• No results found

Three-dimensional quantitative coronary angiography and the registration with intravascular ultrasound and optical coherence tomography

N/A
N/A
Protected

Academic year: 2021

Share "Three-dimensional quantitative coronary angiography and the registration with intravascular ultrasound and optical coherence tomography"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Three-dimensional quantitative coronary angiography and the registration with intravascular ultrasound and optical

coherence tomography

Tu, S.

Citation

Tu, S. (2012, February 28). Three-dimensional quantitative coronary angiography and the registration with intravascular ultrasound and optical coherence tomography. ASCI dissertation series. Retrieved from

https://hdl.handle.net/1887/18531

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/18531

Note: To cite this publication please use the final published version (if applicable).

(2)

Three-dimensional Quantitative Coronary Angiography and the Registration with

Intravascular Ultrasound and Optical Coherence Tomography

Shengxian Tu 2012

(3)

Printed by: Proefschriftmaken.nl

ISBN: 978-90-8891-380-8

© 2012, Shengxian Tu, Leiden, the Netherlands. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without prior permission in writing from the copyright owner.

(4)

Three-dimensional Quantitative Coronary Angiography and the Registration with Intravascular

Ultrasound and Optical Coherence Tomography

Proefschrift ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. P.F. van der Heijden

volgens besluit van het College van Promoties ter verdediging op dinsdag 28 februari 2012

klokke 15:00 uur

door

Shengxian Tu

geboren te Raoping, Guangdong, China in 1981

(5)

PROMOTIECOMMISIE

Promotor:

Prof. dr. ir. J.H.C. Reiber

Co-promotores:

ir. G. Koning dr. ir. J. Dijkstra

Overige leden:

Prof. dr. W. Niessen (Erasmus MC, Rotterdam) Prof. dr. J.W. Jukema

Prof. dr. W. Wijns (Cardiovascular Centre, OLV Hospital, Aalst, Belgium)

The work was carried out in the ASCI graduate school.

ASCI dissertation series number 252.

Financial support for the publication of this thesis was kindly provided by:

Bontius Stichting inz. Doelfonds Beeldverwerking

Medis medical imaging systems bv

ASCI research school

Volcano Europe BVBA

St. Jude Medical

(6)

Contents

1  Introduction and outline ...1 

1.1 Quantitative coronary angiography ...2 

1.2 Three-dimensional angiographic reconstruction and registration ...3 

1.3 Motivation and objectives ...5 

1.4 Thesis outline...6 

1.5 References...8 

2  Coronary angiography enhancement for visualization...11 

2.1 Introduction... 13 

2.2 Methods ... 15 

2.2.1 Original lateral inhibition model... 15 

2.2.2 Stick-guided lateral inhibition ... 16 

2.2.3 Validation... 18 

2.3 Statistics ... 20 

2.4 Results ... 21 

2.4.1 Visual interpretation ... 21 

2.4.2 Quantitative results ... 22 

2.5 Discussions ... 23 

2.6 Conclusions... 25 

2.7 References... 25 

3  Assessment of obstruction length and optimal viewing angle from biplane X-ray angiograms ...27 

3.1 Introduction... 29 

3.2 Methods ... 30 

3.2.1 Image geometry ... 30 

3.2.2 Approximation of the isocenter offset... 32 

3.2.3 Centerline reconstruction ... 33 

3.3 Applications ... 34 

3.3.1 Obstruction length assessment ... 34 

3.3.2 Bifurcation optimal viewing angle assessment... 36 

3.4 Validations... 38 

3.4.1 Data acquisition protocols ... 38 

3.4.2 Segment length assessment ... 39 

3.4.3 Bifurcation optimal viewing angle ... 39 

3.5 Statistics ... 40 

3.6 Results ... 41 

3.7 Discussions ... 43 

3.8 Conclusions... 45 

3.9 References... 45 

4  The impact of acquisition angle differences on three-dimensional quantitative coronary angiography ...49 

4.1 Introduction... 51 

4.2 Materials and methods ... 51 

4.2.1 Assembled brass phantom... 51

4.2.2 Silicone bifurcation phantom... 54

4.3 Statistics ... 56 

4.4 Results ... 56 

4.5 Discussions ... 59 

4.6 Limitations... 61 

4.7 Conclusions... 62 

4.8 References... 62 

(7)

5  A novel three-dimensional quantitative coronary angiography system:

In-vivo comparison with intravascular ultrasound for assessing arterial

segment length ...65 

5.1 Introduction... 67 

5.2 Materials and methods ... 67 

5.2.1 Materials... 67 

5.2.2 Three-dimensional angiographic reconstruction and quantitative analysis ... 68 

5.2.3 Quantitative IVUS analysis ... 70 

5.3 Statistics ... 71 

5.4 Results ... 72 

5.5 Discussions ... 75 

5.6 Limitations... 78 

5.7 Conclusions... 78 

5.8 References... 78 

6  In-vivo assessment of optimal viewing angles from X-ray coronary angiography ...81 

6.1 Introduction... 83 

6.2 Materials and methods ... 83 

6.2.1 Population... 83 

6.2.2 Three-dimensional angiographic reconstruction ... 84 

6.2.3 The determination of optimal viewing angles ... 86 

6.2.4 Validation of overlap prediction ... 88 

6.2.5 Validation of optimal viewing angles ... 88 

6.3 Statistics ... 89 

6.4 Results ... 89 

6.4.1 Overlap prediction... 89 

6.4.2 Optimal viewing angle ... 90 

6.5 Discussions ... 92 

6.6 Conclusions... 95 

6.7 References... 95 

7  In-vivo assessment of bifurcation optimal viewing angles and bifurcation angles by three-dimensional (3D) quantitative coronary angiography ...99 

7.1 Introduction... 101 

7.2 Methods ... 102 

7.2.1 Study population... 102 

7.2.2 Bifurcation optimal viewing angles... 102 

7.3 Statistics ... 106 

7.4 Results ... 106 

7.5 Discussions ... 109 

7.6 Limitations... 111 

7.7 Conclusions... 112 

7.8 References... 112 

8  Co-registration of three-dimensional quantitative coronary angiography and intravascular ultrasound or optical coherence tomography ...115 

8.1 Introduction... 117 

8.2 Three-dimensional angiographic reconstruction ... 118 

8.3 XA-IVUS/OCT registration ... 121 

8.4 Validations... 123 

8.4.1 Phantoms validation ... 123 

8.4.2 In-vivo validation ... 124 

8.5 Statistics ... 124 

8.6 Results ... 125 

8.6.1 Phantoms... 125 

(8)

8.6.2 In-vivo ... 125 

8.7 Discussions ... 126 

8.8 Limitations... 128 

8.9 Conclusions... 128 

8.10 References... 129 

9  In-vivo comparison of arterial lumen dimensions assessed by co- registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography ...131 

9.1 Introduction... 133 

9.2 Methods ... 133 

9.2.1 Study population... 133 

9.2.2 Three-dimensional quantitative coronary angiography ... 134 

9.2.3 Calculation of vessel curvature... 135 

9.2.4 Registration of 3D QCA with IVUS or OCT... 136 

9.2.5 Frame selection and quantitative IVUS/OCT analysis... 137 

9.3 Statistics ... 138 

9.4 Results ... 138 

9.5 Discussions ... 143 

9.6 Limitations... 146 

9.7 Conclusions... 147 

9.8 References... 147 

10  Summary and conclusions...149 

10.1 Summary and conclusions... 149 

10.2 Future works ... 155 

11  Samenvatting en conclusies ...157 

11.1 Samenvatting en conclusies ... 157 

11.2 Toekomstige ontwikkelingen... 163 

List of abbreviations...165

Publications ...166

Acknowledgments...168

Curriculum vitae...171 

(9)

Referenties

GERELATEERDE DOCUMENTEN

To develop fast and reproducible approaches for the 3D X-ray angiographic reconstruction of coronary arteries including the bifurcation, and for the co-registration of X-ray

Because of the low-pass characteristics of X-ray systems, the sharpness of the visualized coronary arteries is limited (images are blurred), which become less appreciated

Given the aforementioned facts, we ignore insignificant sources of distortions and assume that the uneven gantry sag between the frontal X- ray system and the lateral X-ray

For each included matched pair, the diameter stenosis and lesion length were assessed on 3 different types of straight lesions in the brass phantom, i.e., a circular concentric

Although it was not the primary goal of this study, the finding of the correlation between the accumulated curvature and the difference in 3D QCA and IVUS segment lengths

Aims: To propose and validate a novel approach to determine the optimal angiographic viewing angles for a selected coronary (target) segment from X-ray coronary angiography,

minimal overlap and slightly more foreshortening as compared with ABOVA. However, a very important practical issue is that it can be reached by the X-ray systems. The 3D

Ideally, a couple of reliable features (landmarks), e.g., catheter tip and sidebranches, should be identified on the two angiographic views as reference points for the correction of