• No results found

Interactions modelling for a tiltrotor in host: Application to the ERICA concept

N/A
N/A
Protected

Academic year: 2021

Share "Interactions modelling for a tiltrotor in host: Application to the ERICA concept"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

! " # $% $&' #" ! # (( ' #" !" #! ) * +, , * - ) * ./ 0* " + * . * 1 2 * 2 "" * 3 $ "" #$ $ + , $ $ ( + $ "" * , $ " 4 + $ # , , 4 " $ " + & 5 , ) 6 "" + ( 2 , $ " +, ( ( $ ( ( ( # 7 , , " +$ * 2 , ( " , 2 +* + 2 6 82 + $ , 4 2 ( ( $ + 2 + 2 " , "" , " ( " # . $ , 2 , ( ./ , ( ( 9 3: ) # . , ( , 2 + ( 2 , , 2 + 2 # ), + ( , " +, # 7 , , + $ * + + $ "" $ $ , 2 6 + $ " $ "" , "" , 2 +* "$ + # ), 2 (, , 4 $ " , ./ ( 2 , , $ ( - ) " +, , # , + " , 2 + " + , 9, 4 ( ( , # ), " + $ , , " & 4 ( 2 , , $ " , ( 01 " ( $4 " , ./ 2 +# ), ( ( " $ , 2 6 82 + + $ "" # 1 2 $ ( ! . , 4 " 2 " +, 2 , , " $ " , 2 + + , 2 " " * . " +, 2 , , " $ " , 2 6 + 9# 3 $ "" $ , 4 " $ ! ), " $ " + $ ( & 9 $ 4 2, ,, " $ , $ 2 " * ), " $ " , + $ " $ " 2 "" , 2 +# ), 2 6, ( 9"$ 9 , $ ( : ( " , / ) , +9 ; < /) ). )# "$$" # 2 + , * 1 < , 6 * 11= + $ 9 ( ,*>

1 Helicopter Overall Simulation Tool.

2 Enhanced Rotorcraft Innovative Concept Achievement. Back to Session Subjects

(2)

0 11? 4 ( ,*> 1 2 + 2 * 1 / + * @A B 17 . 3 2 + + * @A B &* % 2 + + " " , 2 + " 9 * " + = &*= 9*= % 2 + $ , 2 + " 9 * # ; (, ( $ * ; ) ,$ * $ * $ * 2 < ( + ( + $ ( * $ 2 $ * 8 5 " ( * 8 5 & $ 4 9* 8 $ & 4 9 $ * 8 7 / ) ( 2 C$ * 67 Ω ( " , * 8 ρ 9* 6+8 θ " ( , $ +* + ( + $ ( + φ ($ ( + $ + $ ( $ < ( + ( " , < + 2 < ( + ( * + κ " $ 2 , $ " , + $ ( * + ϖ " $ $(2 , $ " , + $ ( * +

ζ

" , + $ + + , $(2 , * 7 . 4 , " & 2 +* )7 4 , +, 2 +* )7 ; 4 , " 2 +* 1 4 , +, * 3 4 , " * .3 . 3 $ "" * 3 $ " 3 $ "" # % 4 $ $* + + 9 * , 4 , 2 , , 2 2 , " , * ( + + , $ ( " , 2 + * 9 "" $ , " 2 , 2 " , $ , 4 2 ( " +, A "# *0* *D*EB# . $ , 2 , ./ ( A( ( 9 3: ) "# B , , 4 " $ " + , 2 + ( 2 , A" +$ B# 9 A "# B , " + ( , - ) 2 ( 2 $ " , ./ ( "" " +, # ), ( ( ( " " $ , , " , 2 + 2 " "" " +, , ./ F 4 # ), 4 + ( $ , " , ( 2 C$ # $ 2 ( " 2 " +, " "" + # ), , 4 $ " , ./ " +, , $ # ( , + 4 , 9 $ + , " #

(3)

) ( , + " , " $ , 2 +* , 2 4 9 $ , 2 6 , 6 $ # . " $ , 2 , 4 9 # ), ( " , ( ( , ( " + $ "" * , F " +$ * , - ) # ), $ , , " , $ 4 , + $ " $ " 2 "" #

Figure 1: ERICA wing at 0 and 90° tilt wing angle.

& ' (' &)% ' * " +, ,-$ *, . / . , ./ 2 +* " + ( " $ $ ,+, + " 6 * , 4 ( ( , - ) A "# " B# ), $ " "$ 9 , " 2 $( + A "# GB $ " ,+, + " 6 , , "" , , 9( " 4 9 ( F ,# ), " 9 , $ $ " ( ( ( $ , " 2* 2, + "" 2 , , ( 9 , " + # 4 , * , ./ ( * , 6 2 + * ,+, + " 6 $(( 4 # ), 9 4 , 2 " $ 2 , 2 6 , 2 + 2, ,+, + " 6 $ $ , $ " 2 + # &)& "$" #! 0 (' * $ # $" , 2 , 2 + , 2 6 C$ 9 9 ( " , 2 6 $ # ) 6 + $ , 4 ( , * , $ 4 * , + + ( " , * , 2 9 C$ ($ , 2 + " & 9 # ), 2 ($ + , ( + " 2 + , ( 9 , 2 6 " , " , " + $ " +$ H# ), ( + $ , " $ " , $ 4 9 , ! 1 1 3 3#> 5 #> 5 5 = + A B

(4)

D ), 4 + " $ , + 4 , "" " 4 4 , $ " ( 9 , 2 6 2, $ , 4 ( 4 " ( $ , 4 $ 2, + + $ " , 2 6 # &)1 "! ," ,$+! * *, ,! $"2 2 # $"$,3"! 45 2 $ ), 6 , ( 4 $ * , ( 4 $ , " $ " , 2 + + , 2 , 4 A" +$ 0B# +$ , 2 , " , ( 2 C$ 2, , 2 + + GE@# ), $ , 2 , $ + , 2 + ( #

Figure 2: Wing download evolution with the tilt wing angle in hover

Figure 3: Total power evolution with the tilt wing angle in hover. ), " $ " , 2 + + , $ " 2 " +, " , , ( A1 /IH @B 2 4 " +$ A1 /I E@ 1 /I @B# +$ E* , 2 , , 2 + + 4 9 ( ( + + , ( 2 C$ # ) , 4 , 2 + + , , ( 2 C$ * , ( * 2 + , 4 &( # * " , " , , + AH @* E@ @B $ , 4 ( " , ( $ 2 + + "" " & " 2 4 A" +$ DB* + + , ( 2 C$ # ), 2 + + 2 "$ " , " 2 ( , " , + 4 $ , , , ( A "# B# ), +9 , $ ( , " , 2 + , ( * , , 2 " , ( 2 C$ , $ # +$ E* , 2 , , " , , + , 4 # ), $ + 4 $ " , 2 + + ( " +$ D ( 2 , , 4 $ ( 4 $ 9 ($ # ), +9 " + , 2 + , ( , , , $ ( $ 2 2 6 "" " 4 " +, $ , #

(5)

E

Figure 4: Optimum value of the tilt-wing angle for minimisation of total power requirement compared to the slipstream Tilt-wing angle law

(6)

Figure 6: Influence of forward speed and tilt-wing angle on total power requirement (DNAC=75°)

(7)

), ( , - ) A * 7 6 87 +

B , 4 + " , + $ # +$ G , 2 , - )

$ " $ " 2 + $ , ( 2 , ,

2 + ($ , ( #

Figure 8: Time simulation results including rotor/wing interaction, for an acceleration from hover up to 120km/h at a constant altitude in helicopter mode

&)6 $ $" ,$ ,-,*7$ 7 , " 9 + , " $ " +$ H* , 2 6 " , +, 2 ( $ " , 2 + 2, , " 2 6 ( + 4 9 2 , " , 2 +# ), 6 , " + <$ 2 , , 2 6 82 + + ( 9 , " $ " 4 9 + $ , " ( $ # 4 " , ( F 6 $ , " $ " , " $ " 2 $ + $ , , " $ , , 4 $ " , " 9 , " ( $ 9 , ( " , 2 6 , 2 +# = 4 " ,+,4 $ " 4 9* 2 6 ( + 4 9 2 ( $ " , 2 + 2, , , 2 , " , 2 + $ " +$ H* , " $ " 2 2 ( 9#

Figure 9: Schematic representation of the rotors wake and its impact on the wing in helicopter mode for a lateral flight

(8)

G +$ , 2 , , - ) 2 , ( + " , 2 " , +, 2 + , , " & 2 + , " 4 9 # 2 , $ + $ , +, 2 + 2, , $ , " & " 2 + # ), $ + ( ( , , " #

Figure 10: Influence of rotor wing interaction in helicopter mode for a sweep in lateral velocity (Roll moments are referenced to the centre line of the wing)

&)8 ! , 5 $7 "$" ! 0 . 2 9 , , " , ( , "" , 2 " A " 0* *DB# ), $ , 2 $ , 2 6 A" +$ B , " $ , , 2 +# = # #= 5 +, # A " B , 4 ,+, +, , " $ " , 2 ( " , $ 4 9 ( 2, , 2 9 A " B 2 , , " + # • 2 $ , 4 ($ , 2 4 9 , ( 2 ( # . , ( 7 9 J , F 6A "# HB 2, ,9 A C$ 0B 2 , $ 2 4 9 , $ & 4 9 , $ + , #

(9)

H

Figure 11: Swirl Induced in the rotor wake

), " $ $ , 4 !

(

+

)

= Ω − 0 5 0 ? A0B 7 , "$ " , & 4 9 4 + , C$ " , 2 4 9 + 4 9 (,9 $ ! 0 ? 0 0 D 5 D − − Ω − Ω = A B ." , & $ 4 9 6 2 " &( $ " $ * , 2 4 9 , $ + + $ , ( ($ # ) 4 , (( ,* ( 9 $ , 4 * ( , 4 2 , $ ( " 91#7 # 2 +, A " EB , 2 4 9 ($ 2 , C$ A B $ + , & $ 4 9 $ ($ A" +$ 0* B#

Figure 12: Axial induced velocity at a location 0.1 R below rotor.

Figure 13: Swirl induced velocity at a location 0.1 R below rotor.

, " +$ ( , $ 2 , " $ + 4 #7 #; $9F

6A "# B# ( 2 $ $ , &(

A "# EB

(10)

$ # , , 2 4 9 + 9"

, " # ), 2 4 9, ( , + " , 2 , 2 6 , 2 +# +$ D , 2 , " $ " , 2 , 2 , 4 " 2 ( 2 + + " , 2 " " , # ), 2 $ , 2 , , K$( K , , 2 9 4 " 4 A "# * DB#

Figure 14: Influence of the swirl and the direction of rotation on the wing download in hover.

• 2 " +, &

. ( & , ( 4 $ " 2 " +, 2 , , -#3 $

A "# B $ 4 9 , 6 " 2 " +,! ! "

α

"

α+

$ " +$ E!

Figure 15: Flow model for momentum theory analysis of a rotor in forward flight.

), $ + 4 9!

# =0

ρ

0 +0

α

+ 0 ADB

),$ * , 2 " $ " , A0B 4

(11)

(

) (

+ +

)

= Ω − 0 5 5 0

α

0

α

0 * 2 , "$ " AEB 4 + , C$ " , 2 4 9 + 4 !

(

) (

0

)

0 0 0 −D 5 + 5 + Ω − Ω =

α

α

A B , "

α

$ % &"

α

'* A B C$4 A B# 1 7 , , 4 + + $ "" * , , 2 , , 2 + 2 2 , , , +, 4 , + $ A "# D*E* 0* B# ), $ 2 ( ! • 3 $ ( & 9 , 2 6 * + , $ 4 # • + $ " $ " 2 + $ , " 9 , " , 2 2 6 , + $ + 4 $(2 , , 2 + "$ + 4 A" +$ 0 B# 1)% "$" 5 9 ," $ # 2 6 + $ , " , $ 4 9 2 , , , +, 4 , + $ 9 ( , - ) !

( )

)( *+ = 3 .3 A B +$ , 2 , $ + 4 $ " , ,+ -+ ( 2 , &( $ " 4 $ " ( ; $9F 6A "# B# ), " , $ 4 9 2 ( #

Figure 16: Ground effect on Mean Induced velocities.

+$ 0 , 2 , ( " , ( 2 $ + , "" 2 , &( A ( "# DB# ), $ " , ( 2 $+, , , 2 $ 4 &( 9# "# "# A "# GB

(12)

0 1)& "5 -"5 $ -,"! ), $ " , $ 4 9 &( , " $ " , 2 4 , (( $( " ( $ 2, 4 9 , + $ A , &( $ " # # 6 = # ( " +$ 0 B# ." 2 , " , 2 2 6 &( , + $ * , $ + " $ " 2 " <$ $ , " , 2 +# ), + $ " $ " 2 "" 2 ( $ $( " , $ , 2 # ), $(2 , ( , ( ( $ + ( , , " A" +$ 0 B# + " , + $ " $ " 2 (, 2 ( # 1)&)% $2 , + $ "" " ( , + " , $2 ,4 + $ "" A . " +$ B , 2 + 4 , + , " , " $ " 2 $ , " " , 2 F $ 2 ,# $ 6 " ,$ # ( , # . $ , , + $ $ " 9 4 , 6# , $ 4 9 , 6 . , 2 6 $ 4 9( , + $ " " , 2 6 " ( # $ , , ( $ , " 2 6 &( , + $ A 0B 4 / # (( 9 + $ F C$ 2 01 + 230 + 4 ! 0 # 0 ; =/− + ρ AGB

Figure 17: Flow model for rotor outwash analysis in ground effect.

), 2 0 . + 23. + 4 ! 0 0 0 # 0 # 0 / /+ + ρ = + ρ AHB / + , C$ * 2 ! 0 0 # # 0 B# A # / / / # =∆ = + − − = ρ A B ." -+ , $ 4 9 " , 2, $ " + $ "" * $ , 9+ 4 , " 2 + 2 , ,$ # -+ ! 0 # # # 0 -+ # = ρ A B

(13)

C$ A B L A B + 4 , " 2 + 2 . -+ ! 0 0 0 # # 0 # # # 0 # = ρ -+ = ρ -+ # 0 0 = A 0B ), $ , ( 2 , &( $ $ " " +, , 4 " 2 + A3214 B A5 106B $ 2 , $ $ " , (-#78 ) A "# DB ( + " 4 $ # +$ G , 2 " + 2 , A C$ 0B , ( 64 9 " , &( , (-#78 ) $ #

Figure 18: Comparison of peak outwash velocity in ground effect.

), &( $ " , M5 E , 2 " , $2 , 4 9 " , +, 2 0" E " # ), &( $ " , M5 E 2 , )7 -$ A" +$ HB , 2 , , ( 6 $2 , 4 9 2 9 , " " $ *E# " , ( + ( " , 2 6 # . , ,9( , " 2 < , 4 $* , " , 4 92 , , " , ( + ( * 2 " 2!

( )

( -+ E * 0 0 = * " ≥096&( A B A 096&( 2 6 + " % $2 ,4 9 , ( + ( B# +$ H , 2 + + 2 , &( (-#78 ) $ #

(14)

D ), $2 ,4 9 " C$ A 0 B 2 $ ($ , + $ " $ " 2 "" # 1)&)& . ( + + < + , 4 ), + $ " $ " 2 &( 9< 5 ) " , 4 + , < ( ($ 4 A "# HB# ." , 2 ( " , $ 4 9 + * 2 , 2 6 2 < ( + + , + $ # ), " +$ , 2 $ 91# #N 69 , " < 5 ) " A "# HB# ), , 4 2 , 9 , 2 # ) ($ , " $ " 2 "" $ , ( + + < , 4 ! • ), + A" +$ 0 B $ + " , " " 2 < ( + + , + $ * • ), " $ $(2 , " 2 , , 2 + ϖ A$(2 , B κ A 2 , B* . , " $ " 2 + ! • ), 4 9( " * • ), ( + 2 , ζ + , $(2 , , 4 , 2 + 2 , , $(2 ," 2* • ), 4 9 + $ 2 , ζ + , $(2 , #

Figure 20: Schematic ground fountain effect modelling with impinging jets.

9 9 , !

), + +, C$ " , " ( " , 2 < *

(15)

E 1# #N 69+ 4 "# H " , 2 , κ! − + − = 0 F F 0 0 0 π φ φ π κ A B 2 ,

(

φ

F *

φ

F0

)

+ , ( , + A " +$ 0 B# "# H* 1# #N 69+ 4 ( 2 < " $ ( + , ( + 4 9( " $ " +$ 0 00# ), ( + " 2 ! : : * ζ η # # + = A GB . , ( , ( + , 2 , 2 < #

Figure 21: 2-jet fountain spreading characteristics (Ref. 19)

Figure 22: Empirical 2-jet fountain dynamic Pressure Profile (Ref. 19)

), 4 9( " A" +$ 00B , + , $(2 , A "# HB# ), 4 9 + $ * 2 , ζ + , $(2 , * + 4 $ + ( $ < , 4 $!

( )

ζ ζ ζ: : * * & = & = ⋅ * " ζ ≥ : A HB 1)&)1 $ " 2 "" 2 , 4 ; #0# + 4 , $2 ,4 9" , , 2 < , + $ 9 C$ * " $ 9 , , 6 " , < 1 ($ # ), $ + C$ G H ( 4 , 4 9 + $ , ( + + , $(2 , # / 2 , , 4 9( " " +$ 00* ( ($ , " $ " 2 + , 2 + ( # ), " $ " 2 "" , 2 , 4 $ , 4 $ , $ ( " +$ 0 , 2 + 2 , , &( $ #

(16)

Figure 23: Download evolution in ground effect with tilt-wings at DWING=0°. 6 ), $ " " + , - ) " , + " 2 + 2 6 82 + , 4 (( , ./ ( # ), $ ( , ( ( " $ ! • ), 2 + + " $ 2 , 4 " 2 " +, " "" + ! , $ , 9($ + , 2 + , ( , 2 " $ 2 6 82 + , " , ( 2 C$ * • ) , + $ " 2 , 4 5I 0 6 8,* • " +, 2 , 2 6 82 + ! , $ , 2 , , 2 6 9 ( , 2 + $ , 4 9, " $ , , 2 +* • 2 4 9 $ , 2 6 , 4 ! , $ ( , 2 , "" " , 2 , 2 , "" " " # • . , 4 , + $ "" $ + , , " , $ 4 9 , + $ " $ " 2 "" , 4 # ), + "" , 2 , 4 $ # $$ 4 2 ( $ ! • & " , 2 " 2 " +, " 4 * • & " , + $ " $ " 2 "" , ( , 4 * • & " + $ "" + 2 ( " 2 " +, * • " , + $ "" , 2 +* • 5 " , $ 2 , ( " 2 $ #

(17)

8 OP =# #= 5 +,* 7 #N#3 $ * 1#J#; 9# Q 8 " " Q* DD, $ $ " , - ( 9* J$ HGG# O0P # # 6 J# # +,# Q 87 + 9 , 4 Q* D0 $ $ " , - ( 9* J$ HG # OP =# #= 5 +,* Q), 5 00 ) + ; " 87 + 1 2 ) / ( 2 ,), 9Q* , $ ( " $ * ( HGE# ODP # # 6 * Q 4 2 " 2 ,Q* D, $ ( " $ * HGG# OEP # 1 (( * # - $% * 5# $, $* 3# ,* 7 # 4 3 R , + -# - 4 + * Q $ 9 " 2 ( , " Q* 0G , $ ( " $ * 0 0# OP # * 3# 3 = # / S* Q ./ ! ), $ ( 4 ) Q* 0 , $ ( " $ * ( 0 # OP #/$% $& # 1 (( * Q " + (( , " , + " ) 2 + - )! (( , ./ ( Q* $ ( " $ * ( 0 E# OGP =# #= 5 +, # N 2 6* Q + $ 9 " , " +, 2 + " Q* / D * J$ H # OHP 7 #J , *) ;! * ; : 4 9; * HG # O P #7 # ; $9* ) ;! * ! 9" <; ! ;* N + ;$ / 4 * HH # O P -#3 $ * 8= ; * 8 = * / L= * 4 H0 # O0P # #= *1#3# * #7 # +$ * Q 9 " , 2 $ " ( 2 " Q* / E0H* J$ H D# O P # # $+,* Q 9 " " $ + 4 , 4 ( " Q* 3 1 /#;# * H 0# ODP #7 # +$ * 4 $ " 2 ,/, " ) ) 2 + " - 4 + +,* ( 1 )8 8 1 H 8 * 1 HH # OEP 1#7 # 2 +,* Q= $ " 5 9/ ( , 7 6 " $ - ( - 4 Q* : = 1 ) 0 * H 0# O P =#N +, # #- " # 8 ;"" * = ** ! ;* = "! ># / ) G E* HD # O P + # ;, " = * ** !" * ?; ! 3 < /; * # ( / * ! &: = 1 ) 0 D* H 0# OGP - 9 * # ** ! * + ) ;! / > ( @ 9A. $ $ " , - ( 9* H # OHP 1# #N 69* QJ " 2" Q* ( / $ 58) 9 * 3 1 * HGD#

Referenties

GERELATEERDE DOCUMENTEN

Dit delagonistische model beschrijft een deliberatieve rol van de burgers binnen het publieke debat, de informele publieke sfeer, en een afgezwakte agonistische rol voor de

In de communicatie moet naar voren komen dat Medic Skincare een paramedische praktijk is waar huid-, oedeem- en lasertherapie (functionele diensteigenschappen)

Als er wordt gekeken naar de takken van sport die het meest worden beoefend blijkt zowel in het onderzoek als uit de cijfers van het Jeugdsportfonds Eindhoven (2016a) dat voetbal

This paper reports on a study which examined what associations are evoked by foreign language and ‘Made in’ cues, what are the differences between them and general associations

Here, new options for the preparation of Janus nanoparticles are demonstrated from strawberry-like hierarchical composites with designed surface functional groups for

Wanneer dit onderzoek in een andere omgeving wordt uitgevoerd zullen de resultaten echt niet hetzelfde zijn, omdat de positie van Groene Ster Vlissingen en de inrichting van het

Deze informatie is niet alleen van waarde voor de Beuningse Boys, maar voor alle voetbalverenigingen in Nederland die willen weten hoe zij de binding met hun leden kunnen

Apart from its focus on unravelling the dimensions of trust within the firm – bank relationship this study aims at examining the interplay of trust with two consequences of a