussel(VUB), Brussels,Belgium;2imec,Leuven,Belgium;

3BiomedicalImagingGroupRotterdam,

DepartmentsofMedicalInformaticsand Radiology,ErasmusUniversityMedical Center,Rotterdam,TheNetherlands;

4DepartmentofOralandMaxillofacial

Surgery,ErasmusUniversityMedicalCenter, Rotterdam,TheNetherlands;5LabISEN

Yncre´aOuest,Brest,France;6Departmentof

RadiologyandNuclearMedicine,Erasmus UniversityMedicalCenter,Rotterdam,The Netherlands

Abstract. Theaimofthisstudywastoevaluateandpresentanautomatedmethodfor registrationofmagneticresonanceimaging(MRI)andcomputedtomography(CT) orconebeamCT(CBCT)imagesofthemandibularregionforpatientswithoral squamouscellcarcinoma(OSCC).RegisteredMRIand(CB)CTcouldfacilitatethe three-dimensionalvirtualplanningofsurgicalguidesemployedforresectionand reconstructioninpatientswithOSCCwithmandibularinvasion.MRIand(CB)CT imageswerecollectedretrospectivelyfrom19patients.MRIimageswerealigned with(CB)CTimagesemployingarigidregistrationapproach(stage1),arigid registrationapproachusingamandibularmask(stage2), andtwonon-rigid Int.J.OralMaxillofac.Surg.2019;xxx:xxx–xxx

https://doi.org/10.1016/j.ijom.2021.01.003,availableonlineathttps://www.sciencedirect.com

(2)

registrationapproaches(stage3).Registrationaccuracywasquantifiedbythemean targetregistrationerror(mTRE),calculatedoverasetoflandmarksannotatedby twoobservers.Stage2achievedthebestregistrationresult,withanmTREof2.5 0.7mm,whichwascomparable tothe inter-andintra-observervariabilitiesof landmarkplacementinMRI.Stage2wassignificantlybetteralignedcomparedto all approachesinstage3.Inconclusion,thisstudydemonstratedthatrigid registrationwiththeuseofamaskisanappropriateimageregistrationmethodfor aligningMRIand(CB)CTimagesofthemandibularregioninpatientswithOSCC.

Key words: oral squamous cell carcinoma; mandibular reconstruction; X-ray computed tomography; magnetic resonance imaging; multimodalimaging;medicalimageprocessing. Acceptedforpublication

Oralsquamouscellcarcinoma(OSCC)is

thesixthmostcommoncancerworldwide.

Theoverall5-yearsurvivalrateofpatients

withOSCCislessthan50%andhasnot

shown anysignificantimprovementover

thelastdecades,despiteadvancesin

treat-mentmodalities1–5.

Segmentalmandibularresectionand

re-constructionwithafreevascularized

osseo-cutaneous flap is currently the

recommendedtreatmentforOSCC

invad-ing the mandible6.Themaingoal of surgical

treatmentistoobtaintumour-freeresection

margins with acceptable remaining

func-tion(chewing,swallowing,andspeaking)

and physical appearance. Achieving

tu-mour-freeresectionmarginsischallenging,

but crucial for disease control and

survival1,3,7–12.Recentstudiesreportedthat

inadequateresectionmarginswerefoundin

20% oftheboneresections,which

nega-tivelyimpactedthe5-yearsurvivalrateof

patients1,3,7. The inability to distinguish

tumourfrom healthybone tissue

intraopera-tivelyduringresectionisthemostcommon

causeofsuchinadequatemargins10.

Addi-tionally,are-resectionofpositivemargins

inasecondoperationisnotdesirabledueto

technical difficulties, and has a negative

effect onthesurvivalofthetransplant11.

Duringresection, tumour-free surgical

mar-ginsaretheonlyprognosticfactorthatthe

surgeoncancontrol11.

Thestate-of-the-art mandibular

recon-structionmethodisbasedonpreoperative

three-dimensional (3D) virtual surgical

planning using 3D-printed surgical

guides12–14.Withthismethod,thepatient

undergoes the necessary imaging, after

which the surgeon virtually defines the

cutting planes and plans the resection

and subsequent reconstruction.

Thereaf-ter, the surgical guides are printed and

the virtual planning is translated to the

surgical procedure. Cutting guides for

themandibleandfibulahavebeenshown

toprovide abetterfitofthefibulaparts,

resultinginareducedsurgicaltime.

How-ever, accurate3Dvirtualplanningofthe

surgical cuttingguides remains essential

inordertoachieveacompleteresection.

Current3Dvirtualplanningisbasedon

computedtomography(CT)orconebeam

CT(CBCT)images,which offerdetailed

informationonbonegeometryandcortical

bonedestruction,butdonotprovide

accu-rateinformationonbonemarrow

involve-mentand perineural spreadof the tumour. In

recentyears,magneticresonanceimaging

(MRI)hasincreasinglybeenusedfor

diag-nosticpurposesduetoitsbetter

visualiza-tion of tumour tissue, mandibular bone

marrowinvolvement,andperineuralspread

alongtheinferioralveolarnerve3,15–17.

The uncertainty about the location of

the tumour boundaries inthe 3Dvirtual

planning based on (CB)CT acquisitions

could be eliminated by including MRI

aquisitions18. Overlaying orfusingthese

MRIand(CB)CTimagesbeforethe

pre-operative virtual planning could aid the

surgeonindefiningthesurgicalguidesand

subsequentreconstructionthroughamore

accurate determination ofthe osteotomy

locationandabetterunderstandingofthe

surroundingstructures.Theintegrationof

fusedCTandMRIimagesformandibular

resectionplanninginclinicalpracticehas

been shown to be a safe and accurate

alternative19.However,duetothe

differ-entorientationandpositionofthe

mandi-bleintheMRIand(CB)CTacquisitions,

an imageregistrationmethodisrequired

to establish the spatial correspondences

betweenthedifferentimages.

Theaimofthisstudywas toevaluate

andpresentanautomatedmethodto

per-formimageregistrationofMRIand(CB)

CT in the mandibular region inpatients

withOSCC,whichcouldsubsequentlybe

integrated into a pipelinefor the virtual

planning of mandibular resections and

reconstructions.

Materialsandmethods

Dataset

Thestudywasreviewedandapprovedby

thelocalmedicalethicsreviewcommittee

(MEC-2016-143) and was performed in

accordancewithnationalandinternational

legislation.Theneedforinformedconsent

waswaivedowingtotheretrospectiveand

anonymizednatureofthestudy.

Preoper-ative3D MRIand (CB)CT scans ofthe

headandneckregion werecollected

ret-rospectively from 19 patients diagnosed

between 2014 and 2016 with untreated

primaryOSCCwithinvasionofthe

man-dible.Theimageswereanonymizedprior

to processing. The MRI scans were

ac-quired with a Spin Echo T1-weighted

sequence. The in-plane voxel size of

MRI was between 0.40.4mm2 and

0.50.5mm2, and slice thickness was

between3mmand4mm.Theechotime

(TE)rangedfrom10.8msto13.6ms,the

repetition time (TR) from 416ms to

689ms,andtheflipangle(FA)was90,

111, or160. TheCTimaging in-plane

voxelsizerangedfrom0.30.3mm2to

0.50.5mm2, and slice thickness from

0.3mmto0.6mm.TheCBCTimaging

in-planevoxelsizewas 0.30.3mm2 and

slicethicknesswas1mm.Themeantime

betweentheMRIand(CB)CTscanswas9

days(range2–23days,standarddeviation

(SD)5.3days).Nopre-orpost-processing

was applied to the images and they

remainedunmodifiedfortheregistration.

Registration

Anautomatedimageregistrationmethod

toaligntheMRIwiththe(CB)CTimages

was investigated. The alignment was

achievedinthreestages.Inthefirststage,

aninitialrigid alignmentwas estimated.

Thereafteramorerefinedrigidalignment

wasestimated,focusedaroundthe

mandi-ble.Inthethirdandfinalstage,a

deform-ablealignmentwasperformed,forwhich

different approaches were compared. In

all stages, an automated intensity-based

3D registration framework (Elastix)20

wasused, basedonthemaximization of

mutual information21 using a stochastic

gradientdescentoptimizationmethod22.

Inthefirststage,twoconsecutive

regis-trations were performed to achieve an

initial rigid alignment. First, a global

(3)

imagesneededtoberoughlyalignedtothe

(CB)CT image domain. Subsequently, a

rigidregistrationwasconducted,

estimat-ingbothtranslationsandrotations

(param-eterizedbyEulerangles).

In the second stage, the initial rigid

alignment was fine-tuned by restricting

thefocusofthealgorithmona3Dregion

of interest encompassing the mandible,

manually drawn in the (CB)CT image.

As such, all image information outside

oftheregionofinterestwasignoredand

potential registration difficulties due to

pose orappearance changescouldbe

al-leviated.Themandibularmaskwasdrawn

slice by slice, using open-source

ITK-SNAPsoftware23.

In the third stage, an evaluation was

performedtodeterminewhetherthe

align-mentcouldberefinedfurtherusinga

non-rigid(ordeformable)registrationto

com-pensateforanygeometricdistortionsinthe

MRIimages24.AparametricB-spline

free-form deformation model was employed,

and (isotropic) control point spacings of

64mm,32mm,and16mmwere

evalua-ted25. Furthermore, two different

approachesforthedeformableregistration

were compared: (a) an asymmetric

ap-proachwiththe(CB)CTimageasthefixed

(ortarget,reference)imageandtheMRIas

the moving(ortemplate, source)image; and

(b) a symmetricapproach in which both

imageswereregisteredtoacommon

mid-space26.Resultsfromtheliteraturesuggest

thatsymmetricregistrationtechniquescan

leadtoimprovedregistrationaccuracyand

inverse-consistency27,28, which are

espe-ciallycriticalfortreatmentplanning29.

AllstagesareillustratedinFig.1.The

threeregistrationstageswereexecutedin

a consecutive manner. The registration

resultafter stage1was employedto

ini-tialize the registration in stage 2. The

registration result after stage 2 was

employed toinitializethe registration in

stage 3,whereeitherapproach3aor

ap-proach3bwastaken.

Evaluation

Registration accuracy in the mandibular

regionwasevaluatedintermsofthemean

targetregistrationerror(mTRE),by

com-puting the Euclidean distance between

corresponding landmarks in MRI and

(CB)CT and then averaging it over all

landmarks30. An extensive landmark set

was designed with 39 anatomical

refer-encepointsinordertoevaluatethe

regis-tration error for the entire mandible

specifically.Thesetconsistedof22

land-marks placed at theroots ofeach lower

tooth (for the molars, both roots were

consideredaslandmarks)and17

anatom-icalreferencepointsonthemandible.The

set oflandmarksisdescribedindetailin

Table1andFig.2.Duetotumourinvasion

intheboneorremovedtoothelements,not

all landmarks from thedataset couldbe

annotatedforallimages.

Thelandmarkswereannotatedmanually

in eachMRIand(CB)CTacquisition by two

researchers (M.S.H., J.-M.G.) who were

trainedinadvance.Thereliabilityofeach

landmarkwas investigatedbycalculating

theinter-observervariabilityforbothMRI

and(CB)CTimagesseparately.Inaddition,

oneobserver(M.S.H.)repeatedthe

annota-tionofalllandmarks,toenablethe

assess-mentoftheintra-observervariability.

Intra-andinter-observervariabilitywere

quanti-fiedbycalculatingtheEuclideandistance

(similartothemTRE)between

correspond-ing landmarks ofthe same anddifferent

observer,respectively.

If the inter-observer variability for a

landmarkwasgreaterthan5mm,the

land-markwasexcluded(whenapplicableboth

for leftandright sides).After the

exclu-sion of the unreliable landmarks, the

mTREwascalculatedforeachregistration

stage toassesstheregistrationaccuracy.

Statisticalanalysis

Two statisticalanalyseswereperformed.

First,acomparisonwasmadebetweenthe

stagethatperformedbest(withthelowest

Fig.1. Theproposedthree-stageregistrationmethodtoalignMRIwith(CB)CTimagesinthemandibularregion.Inthefirststage,aninitialrigid alignmentwasestimated.Thereafter,inthesecondstage,amorerefinedrigidalignmentfocusedaroundthemandiblewasestimated.Inthethird (andfinal)stage,twoapproachesfordeformablealignmentwereinvestigatedsidebyside:anasymmetric(3a)andasymmetricapproach(3b). Notethat,unliketheschematic2Dillustrationsinthisfigure,allregistrationswereperformedcompletelyinthe3Dspace.

(4)

mTRE) and allother registration stages.

Second, forthethirdstage acomparison

was made between the asymmetric and

symmetric approachfor each spacing of

the control points (64mm, 32mm, and

16mm). A two-sided Wilcoxon signed

rank test at a significance level of0.05

wasusedtoevaluatethedifferencesinthe

distributionofthemTRE.

Results

Theinter-observervariabilityforthe

land-marks gonion (C) and coronoid process

(E) wasgreater than5mm(6.5mmand

6.0mm, respectively). These landmarks

onbothsidesofthemandiblewere

there-foreexcludedfromthecalculationofthe

mTRE andtheobservervariabilities.On

average, 20 landmarks per patient

remainedtocalculatethemTRE.

Theinter-observervariabilityand

intra-observer variability (meanSD over all

subjects) for landmark placement were

found to be 2.40.7mm and

2.00.5mm,respectively,forMRIimages

and 1.50.8mm and 1.00.3mm,

re-spectively,for(CB)CTimages.

After rigid registration instage 1, the

mTRE(meanSDoverallsubjects)was

3.11.8mm. After rigid registration

withtheuseofamaskaroundthe

mandi-ble (stage 2), the mTRE was 2.5

0.7mm.Afterasymmetricnon-rigid

reg-istration (stage 3a)withB-splinecontrol

point spacings of 64mm, 32mm, and

16mm, the mTREs were 3.61.1mm,

3.41.1mm,and3.31.2mm,

respec-tively. Inthe symmetricnon-rigid

regis-tration(stage3b),themTREvalueswere

foundtobe3.51.2mm,3.31.2mm,

and 3.11.3mm, respectively. Fig. 3

shows the distributions of mTRE over

all subjects for each registration stage,

as well as the inter- and intra-observer

variability.

Comparedtostage2,whichyieldedthe

lowestaveragemTRE, stage 3produced

significantly different mTREvalues (3a,

64mm: W=5, P<0.001; 3a, 32mm: W=2, P<0.001; 3a, 16mm: W=6, P<0.001; 3b, 64mm: W=3, P<0.001; 3b, 32mm: W=15, P=0.001; 3b, 16mm: W=26, P=0.005). No significant difference

was found between stage 1 and stage 2

(W=47, P=0.054)orbetween stage 3a

andstage3b(64mm:W=59,P=0.147;

32 mm: W=69, P=0.294; 16 mm:

W=48,P=0.059).Arepresentativecase

illustratingtheresultoftheregistrationof

MRIandCTimagesafterstage2isgiven

inFig.4.

Table1. Descriptionoftheanatomicallandmarksontheteethandthemandible.

Abbreviation Landmark Description

t31,t32,t33,t34,t35, t36,t37,t38, t41,t42,t43, t44,t45,t46,t47,t48

Teethofthethirdandfourthquadrants 22landmarksontheteeth;themolars(36,37,38,46,47, 48)havetworoots

A Menton Themostinferiorpointofthemandibularsymphysis

B Mentalforamen Foramenlocatedontheanteriorsideofthemandible

C Gonion Apointdefinedasthemandibularangle,representingthe

intersectionofthelinesoftheposteriorramusandthe inferiorborderofthemandible

D Mandibularforamen Foramenlocatedontheinternalsurfaceontheramus

E Coronoidprocess Thetipofthecoronoidprocess

F Leftcondylion Leftmostaspectofthecondylarhead

G Rightcondylion Rightmostaspectofthecondylarhead

H Topcondylion Topofthecondylarhead

I Mandibularnotch Notchlocatedatthemostsuperiorpointoftheramus,

whichseparatesthecoronoidprocessanteriorlyandthe condyloidprocessposteriorly

Fig.2. Toothandmandibularevaluationlandmarks.Thepurpleandbluelandmarksindicatetheapicesoftheteethandtheanatomicalpositionsof themandible,respectively.These39landmarkscorrespondwiththelandmarksdescribedinTable1.LandmarkDisnotillustratedinthisfigure, becausethislandmarkisbehindthefieldofview.Landmarkst38andt48werenotpresentinthissubject.Notethatthe3Dmodelshownherewas generatedforillustrationpurposesonly;duringannotationofthelandmarks,theoriginal(CB)CTandMRIacquisitionswereused,inspecting imageslicesinthreeorthogonalplanes(axial,sagittal,coronal).

(5)

Regardingthecomputationtime,stage

1required26665stocomplete;stage2

required an additional 13137s. Stage

3a required an additional 28548s,

28834s, and 29451s, for 64mm,

32mm,and16mm,respectively,whereas

in stage 3b these computations required

1138140s, 1234139s, and

1356151s, respectively. All

experi-ments were performed single-threaded

onthelocaluniversityCPUcluster.

Discussion

Thisstudyshowedthattherigid

registra-tionwithamask (stage2)isthe

recom-mendedmethodfor registeringMRIand

(CB)CTimagesinthemandibularregion.

Stage2achievedalowermTREcompared

tostage1,althoughthedifferencewasnot

significant (P=0.054). However, the

lo-calizedfocusinstage2shouldgeneralize

bettertootherpatientsandbemorerobust

to outliers. A protocol for applying the

recommendedmethodisprovidedinthe

AppendixA.

In this work, two approaches for

de-formableregistrationwereapplied.A

con-ventionalasymmetricapproachwherethe

(CB)CTimagewasemployedasthefixed

imageandtheMRIimageasthemoving

image (stage 3a) and a symmetric

ap-proachwheretheimageswereregistered

toacommonreferencesystem(stage3b).

Fig.3. Boxplotsrepresentingthedistributionsoftheinter-andintra-observervariabilitiesforCTandMRIandofthemTREvaluesforeach registrationstage.Thesquarebracketsbetweentwoconnectedboxplotsindicatestatisticalsignificanceatalevelof0.05.

Fig.4. ThisfigureillustratestheresultoftheregistrationofMRIandCTimagesafterstage2ofarepresentativecase(subject8).Themandible wassegmentedintheregisteredMRIimagesandoverlaidinredwiththecorrespondingCTimagesinthreerandomlyselectedslices.Theseresults werecombinedina3DrenderingwiththesegmentedskullandmandiblefromtheCTimages.Thegapatthefrontrepresentstumourtissuewhich isinvadingthemandibleinandaroundtheanteriorpartofthemandible.

(6)

Althoughthedifferenceswerenot

statisti-callysignificant,stage3bachieveda

mar-ginalimprovementcomparedtostage3a

for all control pointspacingsof64mm,

32mm,and16mm.Furthermore,the

reg-istrationerrorofallapproachesinstage3

was significantlyhigherthantheerrorin

stage 2.Assuch,theresultsindicatethat

non-rigid registration (stage 3) has no

addedvalueinthisapplication.

Withthelargenumberoflandmarks(35

aftertheexclusions),themTREcouldbe

estimatedreliably.Thiswaseventhecase

for patients for whomnotall landmarks

couldbeannotated,e.g.caseswheretooth

elementswereextracted,caseswithbone

invasion by tumour, and cases with a

landmark outside the fieldof view. The

inter- and intra-observer variability of

landmark annotations in the (CB)CT

images were consistent with those

reported in the literature31,32.

Further-more, the mTRE achieved by the best

registration method (stage 2, 2.5mm)

wassimilartotheinter-andintra-observer

variabilitiesforMRIimages(2.4mmand

2.0mm, respectively). As such, lower

mTRE values based on the landmarks

employed in this study can hardly be

expected. Note that a recent study on

landmarkaccuracyinMRIimagesfound

lower inter- andintra-observer

variabili-ty33. However, this difference can be

explainedbytheconsiderablylowerslice

thicknessemployedinthatpreviousstudy

(0.53mmvsatleast3mminthepresent

study). Basedontheinter- and

intra-ob-servervariabilities, thegonionand

coro-noid process landmarks were excluded;

their annotations were most likely

hin-dered bythe poor delineationand fuzzy

boundariesofthelandmarklocations34.Of

note,severalotherevaluation

methodolo-giesforregistrationaccuracyexist,suchas

theEuclideandistancebetweencentroids,

overlapmeasures,andsurfacedistancesof

manually segmented anatomical

struc-tures35,36.Inthisstudy,weoptedfor

man-ual landmark annotations, since a

relatively large number of well-defined

landmarks could be identified, allowing

areliableestimationofthemTRE,while

manual segmentation would have been

muchmoretime-consuming.

Itappearsthatdataontheregistrationof

MRIand(CB)CTimagesoftheheadand

neck region are scarce. Previous studies

havefoundregistrationerrorsintherange

of 1.7–3.3mmin datasets offour to 16

patients37–41.Noneoftheseprevious

stud-ies focusedspecificallyonthemandible,

hinderingathoroughcomparisonwiththe

present study. However, the results of

these studies suggest that the mTRE of

2.5mm(forstage2)achievedindicatesa

state-of-the-art errorlevel.

Fortunatietal.42suggestedthatpatient

immobilization during imaging leads to

better registration of the MRI and (CB)

CTimages oftheheadandneck region.

Their study founda registration errorof

7.0mmwithoutimmobilizationanda

reg-istration error of1.9mmwith

immobili-zation. The implementation of

immobilizationequipmentforourspecific

applicationmightnotaddvalueinclinical

practice,sinceacompetitivemTREof2.5

mmwasalreadyachievedwithout

immo-bilization. Moreover, rigorous

immobili-zation of the mandible would be

challenging and likely not comfortable

forthepatient.

Themandibular mask used in stage 2

wasdrawnmanuallyaroundthemandible

ineach slice ofthe(CB)CTimages.

Al-though the mask does not have to be

delineated very precisely (it just serves

to indicatean approximate region of

in-terest), this manual interaction step may

notbe desirableinclinicalpractice. The

developmentofarobustsemi-automated

orevenfullyautomatedsegmentation43is

thereforerecommendedtoacceleratethis

step.Wereferthereadertoarecentreview

of such methodologies for a full

over-view44.

Althoughtheopen-sourceElastix

soft-ware was used to implement the image

registrations in this study, other

(open-source or commercial) software

applica-tions that implement similarregistration

algorithmsbasedonmaximizationof

mu-tualinformationcouldhavebeenusedas

well. Some well-known open-source

examples include NiftyReg45 and

ITKv4/ANTS46. After proper

configura-tion, these tools areexpected toachieve

similarregistrationaccuracy.

Correctdeterminationoftheosteotomy

location depends onseveral factors(e.g.

the waiting time between imaging and

surgery,theprocessofthetranslationfrom

3D virtual planning to the patient, the

accurate placement of the cutting guide

during surgery, the length of the fibula

reconstruction,therelationshipofthe

tu-mourtothementalnerveandthe

remain-ing teeth), which could independently

contribute to positiveresection margins.

Forexample, severalstudieshaveshown

that CBCT results in less accurate 3D

planning models than CT47. When the

proposedregistrationmethodistranslated

into clinical practice, image registration

errors havetobe consideredin

conjunc-tionwithallother sourcesoferrors.

No clinical outcome criteria were

employedinthiswork,suchastheresection

margin,thefrequencyofrevisingthe

surgi-calguideduringplanning,orfrequencyof

local tumour progression, as this was a

retrospectivestudy.Arandomizedclinical

trialisneededtodeterminetheaddedvalue

ofregisteredMRIandCB(CT)invirtual

planningofmandibularresection and

re-construction.

Thisstudypresentedanimage

registra-tionmethodforaligningMRIand(CB)CT

images of the mandibular region in

patientswithOSCC.Itshowedthatrigid

registration within a region of interest

drawnaroundthemandibleisthe

recom-mendedregistrationmethodforthe

align-mentofMRIand(CB)CTimages inthe

mandibularregion.

Funding

ThisstudywaspartiallyfundedbyFonds

NutsOhra(nr.1404-048).

Competinginterests

Theauthorsdeclarethatthereisno

con-flictofinterest.

Ethicalapproval

Thestudywasreviewedandapprovedby

thelocalmedicalethicsreviewcommittee

(MEC-2016-143) and was performed in

accordancewithnationalandinternational

legislation.

Patientconsent

The need for informed consent was

waived owing to the retrospective and

anonymizednatureofthestudy.

AppendixA

Protocol

Wehavemadethecodetoexecutethe

registrationavailableinapublicGitHub

re-pository (https://github.com/

MathiasLPolfliet/

mandible_ct_mri_registration).Theprotocol

canbesubdividedintothreesteps:

1) Obtain a rough registration mask of

the mandible.Thebinary registration

must overlay the mandible entirely.

Furthermore, the mask must have a

boundary around the mandible of

roughly16pixelsinalldimensions.

2) Perform initial rigid registration

(stage 1). Perform a sequential

(7)

transformationfollowed bya

transla-tionandrotation,toroughlyalignthe

anatomical structures in the

acquisi-tions. Store the resulting

transforma-tiontoinitializestage2.

3) Perform rigid registration with

maskedfieldofview(stage2).

Initial-ize anew registration withthe result

fromstage1andlimitthefieldofview

withthebinaryregistrationmask.

Op-timizeforthetranslationandrotation

transformation.

References

1. BinahmedA,NasonRW,AbdohAA.The clinicalsignificanceofthepositivesurgical margin in oral cancer. Oral Oncol 2007;43:780–4.

2. CarvalhoAL,NishimotoIN,Califano JA, KowalskiLP.Trendsinincidenceand prog-nosisforheadandneckcancerintheUnited States:asite-specificanalysisoftheSEER database.IntJCancer2005;114:806–16.

3. NieberlerM,Ha¨ußlerP,KestingMR,Kolk A,DeppeH,WeirichG,WolffK-D.Clinical impactofintraoperativecytological assess-mentofboneresectionmarginsinpatients with headand neck carcinoma.Ann Surg Oncol2016;23:3579–86.

4. ShahJP,GilZ.Currentconceptsin manage-ment oforalcancer—surgery.OralOncol 2009;45:394–401.

5. SafiAF,KaukeM,GrandochA,Nickenig HJ,Zo¨llerJE,KreppelM.Analysisof clini-copathologicalriskfactorsforlocoregional recurrenceof oral squamouscell carcino-ma—retrospectiveanalysisof517patients.J CraniomaxillofacSurg2017;45:1749–53.

6. Succo G,Berrone M,Battiston B,Tos P, GoiaF,AppendinoP,CrosettiE. Step-by-step surgicaltechniqueformandibular re-constructionwithfibularfreeflap: applica-tionofdigitaltechnologyinvirtualsurgical planningEur Arch Otorhinolaryn-gol272201514911501.EurArch Otorhino-laryngol2015;272:1491–501.

7. Smits RWH, TenHoveI, Dronkers EAC, Bakker Schut TC, Mast H, de Jong RJ Baatenburg, Wolvius EB, Puppels GJ, KoljenovicS.Evaluationofboneresection margins ofsegmental mandibulectomy for oralsquamouscellcarcinomaIntJOral Max-illofacSurg472018959964.IntJOral Max-illofacSurg2018;47:959–64.

8. KademaniD,BellRB,BagheriS,Holmgren E,DierksE,PotterB,HomerL.Prognostic factorsinintraoralsquamouscellcarcinoma: the influence of histologic grade. J Oral MaxillofacSurg2005;63:1599–605.

9. KreppelM,DrebberU,EichHT, Dreisei-dler T, Zo¨ller JE, Mu¨ller RP, Scheer M. Combined-modalitytreatmentinadvanced oralsquamouscellcarcinoma:Primary sur-gery followed by adjuvant concomitant

radiochemotherapyStrahlenther

Onkol1872011555560.StrahlentherOnkol 2011;187:555–60.

10. BarrosoEM,TenHoveI,SchutTCBakker, Mast H,vanLanschot CGF,Smits RWH, CaspersPJ,VerdijkR,NoordhoekHegtV, BaatenburgdeJongRJ,WolviusEB, Pup-pelsGJ,KoljenovicS.Ramanspectroscopy forassessmentofboneresectionmarginsin mandibulectomy for oralcavity squamous cell carcinomaEur J Cancer9220187787. EurJCancer2018;92:77–87.

11. DillonJK,BrownCB,McDonaldTM, Lud-wigDC,ClarkPJ,LerouxBG,FutranND. Howdoestheclosesurgicalmarginimpact recurrence andsurvivalwhentreatingoral squamouscellcarcinoma?JOralMaxillofac Surg73201511821188. J Oral Maxillofac Surg2015;73:1182–8.

12. VarvaresMA,PotiS,KenyonB,Christopher K,WalkerRJ.Surgicalmarginsandprimary siteresectionin achievinglocalcontrolin oral cancer resections. Laryngoscope 2015;125:2298–307.

13. TarsitanoA,CioccaL,CiprianiR,ScottiR, Marchetti C. Mandibular reconstruction usingfibulafreeflapharvestedusinga cus-tomisedcuttingguide:howwedoit.Acta OtorhinolaryngolItal2015;35:198.

14. CorneliusCP,GiesslerGA,WildeF, Metz-ger MC,MastG,ProbstFA. Iterations of computer-andtemplateassistedmandibular ormaxillaryreconstructionwithfreeflaps containingthelateralscapular border—evo-lutionofabiplanarplug-oncuttingguide.J CraniomaxillofacSurg2016;44:229–41.

15. LiC,MenY,YangW,PanJ,SunJ,LiL. Computedtomographyforthediagnosisof mandibular invasion caused by head and neckcancer:asystematicreviewcomparing contrast-enhanced and plain computed to-mography. J Oral Maxillofac Surg 2014;72:1601–15.

16. LiC,YangW,MenY,WuF,PanJ,LiL. Magneticresonanceimagingfordiagnosisof mandibularinvolvementfromheadandneck cancers:asystematicreviewand meta-anal-ysis.PLoSOne2014;9:e112267.

17. Blatt S, ZiebartT, Kru¨ger M,PabstAM. Diagnosingoralsquamouscellcarcinoma: how muchimagingdowereally need?A review ofthecurrentliterature. J Cranio-maxillofacSurg2016;44:538–49.

18. DongY,DongY,HuG,XuQ. Three-dimen-sional reconstruction of extremity tumor regionsbyCTandMRIimagedatafusion forsubject-specificpreoperativeassessment and planning. Comput Aided Surg 2011;16:220–33.

19. KraeimaJ,DorgeloB,GulbittiHA, Steen-bakkersRJHM,SchepmanKP,Roodenburg JLN,SpijkervetFKL,SchepersRH,Witjes MJH.Multi-modality3Dmandibular resec-tionplanninginheadandneckcancerusing CTandMRIdatafusion:aclinical serie-sOral Oncol8120182228. Oral Oncol 2018;81:22–8.

20. KleinS,StaringM,Murphy K,Viergever MA,PluimJP.Elastix:atoolboxfor intensi-ty-basedmedicalimage registration. IEEE TransMedImaging2010;29:196–205.

21. The´venazP,UnserM.Optimizationof mu-tual informationfor multiresolutionimage registration. IEEE Trans Image Process 2000;9:2083–99.

22. KleinS,PluimJP,StaringM,ViergeverMA. Adaptivestochasticgradientdescent optimi-sationforimageregistration.IntJComput Vis2009;81:227–39.

23. YushkevichPA,PivenJ,HazlettHC,Smith RG,HoS,GeeJC,GerigG.User-guided3D active contoursegmentationofanatomical structures:significantlyimprovedefficiency andreliabilityNeuroimage31200611161128. Neuroimage2006;31:1116–28.

24. Chang H,FitzpatrickJM.Atechniquefor accuratemagneticresonanceimaginginthe presence of field inhomogeneities. IEEE TransMedImaging1992;11:319–29.

25. RueckertD,SonodaLI,HayesC,HillDL, LeachMO,HawkesDJ.Nonrigid registra-tionusingfree-formdeformations: applica-tiontobreastMRimages.IEEETransMed Imaging1999;18:712–21.

26. Bhatia KK, HajnalJV,Puri BK,Edwards AD,RueckertD.Consistentgroupwise non-rigidregistrationforatlasconstruction. Bio-medical Imaging: Nano to Macro, 2004. IEEEInternationalSymposiumon Biomed-icalImaging.IEEE;2004:908–11.

27. AganjI,IglesiasJE,ReuterM,SabuncuMR, Fischl B. Mid-space-independent deform-able image registration. Neuroimage 2017;152:158–70.

28. LorenziM,AyacheN,FrisoniGB,Pennec X.Alzheimer’sDiseaseNeuroimaging Ini-tiative(ADNI).LCC-Demons:arobustand accuratesymmetricdiffeomorphic registra-tion algorithm. Neuroimage 2013;81:470– 83.

29. Rivest-He´nault D, Dowson N, Greer PB, FrippJ,DowlingJA.Robust inverse-consis-tent affine CT–MR registration in MRI-assisted and MRI-alone prostate radiation therapy.MedImageAnal2015;23:56–69.

30. FitzpatrickJM,WestJB.Thedistributionof targetregistrationerrorinrigid-body point-basedregistration.IEEETransMedImaging 2001;20:917–27.

31. LudlowJB,GublerM,CevidanesL,MolA. Precisionofcephalometriclandmark identi-fication: cone-beamcomputed tomography vsconventionalcephalometricviews.AmJ OrthodDentofacialOrthop2009;136.312. e1–10.

32. Lagrave`reMO,LowC,Flores-MirC,Chung R,CareyJP,HeoG,MajorPW. Intraexami-ner andinterexaminerreliabilitiesof land-mark identification on digitized lateral cephalogramsandformatted3-dimensional cone-beamcomputerizedtomography ima-gesAm J Orthod Dentofacial Orthop1372010598604.AmJOrthod Den-tofacialOrthop2010;137:598–604.

(8)

33. Juerchott A, Freudlsperger C, Zingler S, SaleemMA,JendeJM,LuxCJ,Bendszus M,HeilandS,HilgenfeldT.Invivo reliabil-ityof3Dcephalometriclandmark determi-nation on magnetic resonanceimaging: a feasibility study. Clin Oral Investig 2020;24:1339–49.

34. WilliamsFL,RichtsmeierJT.Comparisonof mandibular landmarks from computed to-mographyand3Ddigitizerdata.ClinAnat 2003;16:494–500.

35. MurphyK,vanGinnekenB,KleinS,Staring M,deHoopBJ,ViergeverMA,PluimJPW. Semi-automatic construction of reference standardsforevaluation ofimage registra-tionMedImageAnal1520117184.Med Im-ageAnal2011;15:71–84.

36. RohlfingT.Imagesimilarityandtissue over-laps as surrogates for image registration accuracy:widelyusedbutunreliable.IEEE TransMedImaging2011;31:153–63.

37. Kraeima J,SchepersRH,vanOoijenPM, Steenbakkers RJ, Roodenburg JL, Witjes MJ. Integration of oncologic margins in three-dimensionalvirtualplanningforhead andnecksurgery,includingavalidationof the software pathway. J Craniomaxillofac Surg2015;43:1374–9.

38. FortunatiV,VerhaartRF,AngeloniF,vander LugtA,NiessenWJ,VeenlandJF,Paulides MM, vanWalsum T. Feasibilityof multi-modaldeformableregistrationforheadand necktumortreatment planningIntJRadiat Oncol BiolPhys9020148593.IntJ Radiat OncolBiolPhys2014;90:85–93.

39. LeibfarthS,Mo¨nnichD,WelzS,SiegelC, SchwenzerN,SchmidtH,ZipsD,Thorwarth D. A strategy for multimodal deformable imageregistrationtointegratePET/MRinto radiotherapy treatment planningActa Oncol52201313531359. Acta Oncol 2013;52:1353–9.

40. duBoisd’AischeA,DeCraeneM,GeetsX, Gre´goireV,MacqB,WarfieldSK. Estima-tionofthedeformationsinducedby articu-lated bodies: registration of the spinal column. Biomed Signal Process Control 2007;2:16–24.

41. WebsterGJ,KilgallonJ,HoKF,Rowbottom CG,SlevinNJ,MackayRI.Anovelimaging techniqueforfusionofhigh-quality immo-bilisedMRimagesoftheheadandneckwith CTscansforradiotherapytargetdelineation. BrJRadiol2009;82:497–503.

42. FortunatiV,VerhaartRF,VerduijnGM,van derLugt A, Angeloni F,NiessenWJ,Veenland JF,PaulidesMM,vanWalsumT.MRI inte-grationintotreatmentplanningofheadand necktumors:canpatientimmobilizationbe avoided?Radiother Oncol1152015191194. RadiotherOncol2015;115:191–4.

43. EggerJ,PfarrkirchnerB,GsaxnerC, Lind-nerL,SchmalstiegD,WallnerJ.Fully con-volutionalmandiblesegmentationonavalid ground-truthdataset.ProceedingsIEEE En-gineeringinMedicineandBiology Confer-ence(EMBC).IEEE2018:656–60.

44. WallnerJ,SchwaigerM,HocheggerK, Gsax-ner C, Zemann W, Egger J.Areview on multiplatformevaluationsofsemi-automatic

open-source basedimage segmentationfor cranio-maxillofacialsurgery.Comput Meth-odsProgramsBiomed2019;182:105102.

45.ModatM,RidgwayGR,Taylor ZA, Leh-mann M,BarnesJ,HawkesDJ, FoxNC, Ourselin S. Fast free-form deformation using graphics processing unitsComput Methods ProgramsBiomed982010278284. Comput Methods Programs Biomed 2010;98:278–84.

46.AvantsBB,TustisonNJ,StaufferM,SongG, WuB,GeeJC.TheInsightToolKitimage registrationframework.FrontNeuroinform 2014;8:44.

47.van BaarGJ, ForouzanfarT,Liberton NP, WintersHA,LeusinkFK.Accuracyof com-puter-assistedsurgeryinmandibular recon-struction: asystematic review.OralOncol 2018;84:52–60.

Address: StefanKlein

BiomedicalImagingGroupRotterdam DepartmentofRadiologyandNuclear Medicine

ErasmusUniversityMedicalCenter POBox2040

3000CARotterdam TheNetherlands Tel.:+31107043442 E-mail:s.klein@erasmusmc.nl

Referenties

GERELATEERDE DOCUMENTEN

3D angiographic reconstruction and quantitative analysis were performed by an experienced analyst using a novel and validated 3D QCA software package (prototype version, Medis

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

9  In-vivo comparison of arterial lumen dimensions assessed by co- registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical

In dit onderzoek worden mammografie, magnetic resonance imaging (MRI), digitale borst tomosynthese (DBT) en cone-beam computed tomography (CBCT) met elkaar vergeleken als

Er wordt nu een RF-puls (Radio Frequente puls, puls van radiostraling) naar de patiënt gezonden met fotonen die precies de energie ΔE hebben die nodig is om de waterstofkernen

Het gebied bij de pijl is wit en geeft dus een signaal met hoge intensiteit. Daar zitten dus relatief veel waterstofkernen. Hersenweefsel bevat meer waterstofkernen dan ander

Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is