• No results found

Analysis of +Gz acceleration induced stresses in the human ventricle myocardium

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of +Gz acceleration induced stresses in the human ventricle myocardium"

Copied!
124
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A n a ly s is o f + 6 ': A c c e le r a t io n In d u c e d S t r e s s e s

in t h e H u m a n V e n tr ic le M y o c a r d iu m

by

James Ernest Moor-.

M .E n g ., C arleton U n iv e rs ity , 1985 B .E ng.. C a rle ton U n iv e rs ity , 1985

A D isse rta tion S u b m itte d in P a rtia l F ulfillm ent, o f the R equirem ents fo r tlr * Degree o f

D O C T O R O F P H IL O S O P H Y

in th e D e o a rtm e n t o f M echanical E ng in e ering

We accept th is d isse rtatio n as co n fo rm in g to the* re quired standard

D r. J . f l H addow , S upervisor (M echanical E ng in e ering )

D r. J .W t Provan, M e m b e r (M echanical E n g in e ering )

D r. ( l. W V ickers. M e m b e r (M echanical E n g in e e rin g )

D r. R. Miner. O utsid e M e m b e r (M a th e m a tic s )

D r. R A Y . Ogden, E x te rn a l E x a m in e r (M a th e m a tic s ) U n iv e rs ity o f Clasgow

© James Ernest M oore, 1991 U n iv e rs ity o f V ic to ria

A l l riyhts n s t r r t d . D/.sst rt at ion may not Ix n p r o d i u i d in t hole o r in part, by photocopyiny o r ntht r an aim iri ihout t in p tr mi sa io n c f t in author.

(2)

I l a m e ” • L - v ‘ , * • . Iv ^ _ A l j - . h r j r f', / r i f e r r i a / i o n o r a r r a n g e d b y b r o a d , g e n e r a l s u b j e t . c a t e g o r i e s . P l e a s e s e l e c t t h e o n e s u b j e c t w h i c h m o s t n e a r l y d e v r i b e s t h e ' o n t ' - e t o f y o u r d i s s e r t a t i o n E n t e r t h e c o r r e s p o n d i n g f o u r d i g i t c o d e i n t h e s p a c e s p r o v i d e d I r ■- v v ' n - , t SUBJECT TERM * /

SUBJECT CODE

UMI

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

C O M M U N IC A T IO N S A N D THE ARTS All t l:.|. y ' n i f ‘i n ’ 1 I MU' •• I Ml. . A t V. l t d ' Mt .1 i t ’ . M l ]■ r . j t n o l r . m M r l " , '! r,M M ED U C A TIO N A t Itr III II *> ■ it- A.lull .u,-i < •• A l J I 11 .,|t. Mill A,t M -. s I l*ii' ci n ' * t .tl It t n II lit . ' ‘ 1 it I Ii n il III. r ir l n . l v . 1111> j l ■■ 11 I It-i nt i it, it , j I r i ‘ 11 ■ ■ I • I i t <r JI ' .uuf, Hr- It I it Ml. Hm.MI .1 ' I . I n* ji a ft ti tl M u t l . M . i - . t U n i,. u | i u n | . . J /7 v ■ , . / / - ' / ! / , I 1.1 i M . 1 t'--/. I,'" !- ’. ) / f r . ’l l ' l t l i q j*.,.;!!)!..!!', V r i yt i' i. ir y l - p / f.t f t T ftin iiiis i 7 * 0 .... Ill It < Ml I ..I.tt.M-.tr,.'.. M . , K . .v mI M . 7 - r r . A f r 1; ■ Hi An n 'i a mi t n l i b 111 (f hi l i t '/ ;■ ld l 'I 'l (f M-ni I 1 111 •. Att 11 ■ f ; 1 , jrt A V . i J l r f 1 J‘,t. -t 11 0:7 S 0 7 U u iy n 7V14 (■>440 U 'jJ V 0 / 1 0 O '/H H 7 ’ 4 / LA NG UA G E , LITERATURE A N D LIN G U ISTIC S (V . .'v ( tJHV <•7 VO 0 7 * 0 ( M M o ; v 4 n w ; (.7 7 .’ 0.4 1 8 O .YO o li.'i4) 0 4 . 7 0 7 7 o .V '4 i ) -i 1 1

04 !

( )4 ! S l) 7 4, P H IL O S O P H Y , R E L IG IO N A N D T H EO LO G Y ,j,o n ( 1 f - n n n l BitJr ; 1 \ r u t f hat-Ty V P t „ l r , - . ' I , : , ■ o l o i i y Tl,, S O C IA L SCIENCES A t T l t t r t C MP mM Jm ■ A n t f i r c . p ' / u ' j y A , , l , . „ , i , „ C_t Ju ui mI f ’ t i VMC Ml B-jmpcs'. ( jf-nf.T mI A ' . . . H i . j , i t i n M [ V j n k ' t u j Mm, k i M f M P f i d M i . l i k . 4 t n ' ! < . C l P M t i l M P ‘ j ti 1 J i t ■ f t - J POt TM. S ' jf.n.TMl A - j n - ' u i t u m l ( 1 i i r i t p f p » fv, • . ' i n ' F ifn 1,p ... ! 11 s t r, | v' l u U / TllCMP. r.fjP.lf I O l l t r J1 Hi Mm M i n i I M' .t f 1 i f >t p t n i n 0 4 1 4 ( ; ' i ] H 7 7 1 04 IV ' v7'0 0 : 7 7 0 4 8 7 O 'C'ft U 4 1 0 0 /7 U - J O O J 4 8 O Ji.j 1 0 .0 7 i 7 0 v '. 7 10 Tim U J Wr MpJm'v mI VmJE.-r, ; K'mO A f r I f ] J, Amm A '.'-.tifiV j ' '■ . illiM Jn ?'■ I If ■ d it: J> ■ ! I. ] t l : I A r n r - I !■ Ml I M . J J n - I ' M' , r--M' . U , : l t f J mt: l b

ltf 7

( , , -rJ.»j , Ijr’f ) t i - J I mv k / ' l . i t .m i' 0.7:,. A ir • . •• -.'M-nti-in fn-|! W .-l I. r - " j i , M l y I. n-M )'H Mf d' r t t h n ; . - t n J Pm.. IM! Mi. i 111J 1 . 1M M ! i . r v . l 0 i n : , ! r Of.,.. lie-" InJt.'Mnn! .” Mi L/jKc -y . - l ' l*,r Jtv. f ' u M u - :r : . I !>c-c m l W > . ■Mo,;irji bt-t" Mil.' ;; 1■ 1 * 1 f M' srt . - Jf : I M t. - tt . I.-]-' r-.[ i ■ frtfi.... "Mil M,|J pf jjion I1 r'fli.

THE SCIENCES A N D EN G IN E ER IN G

B IO L i G IC A l SCIENCES > , I. v Ami , '.n . 1' V Ar nit n il ' , 4( 1. s) 11. U i - t : l i a r f w , ( M , n - M ■ - »,) H ,,!" fl. ,.,t t U K, :: It Jl* \V 1 K h |: \ N . , . i 1 1 - t , - . . . . 'm. A- - .M . -, X lA-.hM-.M,. . H, d. -v . M . .-!■ • '• t' M, A'. : N .V '.' <"1-M !' H i','. -. . W’M ’ EARTH SCIENCES .1 'P 1" . ' )*. 1 v M s - I n A , |V M m > 1 il. \ \ > U M.t n -tl III » f 'mIp- >■" ■ A '*!' f MIC, i n .!■ >■ 1 ‘ ' S ! ' ‘I- *- J . >M r :i Jiv | * 'Ml 1, - M i M f ' P v ■ HMH 041 i 0 (4.4 0 4 . 7 1 M) H i t V H * - D41 ' 0 4 * .,-s 0 4 ’ ' H EALTH A N D E N V IR O N M E N T A L SCIENCES A -.J -.Aimv . f l C. M, f f l . u O i i M l t i . n H.' Mmi|M.)i',' hrn- I 11 , ^ !JV M r-J . m mJ !nl' W - M i H i ' . i i r 1- r^,- . n.; , ‘ V ’ V Mi' . 1 hi'iTlttl M'hf t \lt ’\ ’\\) v I >\ jr i " . \ f ' * \ r m m. v k‘ * " . . t ■ T i , f i . i p v t’.M'. y Mt\H ^ Km.*v' . ‘.jv Kt-v • ’440 I'A V < ivV J y f ' f ' - ' 1 - < 4 7 l 7^ t' ’ 4h .K 'H J

1

4^4

0 4 4 ’ Or>r.y 0 4 4 4 0 7 i c ^ 0 0 4 1 ^ .it .ft', t- f'jt: : M, Tu«;,.M|V H . M Pi. f . ■. . f V . M i i ‘ P H Y S IC A L SCIENCES P u r e S c ie n c e s 0 7 . I P , ' . t i y A n d i v t i i ,ii b 1 ->< fii'Pi-‘.t, *■ I n , * mmmm N u r l r . l , L. )( ij.Hlk f'lli K Ml( |( EM tl- -ill T’f i y siv'ui 0 t i y n n ' t K.uj:;Ttiori ' itflOTlHltlC s OtP-VlLS CwfH'KlI Ac m; ;s*iC s Asti..,nomv cinti AvtfolJ'ysi<:> A tiPost” ip rk' Sc ii'th t> A\tc),Pk

[ IfOntnic s cTH J C liYtr i.Mtv F !t‘iT'rfltctr> Ptlftn.lns vj. nf H ujfi tni'ujy f b i - d ; t n j P l u 5. r ’ i i i M cJlk CUM, Nuc ! t \r OptkS KouMt'on Solui Statr 7dt.ct;vs A p p l ie d S c ie n c e s AppiirJ M t * . . J i i m c s s O'tUH'tt'f Ss‘ t'lVt* 04M S 1 ,'M v 0 4 8 7 0 4 8 -'' - ,488 | 0 ’ 4H 0 4 0 0 0 4 v ! 0 4 V 4 0 4 ^ 5 O ' 7 * 4 0404 oofifr 17 0 '* OcOvS 0 7 5 8 ' . 7 0 4 0 UPr.O i 7 10 0 ' 7 ; 0 " . 7 O M 1 0 4 f t 4 044c* A , A. 81 1. Mf'Pii. . 11 t I y ji f" 't'( t' , 11 H , - a 7 T 7 H .O in O i,- l n , I n 1 tr •• li M . - t t i t : . - M - i t * 111. <: ■ S c ; Mt i h u n p . a l . M . v t d l l u ' d v M i n u u t N u d i - . ir kcKki.ici-ftc: P f ’ tf o l f ' i - r f t S c U i ' t a r y ; i n O S v h i P M , I vJ'O es up01 -*cj> ' .‘ f t n r . ' l t i v VT S R * ' . , f Fisr.hv-s Tn.-fneJ. ■ !r*t,|n Tc-i:t1 •,1 \ P S Y C H O L O G Y L.?t*ru'rcil b o h c T v k i ’ Cll Oimisijl P ‘'v i'lop rn *'n f7 E^|H‘ri,TH‘,PTcl! Inuustr cj! Forsoiuikty PHvsioli'qidM' Fsvcf-.obioiouv L yvchMfPOtric McM1

®

(3)

S u p e rv is o r: Dr. J.B. Haddow ii

A b str a c t

Il is well know n th a t physiological problem s occur when p ilo ts are su b ­ je c te d to m o d e ra te -to -h ig h + ( r z accelerations. T h e goal o f th is research is to

develop a q u a n tita tiv e m odel th a t provides a d d itio n a l in s ig h t in to th e adverse effects o f - f ( ! - accelerations 011 a p ilo t ’s cardiovascular system . T h e m e th o d o f in v e s tig a tio n is in co n tra st to previous studies, w h ich have m a in ly re lie d on e x p e rim e n ta l techniques.

T h is w ork focuses on the developm ent o f a th re e -d im e n sio n a l fin ite clem ent m odel to analyse + (7 . induced stresses in th e h um an le ft and rig h t v e n tric le s . T h e c o m p u ta tio n a l m odel is based on n o n -lin e a r c o n tin u u m th e o ry , where th e effects o f fin ite d e fo rm a tio n , irre g u la r shape o f th e h ea rt, and (n e a rly ) in c o m ­ pressible b e h a vio u r o f m y o c a rd iu m tissue are take n in to account. T h e fin ite elem ent fo rm u la t ion is developed using th e G a le rk in weight ed re sid u a l m e th o d w ith a ]>( nalty tre a tm e n t o f th e in c o m p re s s ib ility c o n d itio n . In th is stud y, an e x p o n e n tia l ty p e stra in energy fu n c tio n is used to m odel th e ca rd iac tissue.

T h is tech n iq ue provides a new perspective fo r th e m echanical s tu d y o f +(7~ acceleration 011 the hum an h ea rt. Results presented d e m o n stra te th e a b ility o f tin* fin ite elem ent m odel to p ro v id e q u a n tita tiv e d a ta on th e effects o f g ra v ­ ita tio n a l lo a d in g 011 th e cardiovascular system . T h e analysis p re d ic ts gross d is to rtio n and stress d a ta fo r th e hum an h eart u nd e r sustained exposure to in e rtia loading up to + 5 (7,.

(4)

E x a m in e rs :

D r. J .B . H addow . S upervisor al E ngineering)

D r. J .W . P rovan, M e m b e r (M ech a nica l E ngineering)

D r. G .W . V icke rs, M e m b e r (M ech a nica l Engine/ rin g )

D r. H. Illn e r, O u ts id e M e m lx r (M a th e n ia t ics)

D r. R .W . O gden, E x te rn a l E xa m in e r (M a th e m a tic s ) U n iv e rs ity o f Glasgow

(5)

A c k n o w le d g e m e n ts

I w ould like to express m y sincere g ra titu d e to m y supe rviso r, Professor J .B . H addow . for his valuable guidance and assistance in th is endeavour.

I also wish to acknowledge' M r. vV. Fraser fo r suggesting th e research to p ic and M r. M in li L y for his assistance and te ch n ica l su p p o rt.

This research was p a rtia lly funded by D r. B. T a b a rro k in c o n ju n c tio n w ith th e Defence and C iv il In s titu te for E n v iro n m e n ta l M e d ic in e ( I ) C IE M ) u n d e r ( Ira n i No. W771 l-D -7077/01.

(6)

C o n te n ts

A b s tra c t ii A c k n o w le d g e m e n ts iv T a b le o f C o n te n ts v L is t o f F ig u re s v ii 1 In tr o d u c tio n I 2 T h e o r e tj • 1 F o rm u la tio n and D e v e lo p m e n t 8 2.1 I n t r o d u c t i o n ... S 2.2 K in e m a lic s o f D e fo rm a tio n ... 10 2.2 S tra in M e a s u re s ... I I 2.1 B alance Laws 2.1.1 C onservation o f M a s s ... IL 2.1.2 C onservation o f M om ent u n i ... Hi I <1 2.5 V a ria tio n a l (W eak) Form o f Linear M o m e n tu m Balance . . . 2.G C o n sisten t L in e a riz a tio n o f th e Balance o f M o m e n lu m ...21

2.7 A C o n s titu tiv e R e la tio n s h ip for C a rd ia c Tissue... ... 21

2.8 Stress and S tra in R a t.e s ... 28

2.0 In c re m e n ta l C o n s litu t ive R e la tion for C ardiac 1 is s u e ...21

2.10 S u m m a ry o f the In c re m e n ta l Equal i o n s ... 25

3 N o n - L in e a r F in ite E le m e n t F o rm u la tio n 37 2.1 I n t r o d u c t i o n ... 27

2.2 Space T im e D is c r e t iz a t io n ... 28

2.2 C o v e rn in g F in ite Elem ent E quations ... 20 2.1 A n In c re m e n ta l S olution P r o c e d u r e ... T l

(7)

4 H u m a n H e a rt: M o d e llin g Aspects 4P

1.1 Stages ol D e v e lo p m e n t... 16

1.1.1 M H I i m a g i n g ... 47

1.1.2 I'M Disced izat ion of t lie Vent ■ride M y o c a rd iu m . . . . 47

1.2 A ( '( >nsi it uf iv<’ lic la l ion ... 51

1.2.1 M y o c a r d iu m ... 51

1.2.2 P e r ic a r d iu m ... 52

5 A n aly sis S o ftw are and V e rific a tio n 54 5 1 Soft w a r - 'M o d u le 's ... 51

5.2 C o m p u ta tio n a l V e rific a tio n and T e s t in g ... 57

5.2.1 L inear E x a m p l e s ... 59

5.2.2 N o n -lin e a r (reomet r i r E x a m p le s ... 59

5.2 5 N o n -lin e a r ( le o m e tric and M a te u a l E x a m p l e s ...62

6 H u m a n H e a r t: A n alysis and Discussion 71 7 Conclusions and F u tu re W o r k 78 R eferences 80 A L in e a riz a tio n T h e o ry 90 I I E le m e n t M a tric e s 91 11.1 Int ro d in t i o n ... 91

B.2 A 5 1) Iso p a ra m e tlie Solid E le m e n t ... 92

11.2.1 I n t r o d u c t io n ... 92

11.2.2 (ie o m e try / K in e m a tic D e s c r ip t io n ...92

B .2.4 F in ite E lem ent M a t r i c e s ... 95

B .2 .1 E xte rn a l Force V ecto r . . . . 97

11.4 A .4 I) C o n tin u u m Based Shell E lem ent... 99

11.4.1 I n t r o d u c t io n ... 99

1121.2 (Ie o m e try / K in e m a tic D e s c r i p t i o n ... 100

11.525 F in ite r o t a t io n s ... 106

11.4.1 Lam ina Stress and S tra in ...110

11.4.5 F in ite E lem ent M a t r i c e s ...111

(8)

L ist o f F ig u res

1.1 A section a l view o f the heart w a l l ...

2.1 R e fe re n tia l and sp atia l co nfig u ra tion s o f a body

1.1 M R I o f th e hum an h e a r t . ... •1.2 Im a g in g p l a i n ' s ... 1.3 F in ite elem ent d is c re tiz a tio n ol the heart m odel

m l F F G ra ph ics P ro c e s s o r...

5.2 A n eng in e ering P atch test ... 59 5.3 B e n d in g o f a c a n tile v e r heam ...

5.1 Post B u cklin g o f a c irc u la r arch s t r u c t u r e ... 5.5 F q u i-b ia x ia l response o f m y o c a r d iu m ... 5.0 F F mesh o f a th ic k w a lk'd c y lin d e r ... 5.7 A th ic k c y lin d e r under in te rn a l p re s s u re ... 5.5 F F mesh o f a th in sphere ... 5.9 In fla tio n response o f a th in s p h e r e ...

0.1 S olid m odel o f tin* hum an h e a r t ... 0.2 D e fo rm a tio n profiles o f the heart ... 0.3 P re d ic te d stress v a ria tio n along the FV endocardium 0.1 P re d ic te d stress d is trib u tio n for the heart at f5 <!

B . l A 3-1) c o n tin u u m based solid e le m e n t... B .2 A 3 I) c o n tin u u m based shell e le m e n t... B .3 F in ite ro ta tio n s in 3-1) s p a c e ...

(9)

C h a p te r 1

I n tr o d u c tio n

T h e ongoing developm ent o f high p erform ance a irc ra ft capable o f p r n id i n g

s iilis ta u ti« l p o s itiv e accelerations ( + ( / - ) has created th e need fo r a b e tte r

u n d e rs ta n d in g o f th e p hysiological responses th a t can affect, a p ilo t's ju d g ­

m e n t. T h e te rm (positive* (1) c o m m o n ly used to denote in e rtia forces

th a t act along the v e rtic a l axis u f an u p rig h t body. E ffe c tiv e ly , these* feirces

cause the* heart and either beiely p arts to elisplace elowmvarels, inelucing an

e levnled stress state*.

Kxpe’rim e n la l inve*stigatiem has he*e*n the* p iin c ip a l nie*thoel use*el to s tu d y

the* physieilogical c!iange-s asse>ciate*el w ith a p ilo t's e*xpe>sure> te) mode'rate* to

higl f t / , aece'h'rations. The*se* expe'rime’id s a.*e designed in part to s im u la te

in High! acce*le*rat ie>n cemditieuis th a t can occur d u rin g aerial cennbat m a-

neie'uvre's o r e*me*rgency situatienis. Frenn e*xpe*riine uts eonduete'el in a .safe

envirem m ent using a e*e*nt rifu g e , th e ave*rage b la c k o u t le*ve*l eihserveel fo r an

unpro'.t cUd ineli vielnal is betwe'on T o to 1.0 (7- . W h e n litte'el w ith an a n ti-G

suit and using s tra in in g manenuivre's (m uscle tea sin g w ith e*emtredle*el b re a th ­

in g ) a pile>t ra n often a tta in f ! ) ( / . few a slm rt duratiem [n, 10, l l j . In fu tu re ,

(10)

1. Jntnuiurijon ‘2

a m i inzioased perform ance ol newer lig h te r a in i'a h , com bat m a n o e u v rin g in

excess i)l’ + 9 ( j - m ay he a tta in a b le w ith o u t (1 .O l (loss o f > a ■nsciousuees i

fT, ■)!). 971.

P h ysiolo g ica l responses 1o i ' r . a c v lc t . i t ion range from tin* less sever''

te m p o ra ry loss o f p e rip h e ra l vision to unconsciousness and. in very severe

cases, possible damage to heart tissue. For safely reasons, there is p a rtic u la r

in terest in th e effects o f f d b in e rtia forces on the cardiovas; u lar s y t<mi (see

[ti, 17, ho]). C onsequently, e i.v a te d s* r< ss le v Is in I lie vascular due to high

+ ( > - lo a d in g have a ttra c te d the a tte n tio n o f researchers (eg. j"> 1. n o . S i j ) .

In such research, high - K / , loading has Pi en associated it h a lm o rm a lit tes

o f th e e le c tro c a rd io g ra m in man [ o l], as well as suh endocardial haem orrhage

and p a th o lo g ic a l changes o f the m yo ca rd ial tissue in anim als l"> [. T hough

most researchers have assumed that iscuem ia is the cause ol tissue dam age

in a n im a ls sul ject to high +C b lo a din g co n d itio n s js7|. detailed o nth olog ica l

e x a m in a tio n o f sw ine has in d icate d te a rin g o f the heart libres m l her tln m

dam age consistent, w ith a h ypo xic o r ischem ic in s u lt. It r probable that

th e observed dam age is due to th e high stresses and st rains re s u ltin g b o m

a c o m b in a tio n o f i) high +C b loading a c tin g d ire lly on the heart libres,

ii) elevated hydros1 a i ic pressures in I lie vasculature, and i i i j stresses from

n o rm a l c o n tra c tio n o f 1 lie heart.

N a tu ra lly , t hese le p o rts o f endocardial haem o rrh a ging and in yo lib rilla t

d e g ra d a tio n in swine undergoing high sustained } (!,. accelerations raise .-pies

lio n s re g a rd in g the p o s s ib ility o f cardiac tissue dam age in hum ans subjected

to s im ila r + Ch forces. N om m vasive cardiological technbjues used d u rin g

e x p e rim e n ts on hum ans seem too insensil i ve to p ro vid e su llicie n i P a t a t o de

(11)

I hit Ullllll l lull

;i < 1 for a ( o m p u ta t ional m odel to predict stress levels in the hum an heart

under high \ ( i accelerations. In 1 his study. such a m odel capable ol p ro v id ­

ing a d d itio n a l insight in to th e effects of -f-.'V. induced stresses on th e h ijin a n

heart is developed. I lie c o m p u ta tio n a l m odei hased on th e fin ite element

m e tho d w here the effects o f fin ite d e fo rm a tio n for an in co m p re ssib le elastic

m a te ria l are accounted for.

Ih e stu d y details the developm ent o f a fin ite clem ent m odel to riel e rm in e

the s tre s s /s tra in state o f the hum an left v e n tric le (IA ) and rig h t v e n tric le

(R Y ) m yo c a rd iu m d u rin g sustained - K b acceleration. W hereas in previous

studies, fin ite element models o f the heart have considered o n ly tin* passive

d ia sto le and act ive systole c y c lic responses o f the left vent rich* in a n o rm a l

( f 1 K . ) e nviron m e n t (eg. [S. 22. '2-1. 25. 2N. 50. .‘11. In, IN, (i l, (in, 07. !)X. 101)]).

T h e fle x ib ility o f the fin ite elem ent m e tho d to deal w ith c o m p lic a te d shapes

and account fo r the effects o f m a te ria l and g e o m e trica l n o n -liir* a ritie s makes

it an ioeal teehni<|Ue to s tu d y the s tre s s /s tra in b eh a v io u r o f th e h eart. In

a d d itio n , w ith the advent o f c o m p u te r-a id e d to m o g ra p h y am i d a ta im a g in g ,

an accurate g e o m e tric re co n stru ctio n o f the heart, is possible [1. 15. 70].

I lie heart w all is com post'd of continuous in te r tw in in g m y tx —vdial fibre's

fo llo w in g a helical path th ro u g h the w a ll thickness [MS], T h e a rrangem ent o f

the m yo c a rd ia l fibres, which form s p ira lin g bands o f m uscle re s u ltin g in an

in tric a te w ebbed s tru c tu re across tin ' v e n tric le w a ll, is d e p ic t(><1 in F ig u re 1.1.

l'hest* com plex lib ie bundles fo rm the left and rig h t v e ntricles. In essence, the*

heart w all behaves as a non lin e a r anF iro p ic com posite m a te ria l [till]. In the

lite ra tu re some data on the p ro pe rtie s o f heart tissue is available' [50, 0!), 72].

In a d d itio n , there exists a n u m b e r o f p ro m isin g c o n s titu tiv e re la tio n s h ip s ,

(12)

1. I n t r o d u c t i o n ■i E P IC A R D IU M - i M Y O C A R D IU M E N D O C A R D IU M Aorta S u p erio r v e n a cavity Pulm onary artery Lett atrium Right atrium R ight - ventricle Left ventricle P E R IC A R D IA L C A V IT Y P E R IC A R D IU M Inferior x v e n a cavity

F ig u re 1.1: A S chem atic d ra w in g d e p ic tin g an excised th ro u g h thickness sec tio n o f th e h um an v e n tric le : (a) Show ing the d is t r ib i: '' : r j l . ■ e n d o c a rd iu m , m y o c a rd iu m , and e p ic a rd iu m o f th e v e n tric le w all w ith s u p p o rtin g p c ric a r d ia l sac. (b ) T h e arrangem ent o f the m yo ca rd ia l fib re 1 "e s, where the angle o f o rie n ta tio n , n . gives the sm ooth tra n s itio n o f tin* fib re d ire c tio n am i

is m easured counterclockw ise from v in the local axis system j.

6786 5

(13)

I. hi t r o d i n t inn 5

ofi. fi'J jj. These ndat ionships arc based cm a pxt udo-strain energy fu n c tio n ,

w h ir}; represents a Ix.si Jit for e-vpeudment a lly collected m at ('ria l d a ta . It

is. therefore, bot.h feasible' and desirable to in co rpo ra te 1 such a c o n s titu tiv e 1

re la tio n in to the1 finite1 cleanout, m odel. Furl her, to ensure a re a lis tic moded

for th e analysis o f \ (!~ induced stresses in the hum an ''(M ilric h ' m y o c a rd iu m ,

co nside ra tion o f th e s tru c tu ra l in te ra c tio n o f the s u rro u n d in g a n a to m y is

desirable. Since u nd e r se've're + (7- lo a d in g co n d itio n s th e v e n tric le s undergo

s ig n ilic nt d e fo rm a tio n s , it is expected th a t load tra n s fe r occurs betwe'eui the

heart and s u p p o rtin g p e ric a rd ia l m em brane [95].

In ('hapten 2, the theore'tical fo u n d a tio n on w h ich a c o m p u ta tio n a l moded

for t lie dot or m i nnt ion o f t he stress and stra in state in t lie1 ventricle 1 m y o c a rd i­

um d u rin g sustained + (7 ; accederation is pre'sented. The1 m odel u tiliz e s the

lin i.e element teediniepie (C h a p te r 3) w h e n 1 t i l . 1 effects o f fin ite d e fo rm a tio n ,

non lin e a r m a te ria l b e h a vio u r, and the1 irre g u la r shape1 o f tlie1 heuirf are- ac­

count e'd for. Km phasis is placenl on the1 ine’o rp o ra tio u o f a rendistie- e'onstitu-

live- n d a tio n in to the1 fin ite element fo rm u la tio n . A fu rth e 'r e h'scrip tion eT the

g e o m e tric iv c o n s tru c tio n and m o d e llin g considerations o f the1 h um an he'art is

g iven in ( 'liapteT 1.

In th is w o rk , a spevial purpose1 emmputeT p ro gram is elevedeipe'el in haunt

for the1 nem line'ar analysis e>f the1 hum an ventricle's su b je cte d te> + C k in e 'rtia

force's. This approaedi lends its e lf to an e'asier process o f moded redinennent as

im prove'd analysis te'ediiiiejne's are1 dewedeipe-el a m i nenv m a te ria l/p h y s io lo g ic a l

data be'cemie's available1. A eliscussiem eif the1 non-line'ar finite1 eleuiK'nt s o ft­

ware1 package- devedope'd for th e analy.-.is o f sustaine'el + (7 . ineluevel stross in

the1 hum an 1A’ and PA’ m yeicardium is given in C h a p te r 5. T h e fin ite 1 ede-

(14)

1. I n t r o u u c t i o n

p ro g ra m m in g language' [19]. Also, the convergence- e lia ra etu rist ies and p ie

d ie t ive c a p a b ilit ies o f t lie m odel are1 discussed, and co m p nt at io iia l ve rilic a t i .»n

o f tin ' software' is asse'sse'el n u m t-ric a lly using a se’rie's o f f is t problem s. I'hest-

prohle'ins c o n ta in both line'ar and n o n -lin e a r gt'omet r"n■ (tin ite elisplae e'uie'iits

/ ro ta tio n s ) anel mate-rial (ine-eJinpre'ssihle') e-flects. ( 'eunparison eif num eri

c a lly gen'-rate-d re'sults w ith clost-el fo rm so lu tio n s a n d /o r e*x|>e'iinu'iilal data

o f o th e r re'searehe'rs is ineluele'el w lie'ii available'. In aeIdit it>i 1, an inlt-r.ie I ive

th n 'e '-d im e n s io n a l ( id ) ) g ra ph ica l m o d -'lle r w ritte n in C1 using I ’ l l H IS graph

ie lib ra ry routine's [<S9] is also disi usse-d in C h a p te r a. T h e graph-cal m o d eller

w ith co lo u r c a p a b ilitie s is eeuisiele'red im p e ra tiv e lor I lie v is u a liz a tio n o f I lie­

'l l ) heart m odel d u rin g c o n s tru c tio n anel. nmst im pendanlly. for the- post pro

cessing o f the vast cjuant.it,y o f stre-ss ami displaceine'iit data hi a p ic to ria l

h <rm at.

In t he* fnt in i', it shouhi also be- possible- to compare' n u m e ric a lly generated

ge oi -trie- re-sponse-s w it h those- me-asuri-d e x pe rim en t a l'y using ult ra sound

im a g in g te'chni pies in a centrifuge- [11], Howe-ve-r, whe-n e-xpermients < a n im t

be ju s tiln d due- to safety consiele-rations, the- c o m p u ta tio n a l nioeh-l ta n pro

v id e valuable ejuant it at ive (gross d is to rtio n anel pre-ilieti-el st ress) data <ui t lit*

e'ffe'cts o f r(r'~ in d u ct'd stresses in hum ans (se-e C h a p te r ti).

T h o u g h th e task o f p e rfo rm in g a re a lis tic s im u la tio n o f th e cardiac re

sjjonse- u nd e r suslained f ( ! . acceleration is an e n o rtm m sly d ib it nil tnie.

jrrogress over the- past t wo decaele-s in both c o m jm te r and m edical technology

has reached the stage wlie-re a s u flic ie n tly accurate- c o m p u la tie m a l m odel of

th e heart can ntnv be- developeel. d he c o m jm ta tio u a l m odel eh-ve mped t an

be used to fa c ilita te th e ■••ollectiem ami analysis of e x p e rim e n ta l data. pe>s

(15)

I. h i t n x i i K ' t i o n 7

u n fit I ain.-dde e x p e rim e n ta lly . W h ile m a n y questions re m a in unanswered, th e

progress i n . i h ’i!e d w ill hopefuhy p ro v id e the s tim u lu s fo r fu tu re n u m e ric a l

(16)

8

C h a p te r 2

T h e o r e tic a l F o rm u la tio n an d

D e v e lo p m e n t

2.1

In tr o d u c tio n

T h e n o n -lin e a r g e o m e tric and m a te ria l b e h a vio ur o f the hum an heart, de

fo rm in g u n d e r sustained + (7 , acceleration requires careful s tu d y from both

a th e o re tic a l and c o m p u ta tio n a l s ta n d p o in t. In th is ch ap ter, th e o re tic a l as

poets o f th e p ro b le m are presented w hich subsequently p ro vide the founda

tio n for th e fin ite ('le n ie n t c o m p u ta tio n a l m odel. F u rth e r, a statem ent, o f the

lin e a riz e d w a l k o r variat ional fo rm o f th e g overning I xilaiia o f irionn nluni

equations is presented. In a d d itio n , the rate form o f these e quations are

g ive n for com parison purposes w ith th e ir lin e a r c o u n te rp a rt. F u rth e rm o re ,

special a tte n tio n is given to th e in c o rp o ra tio n o f a re a lis tic incom pressible

h y p e re la s tic c o n s titu tiv e re la tio n in to th e cardiac m a te ria l m odel.

In o rd e r to develop an effe ctive so lu tion procedure lo solve th is com

p le x p ro b le m , m any s ta te -o f-th e -a rt c o m p u ta tio n a l techniques are em ployed.

F ro m a th e o re tic a l s ta n d p o in t, it is essential th a t the fo llo w in g issues are

(17)

2. 7'hfoff'Uccil l 'o r m u l a t i o i i mi d D c v d o p n u ' i i t 9

( i) . Il is necessary th a t any system atic lin e a riz a tio n o f th e weak o r v a ri­

a tio n a l form o f th e bale rr o f mom en turn equations agrees w ith the?

corresponding rate h u m ,

( ii) . The* use o f an objectirt measure* o f stre*ss-rate? and d e fo rm a tio n to en­

sure- that ce rta in physical q u a n titie s are in d ep e nd e nt o f th e choice o f

observer [.‘I 1, ( il].

( iii) . A va lid me-thod fo r stre-ss inte-gration o f ra te expiations (ie. in c re m e n -

ta l u p d a tin g o f stre-sse*s) th a t m a in ta in s i ncrement al o b je c tiv ity in the

presene-e* o f fin ite stretches and ro ta tio n s [41, 68].

( i v ). In c o rp o ra tio n o f a re a lis tic in cre n u -n ta l h y p e re la stic c o n s titu tiv e re la ­

tio n to m odel th e incom pn-ssihh* Ix-h aviou r o f passive* m y o c a rd iu m and

pe*rie*arelium.

(v ). I’he* a b ility to handle* non-conservative o r d(*form a tion d ep e nd e nt lo a d ­

ing. In p a rtic u la r, th e blooel-volum e in th e le ft and rig h t v e n tric le

e-hamhe-rs o f th e he*art exerts a hydrost a tic surface pressure on th e ve n ­

(18)

2. T h eo re ti ca l Formu la ti on and Development

2 .2

K in e m a tic s o f D e fo r m a tio n

10

C o n side r a sim p le d e fo rm a b le body, B . o ccu p yin g a region B in F.uclidean

space 8 , w here B C 8 w ith a body particle given by \ t B . T h e b ody is

i n it ia lly unstressed in *he n a tu ra l c o u lig u ra tio n at tim e / t), and is denoted

b y B°. Let B r represent th e re fe re n tia l c o u lig u ra tio n w ith X d e n o tin g th e

p o s itio n v e c to r o f th e p a rtic le A". A fte r ih e body undergoes a d e fo rm u 'io n , it

occupies th e current c o u lig u ra tio n denoted by B 1, w here the particle' A now

has a s p a tia l p o s itio n ve cto r x . O ne may note th a t th e re feren tia l co id ig u ra

tio n m ay o r m ay n o t correspond to the n a tu ra l c o n fig u ra tio n o f th e b o d , at

t = 0 (see F ig u re 2 .1),

M a th e m a tic a lly , th e d e fo rm a tio n process can be represented by th e one

to one and onto (in v e rtib le ) m a p p in g x : B ' — > o ', such th a t

x = X ( X , / ) . (2 .1)

A s s u m in g t he same o rig in fo r X and x , the mot ion o f a p a rtic le can be w ritte n

as

x =- X ( X , 0 = I X + u ( X , /) , (2.2)

w here u is th e v e c to r displacem ent o f the p a rtic le an<l th e id e n tity tensor,

I , is used to denote a tw o -p o in t s h i f h r re la tin g vectors in tw o re c ta n g u la r

c o o rd in a te system s [18], A lte rn a tiv e ly , in com ponent form

Xi - \ , ( X , /) = (2.:{)

w here / , a € { 1 , 2 , 3 } and <*>,„ is the K ronecker d e lta . T h e low er case Lat.iii

and C reek ch a ra cte r indices are used for the C artesian c o o rd in a te system

(19)

Theoret ical F o rmu la ti on and Development 11

N,

5 ? ( N )

B

F ig u re *2.1: A sketch d e p ic tin g the nat ural B ‘\ re fe re n tia l B r , and s p a tia l B 1 c o n fig u ra tio n s o f a b ody undergoing a d e fo rm a tio n . A lso , e le m e n ta l surfaces

d V and </r w ith surface tra c tio n s T ‘ ‘v ’ - T r N and t (,,) = a 1 n a rc shown in

th e re fe re n tia l and s p a tia l co n fig u ra tion s, respectively. T h e o rig in O is used to define th e g lobal fram e o f reference.

(20)

2. Theoretical F o rm n l a t u m and Development 12

T h e def or mat ion g r a d u a l o f the body. b~, is a second ord er (tw o p o in t)

tensor g ive n by

F = v > c-: x * /•<.. "

where V x denotes th e gradient o p e ra to r w ith respect tc. the reference co ulig

u ra tio n and e,, jE iV an* base vectors in the sp atia l and re le re n tia l co nligura

lio n s , re sp e ctive ly. In a d d itio n , the displan mt nt u r a d i t n l . denoted by 1), is

given b y

D = v x - F - I,

w here

I

is the u n it tensor.

In th e analysis, th e suit cardiac tissue is m odelled as an iu co m p re sible

solid caoable o f fin ite d e fo rm a tio n . For an isoehorie d e fo rm a tio n process

th e t o t a l rare o f change (or m a te ria l d e riv a tiv e ) o f d en sity is subject to the

c o n s tra in t

I ) p { x , t )

- i n - - “ • ' - ' i)

N o tin g th a t F is n o n -sin g u la r, a vo lu m e elem ent hi the deform ed sp a tia l

c o n fig u ra tio n , du, is given b y

du = dot F d l l \ (2.7)

w here d i l T is th e elem ent in the reference c o n fig u ra tio n . A lso, from mass

co nservation

f)r = def F (>, I'l.H)

where p is the d e n s ity in th e sp atia l c o n fig u ra tio n , and

(21)

2. 'I ln-nrciit hI Formu la ti on m i d I)('V<dopui<'ui 13

(T h e superscript /■ is used to denote th e re fe re n tia l c o n fig u ra tio n .) F o r the

is o rh o ric b e h a vio ur o f th e soft b io log ica l tissue,

del F = 1. (2.10)

In a d d itio n , i t is convenient to define th e ve lo city, v , am v e lo c ity g ra d ie n t,

L , o f a p a rtic le as

v(x,/)

= ^ ( x , / )

= *(X./),

and

L

= V r >

v.

(2.11)

w here V , dem .tes th e gradient o p e ra to r w ith respect to th e c u rre n t c o n fig u ­

ra tio n . F u rth e r, ih e velocity gra die n t can be decomposed in to a s y m m e tric a l

and a n ti-s y m m e t ric p a rt, resp ective ly as

L = d + co. (2.12)

In part ic u la r, th e s y m m e tric p a ri corresponds t o the s p a tia l rate o f d e f o r m a ­

t ion tensor

d = l- ( L + L r ), (2.13)

and the a n ti s y m m e tric p a rt :s th e sp a tia l spin tensor

« = ^ ( L - L r ), (2.14)

where supe rscript r (hmotes transpose. A lso , a useful re la tio n fo r the tim e -

ra te o f the d e fo rm a tio n g ra d ie n t. F , is given by

F = L F . (2.15)

In o rd e r to develop a fin ite elem ent m e th o d o lo g y fo r th e p ro b le m con­

(22)

2. 1'heorrtic.i! Fo -imitation and Drv cl opnu' ti t l-l

c u rr- n it) approach is adopted. T h e case whore all variables are referred to

th e unstressed n a tu ra l e o n lig u ra tio n at t 0. say F , is term ed the l o l a l

Lagrangian m e th o d . In th is w o rk, the reference eonligurat ion is chosen to

move' w ith the change o f geom etry o f the body. F \ and corresponds to 1 lit*

m ost re c e n tly know n eonligurat ion. This approach has been term ed the I p

d a t f d Lagrangian m e tho d . B o th o f these approaches can be shown to be

m a th e m a tic a lly e q u iv a le n t; however, e ith e r m ay possess some c o m p u ta tio n a l

advantage's over th e o th e r depending on the problem under conside ra tion .

2 .3

S tr a in M e a su r e s

T h e d e fo rm a tio n gradient , lx i:ig in v e rtib le , possesses a polar d e co m p o sitio n ,

w h ic h is u n iq u e and defined by

F - V R - R I J , C h ib ;

w here R is a p ro p e r o rtho g on a l tensor, and V ( I J ) an* the s y m m e tric p os itiv e

d e fin ite !< ft {r ig ht ) stretch measure's. A lte rn a tiv e ly , in com ponent form

F = F i„e ; (•) E „ = I ■,/<„,«,■ E.. I U . .. e , E „.

It is also useful to represent some com m on d e fo rm a tio n t ensues in te rm s o f

th e d e fo rm a tio n g ra d ie n t, that is, th e l i f t (r ight ) (' auchg ( i n i n d e fo rm a tio n

measures A (C ) defined by

A - V 2 - F F 7 , and 0 - U 2 F 7 F . (2 ,i7 )

A s s o c ia t'd w ith these tensors are tlie p n n c ip a l in va ria n ts . /,, for i < { I.2 C 5 }.

(23)

2. I h r o i f l i t n l I ' o n n u l n t i o n a n d D e v e /o p m e n f 1 5

/ , l \ ( l r A ) 2 - t r A 2] = l7)\ ( t r C ) 2 - i r C 2}. (2.1N)

/ 5 det A del C . ( Incoi tiprc s s i b i l i t y : / :j — 1)

w li'T * 1 l r denotes th e trace.

O ik* can express (L a gran g ian ) ( I r a n ' s strain. E , in te rm s o f th e rig h t

C auchy (Jreen d e fo n n a tio n measure as

E = ^ ( C - I ) . (2.19)

A lte rn a tiv e ly , the (H u le ria n ) Al nnni si ' s strain tensor. e. expressed in te rm s

o f th e inverse* left C auchy (Jreen d e fo rm a tio n m easure is defined by

c - ^ (1 - A - 1 ). (2.20)

F rom equations (2.19) and (2.20) th e re la tio n s h ip betw een th e L ag ra n gia n

and K u le ria n s tia in tensors i.; g i\(*n , respectively, by

E - F 7 e. F . and e = F ^ ' E F ' 1. (2.21)

2 .4

B a la n c e L aw s

2 .4 .1

C o n s e r v a tio n o f M a ss

From the* consei ra tio n o f mass flow

/ x t ' , ( x - ' )' ' " = "• ( 2 - 2 2 )

A p p ly in g th e R eynold's tra n s p o rt theorem and th e divergence th e o re m to

('([n a tio n (2.22) yie ld s

(24)

2. riu'i>v('tical Font ill ation and Dt'vclopun'iit 10

and since th e d om ain f i l is a rb itra ry , the integ ra n d must he /e ro e v e ry w h c ro.

T h is in te g ra n d is often referred to as tin ' c o n tin u ity e q u a tio n , and can he

re w ritte n as

o r in term s o f tin ' m a te ria l d e riv a tiv e o f the density. /•>/>( x , / ) / / ’/. as

Feu- an in co m pressible m a te ria l, as is the case w ith soft c a rd iac tissue, equa

tio n (2.0) im p lie s th a t the divergence o f the' ve io c iH lield is zero. ir.

w h ic h e ffe c tiv e ly becomes th e c o n tin u ity c o n d itio n f o r an i n c o m p r e s s i b l e m . i

te ria l.

2 .4 .2

C o n s e r v a tio n o f M o m e n tu m

S p a tia l F o r m

T h e balance e q u a tion for th e lin e a r m o m e n tu m of a bodv is equaled to J la ­

v e d o r sum o f the e xte rn a l forces a c t i n g o n t h a t body

w h e n ' b ( x . / ) is th e body force per unit mass, and t,,n )( x . / ) is the surface

tra c tio n on part o f the b oundary, denoted by ( f f i / . such tha t

l i v v \ / - v 0,

(25)

2. I l i r a i i l i t , i l I n r m u h t l i m i a m / I ) <' Yi ' h>i >ni cnt 1 7

w l n ' i c c r i s t l i e ( ' i n i ' h y ( 1 M U ') s1 r r s s t I 'l i s u r , I h r p o s i t i o n . x . r a n h r p r e s c r i b e d

• >: i l l i r p a r i . i f I h r b o u n d a r y . d e n o t e d b y i ) B [ . as

X X ft;*' X M ()B'U. ( 2 .2 !) j

w ith the fo llo w in g in it iid ro n d itio n s

u( X. O) ti ( X ) . and v ( X . O) v " ( X) . (‘JdlO)

1' III t I l l ' l l I |i )1 r.

i > B [ n i ) L V r i ) B \ am i ()

M> in ' iD ilu rin u i^ ry n o ld 's tra n s p o rl theorem and a p p ly in g th i' divergence

■Dirni to t l i r linear m om ent uni e q u a tio n . e q u a tio n (2.27) becomes

P\

/)- - - iib - d i\ <t

/<■ L D i ' <hi - 0. (2.21)

w h rM ' div <t h { \ \ - V ’i 'fT- N o tin g th a t t h r inttyiyral must vanish for <m a11>i11a i\ region o f B ' iiin l. replacing P v / P t hy v. 1 h r F.ultviau (qutilion

r/' mot ion ra n hr w rit ten

HfT,,

d iv cr t /»b /iv. + />/», = / n \. (2.22)

(Jj-j

l o r tin - special r.is r o f ,i ho-q at rest or u nd e rg oin g u n ild r in tra n s la tio n a l

m o tio n , rip ia tio n 12.22) is r r f r r r r d to as t l i r n j u i l i b r i i i n i K/ iui li on w ith the

rig h t hand s id r b rin g / r r o .

c u r t lie r u n re. f r o m t h r l a w o f c o n s e r v a t i o n o f a n g u l a r m o m e n t u m , t h e < ’n u r h \ s tre s s t r n s o r is s v n i m ' * t r i c i n the* a h s r n c r o f h o d v i n o m r n t s . a 1 — <r.

(26)

2. ' I ' h r o r r t i c , t l F n n n u h i t i o i i a n d D o v r l ( ml 18

M a t e r i a l F o rm

I * sin u, e q u a tio n (2.7) and not ini* the k in e m a tic re la tio n s h ip between a eurrent

and reference e iem eutal surface's

m/1 . / ( F l ) N d V r . r.1 F il

th e m a te ria l form o f the lin e a r m o m e n tu m e qu a tion can he w ritte n as

() [ / m x )v i x . /)</(>'

[ i>r( X ) h ( X j ) t n r \ [

T ' ( X . / i < / r . p.’a d

d i .n>' J i t ’ .1 ‘i f ,

w here T denotes th e (non s y m m e tric ) n o m in a l stress tensor (and its lra n s

pose is the.//V s/ 1’iola I \ / r r h l i o j j si less tensor) as

T ./ F 1 <r

A p p ly in g the divergence tlie o rem to equation (L’ .d !) ainl pro< -ceding in a

s im ila r fashion to th e d e riv a tio n o f the sp a tia l lin e a r m o m e n tu m e qu a tion s

one o b ta in s the Ltujvdiujiiiii i i /iintion o f motion

i ) l

D iv T - f p ' b / / V , ) f i l l , / / I . r.’ .dti)

D A , ,

w here V ( X . /) — \ ( X , t ) and D iv (w ith uppercase' |J ) denotes t he d i\ e ig e rn e

o p e ra to r w ith respect to X and it is assumed that I) does not depend on the

d e fo rm a tio n . I lie b o u n d a ry c o n d itio n s in th e reference Iru in e are given by

X X for X * i W ‘n.

T ' N '[ •' lo r X < i)B'r

A lte r n a tiv e ly , the m a te ria l lo rm oi the bahmce e q u a tio n - can be o b ta in e d

using tlie a p p ro p ria t e tra nsfo rm a t ions from t he spat ini to m a te i ini re le ie iu e

Ira n u .

(27)

2. I l i c o r c tif ul I ' o n n i i h i t i o n n.nl D r v c l o p n i r u t 19

'I he fn con (I (s y m m e tric ) I ’ lolo K i rc h ho j f slress tensor S is given by

S T ( F 1 )r o r T - S F 7 . (2.37)

and is co n ju g a te to ( Ireen's s tra in ra le tensor ( i(*.. tlie stress pow er per u n it

vo lu m e in the reference eonligurat ion is given hy / c { S E } ) . 'This stress m e a ­

sure does not have a direct physical in te rp re ta tio n , h u t. its im p o rta n c e w ill

become evident when fo rm u la tin g a fin ite clem ent m e th o d olog y. F u rth e r,

one may note that the second Piola K ir c lih o lf stress is related to th e C a uchy

st ress tensor by

a - ./ 1 F S F 7 or S = ./ F 1 <r ( F ~ ‘ )r . (2.3S)

2 .5

V a r ia tio n a l (W ea k ) F orm o f L in ea r

M o m e n tu m B a la n c e

C onsider th e sfront/ fo rm o f the b o u n da ry-valu e p ro b le m o f m o m e n tu m b a l­

ance (w here <T1 (r)

d iv a 4 p b = p x in B 1,

<r 1 n = t " ' 1 on

x = x on <)B‘U.

From calculus o f v a ria tio n s , an equivalent wt ak or v a ria tio n a l fo rm o f th e

b o u n d a ry value’ p ro b le m o f m o m e n tu m balance can be c o n s tru c te d fro m

f (d iv a + pb - px)-t'-x<lu - 0. (2.39)

Jiv

whore C y is an a rb itra ry k in e m a tic a lly adm issible displacem ent fie ld . A p p ly ­

in g the divergence theorem to e q u a tio n (2.39), th e weak fo rm o f the v a ria ­

tio n a l (’qua! ion is given by

(28)

2. T h c o r r t i c n l F or mu la ti on mu l /)e \ol opmr nt 20 w h (> n ‘ Q { x , b x ) >s d e l i n e d as / / ; - { < r ( y <vy)}</w-+ / / M v h) - i ' \ i hi f V"' - b\ , h J i r Jiv J u<’r fo r a ll U -- | x | x t ( ' ( B 1), x x on H B 1., and V ~ j V y | ^ v o ( ' ( B 1). (s y 0 o n i ) F ln j - . T h e sot o f t r i a l s o l n t i o n s , d e n o t e d h y M . a rc k i n e m a t i c a l l y a d m i s s i b l e I'iiiic l i o n s o f y f X , / ) t h a l s a t i s f y t h e e s s e n tia l b o u n d a r y c o n d i t i o n s . In a d d i t i o n , t h e set. o f v a r i a t i o n s , d e n o t e d b y V . a re th e h o m o g e n e o u s c o u n t e r p a r t o f th e t r i a l f u n c t i o n s . F o r t h e s p e c ia l ease w h e r e th e V is ta k e n as a v i r t u a l t l t s / i l a r t ti n u l lie l d . ((‘n i = b \ ) o v e r D B 1 a n d u s in g t h e p r o p e r t y t h a t cr is s y m m e t r i c , one o b t a i n s t h e v i r t u a l s t r a i n e n e r g y b a la n c e l b r a h y p e r e l a s t i c s o li d as [ t r { ( r b e ] ( h i f n ( b - v ) - b u i h i 1 / t."" J i r > nr,

b X . s t r a in energ y X , \ X . b od y and in e r t ia l forces y . \ Y . s n rfa r e t i a i t i o ic o w l u ' r e be. is t h e v i r t u a l r l r a / n t e n s o r 1 a n d is d e fin e d as th e s y m m e t r i c p a rt o f t h e v i r t u a l d is p l a c e m e n t g r a d i e n t 1 be. ( V, ^ u ) I (V, b.k l'dj F o r c o m p le t e n e s s o f t h e w e a k f o r m o f th e b o u n d a r y v a lu e p r o b l e m an a p p r o p r i a t e c o n s t i t u t i v e r e l a t i o n b e tw e e n (T a n d be. needs t o be p r o v i d e d . 1 his is d is c u s s e d i n t h e f o l l o w i n g s e c tio n .

1 I he tensor be should not be confused with the linear u d im li simal si rain tensor, bt is t lie variational si rain tensor conjugate to the Can liy stress

(29)

2. l l ii -orrt ic al For mu la ti on and Development 21

2 .6

C o n s iste n t L in e a r iz a tio n o f t h e B a la n c e

o f M o m e n tu m

In o rd e r to solve th e strong form o f th e governing b o u n d a ry -v a lu e p ro b le m ,

a lin e a r a p p ro x im a tio n to an equivalent weak fo rm is sought. T h e lin e a r

a p p ro x im a tio n w hich provides a basis fo r the fin ite element te c h n iq u e is d is ­

cussed in some d e ta il in th is section. This approach is equivalent to the su­

p e rim p o s in g o f in cre m e n ta l displacem ents on a fin ite ly defo rm e d b o d y [2(i].

'The term consist< til is used to in d ic a te that tlie* system at ic lin e a riz a tio n o f

th e weak fo rm o f th e v a ria tio n a l equations is consistent w ith the co rre s p o n d ­

in g rate form [10]. Consistent lin e ariza t ion allows fo r th e o p t i m a l in c re m e n ta l

lin e a r a p p ro x im a tio n to th e set o f non lin e a r equations w it h in a s m a ll n e ig h ­

b ou rh o od o f some know n reference state. T he in c re m e n ta l (lin e a riz e d ) equa­

tio n s are o n ly a first order a p p ro x im a tio n , whereas the co rre sp o n d in g ra te

e quations are exact in form . Before com m encing lin e a riz a tio n o f th o g o ve rn ­

in g equations, the fo llo w in g te rm in o lo g y is in tro d u c e d to assist in d e fin in g

th e d e fo rm a tio n process.

( 'onsider t lie o rig in a l undeform ed b ody o ccup yin g B° at t im e / = 0. u n d e r­

g oin g a d e fo rm a tio n and now o ccup yin g the reference c o n fig u ra tio n denoted

by B 1. N e x t, consider a superim posed d e fo rm a tio n from th e B r c o n fig u ra ­

tio n such th a t the b ody occupies the s p a tia l c o n fig u ra tio n , B {. R e fe rrin g to

F ig u re 2.1, the b o d y m o tio n can be expressed as

x - ,v ( X .O = I X ( X , „ / ) + u ( X , / ) , (2.-13)

w here u is a superim posed m o tio n fro m the re fe re n tia l c o n fig u ra tio n .

(30)

2. Theoret ical Tonn ul at i on and Development 22

m o re convenient to w ork w ith th e m a te ria l rathe.- tlia u the s p a tia l form

o f these equations. For the reference eonligurat ion tin* in te g ra l d om ain is

independent, o f body m o tio n , w hich somewhat s im p lilie s the lin e a riz a tio n

process. F u rth e r, it is assumed that b and Tv " are independent o f the

k in e m a tic s . T h e n , equation (2.10) can he expressed in m a te ria l form .is

G(x.' f i x ) = F-’ . i n

f t r { T b ¥ } d n r + [ />r ( V b ) - ^ x < I D r I T ' 1 y d l 1 0.

.18' .18' j;>8’r

w h e re AF = \JX Isy . In order to find a solution to equation (2.11) it is

d esirab le to o b ta in a local a p p ro x im a tio n to t/ about some reference p o in t, A .

(H e n c e fo rth , A’ is replaced by X .) One such local a p p ro x im a tio n is o bta in ed

u sin g a consistt id approach to lin e a riz a tio n o f the balance o f m o m e n tu m

e q u a tio n [10], and is based on T a y lo r's Form ula (see A p p e n d ix A ).

A local lin e a r a p p ro x im a tio n can be o bta in ed by a p p ly in g a lin e a r oper

a to r L (as delined in ('([nation (A d i) ) to a le n sor held, say f , as follow s

/ , [f . a ]j. = f ( . r ) + ( v f ( - i ' ) ) - a f(.r) I <!,[f(./-)]. (2.1b)

w here ( [ = a - V , defines th e scalar d iffe re n tia l o p e ra to r for any a rb itra ry

v e c to r a in E uclidean v e cto r space.

A p p ly in g th e lin e a r o p e ra to r /. to the weak form o f the m o m e n tu m bal

ance e quations O ( x . ^ X ) — 0. about some fixed point X • yields

L[Q. u]jj- -- t / ( X ) f ('-A A / ( X ) j u (2. Ki) - C?(X) f C ,[fv (X )]

(31)

2. I ln-oret ienl 1'brmnlnt ion and Development 23

( I lf iK efort h. 1 he superscript ( ) is o m itte d .) Now, co nsidering th e gradient

o f t / ( X ) in t lie d ire c tio n u . as defined in equ a tion ( A . 2), one m ay w rite

C iv f ^ f X )] / ( h [ / r { T * F } ] d n ' + / >r ( ix [ ( V - b )]-fix<KV

J P ’ J p r

- (2.47)

where b \ is an a rb itra ry k in e m a tic a lly adm issible displacem ent fie ld . A s ­

su m in g that b and T ' V) are independent o f th e d e fo rm a tio n , th e n e q u a tio n

(2.17) reduces to

U [ t 7 ( X ) ] - [ t r { D x [ T ] b F } < i n r + f Pr u - b x < i n r . (2.48)

J P ’ J p r

where (>v[V] — i i fro m equation ( A . 2). Hy s u b s titu tin g th e corre sp on d ing

expressions fo r f7 (X ) and (;x [t/( X ) ] in to (2.-Hi), a local lin e a r a p p ro x im a tio n

to th e weak fo rm o f tin* m o m e n tu m balance e q u a tio n about some1 fixe d p o in t

X is o b ta in e d as

/ / / • { ( ; x [T]<s>F}</Sr + [ P r i i - b x d W = (2.49)

J p ’ J p ’

I i r { Tb F\ < n r - f Pr( v - b ) - b x < i n r + [

T v,- < ^ / r \

J P ’ J P ’ J : i P ’r

A lte rn a tiv e ly , the s p a tia l form o f (2.-19) can be w ritte n using th e tra n s fo rm a ­

tio n equations (2.7), (2.S), (2.22), and (2.5S) as follow s

I . / * / / • { ( !X[ T ] <^F}(/u + l ^ p u - b x < l u = (2.50)

f ./ 1 l r { T b F } ( h i --- f p(v - b)-bx<hi + f V n)-bx<h\

,lp< J p ‘ JoP 'j

r it im a t e ly , t in ' te rm / r { ( ! x [T ] (''F} defined fo r the re fe re n tia l c o n fig u ra tio n

w ill require an equivalent sp atia l fo rm for c o m p u ta tio n a l im p le m e n ta tio n ,

w hich is o b ta in e d by s u b s titu tio n o f the c o n s titu tiv e re la tio n . In th is s tu d y,

a hype re la stie c o n s titu tiv e re la tio n capable o f m o d e llin g th e (n e a rly ) in c o m ­

(32)

2. T h eo re ti ca l F or mu la ti on and Development 2-1

2 .7 A C o n s titu tiv e R e la tio n s h ip for

C a rd ia c T issu e

In th is s tu d y, the- ca rd iac tissue is assumed to behave as an in co m pressible

h y p e re la s tic so lid 2. Kve-n tho u gh cardiac (issue e x h ib its a n is o tro p ic and vis

coelastic b eh a v io u r, successful p re d ic tio n s o f m a te ria l response have' be-e-n re1

p o rte d by re’searchers whe-n iele-alizing the- careliac tissue' as hennoge-ne-eius .uiel

iseitropic 1 [Id , 2d], 'F lic assnmptieins e>f m ate'rial he>me>ge-ne-ity and ise>tle>|>\

are' adopte-d in th is the-sis. In additiem , the* tissue- is eemsidei e-d le> unde-ny>

o n ly isothe'rm al defen'inatiem pmce-sse-s anel te> 1 >e* e-he-mie a lly ine-rl.

For a hvpere'lastic m ate'rial the-re- e’xists a p o te n tia l e-ne-rgy fu n c tio n , eh-

n o te d by I F , w hich is takeui as the* stem’d e-ne-rgy pe>r unit ie-fereu<<- vo lu m e

fo r is o th e rm a l de-format iem. Ile-ne-e-ldrth, IF e-an he- e-xpie-sseel as

IF - l f ( F ) . (2..r»|)

In th is se-clieui, it is im plie-d th a t the- re-le-re-nev slate eone-spouds to the o

rig in a l unelefeirmed eem liguralieni where- stress and s tra in vanish. F u rth e r,

invariane-e- iinde-r rigiel bexly nieition (ie>. ej|»je-ctivity [ t il] ) ree|iiiie-s the s tra in

e ne rg y fune-tiexi te> eibey

IF - I F ( Q F ) , (2.52)

fo r a ll prope-r eirthogonal t<*iise»rs Q . In p a rtie u la r, i f Q is ehose-n to he R /

and using (2.1(i) eme- o b ta in s

l-F (F ) I F ( U ) . f2 .d d )

" A m a t e r ia l is de-scri b e d as //.?//« n l a s t i c i f a si i n d e n e rg y fun< lio n < x is ls l o r isof lir r iu a l o r a d ia b a tic d e f o r m a t io n .

•JA c o n s tit u t iv e re -Ia tio n £ ( C ) is di-fine-il its i s o h n j m i f a n d o n ly if tlx - pr<>p» r t y o f £ ( Q C Q 7 ) = C (C ) h o ld s , w h o re Q is a p ro p e r o rl h o g o n a l te n s o r

(33)

2. 7 h c o i f t i r n l I'oi niuhit ion and Dcvclopim' ii t 25

Since there exists a one-to-one correspondence between th e tensors U and C

fie . O U ^ ). equ a tion (2.55) can be re w ritte n as

W =

l i ’ (C ). (2.54)

M o re co n ve n ie ntly, for an is o tro p ic m a te ria l (2.54) can be expressed as

W

= W { I x J 2, h ) , C2.55)

w here ( / i . I-a) are the p rin c ip a l in va ria n ts o f C . as defined p re vio u sly.

f o r a (7 m » d a s i i c o r h ype re la stic m a te ria l th e (n o m in a l) stress d e fo r­

m a tio n re la tio n is given by

T . i t ' M .

7:„ _ f l .

( ) l 0 l u,

and from e quations (2.16) and (2.54) th is becomes, fo r an is o tro p ic m a te ria l

t

.

I ’ sing (2.17) and (2 J i7 ) th e above1 can be expressed in te rm s o f th e second

P io la K irch h olF stress and rig h t ( ’auehy (freen d e fo rm a tio n tensors as

<riv(C)

S = (2.58)

A n a lte rn a tiv e expression in term s o f th e in v a ria n ts o f C can be o b ta in e d by

(34)

2. Theoret ical F or mu la ti on a m i Development 20

I f tlu> reference c o n fig u ra tio n coincides w ith the n a tu ra l eon lig u ra t ion (ie.

C = I ) , fo r w hich th e stress vanishes, then

lc=I

m v

m r

m y

i o f

---<)lx <)12 DI., c i 0.

In th e special case o f soft b io log ica l m a te ria ls, such as cardiac tissue,

th e in c o m p re s s ib ility c o n stra in t given in equation ( 2 .IS) is im posed. T h is

c o n s tra in t in h ib its any stress measure from being solely d e te rm in e d fro m the

d e fo rm a tio n . In fa c t, th e d e fo rm a tio n determ ines the C auchy stress o n ly to

some a d d itiv e h y d ro s ta tic value. Hy in tro d u c in g an a rb itra ry Lagrangian

m u ltip lie r —~p and re w ritin g IT in the form

IT II (Cl) - \ l> (dot. C (2.(i I )

an a lte rn a tiv e fo rm o f ('([nation (2.m l) results. T h erefo re , for an incom press

ib le m a te ria l, ('([nation (2.5S) becomes

(2. (12)

o r in te rm s o f tin ' in v a ria n ts o f C ,

i ) M ’ ( M V , M Y '

ur1c +

U +'

I /'< (2 .(id)

Due to th e lack o f a re lia b le const it ut i ve re la tio n s h ip to m odel t he anisol rop

ic p o m -v is c o e la s tic m at(*rial beh a vio ur o f th e hum an hea rt, a s im p le r ap

proa eh is taken w here the ca rd iac tissue is cotisid* red to be a non lin e ar

hom ogeneous is o tro p ic elastic m a te ria l. In th is w ork, an e x p o n e n tia l stra in

energy fu n c tio n proposed for soft biological m a te ria ls (21J and subsequently

used to m o d e l cardiac tissue (1 1. !)?)] o f the form

(35)

2. I I i c o r d i m l bon nnh it ion and Development 27

is u s ffl, where a find h arc* m a te ria l constants d erived fro m e x p e rim e n ta l

dat a. T h e const ant s a and b represent, the best j i t param ete rs for passive*

ca rd iac tissue data o bta in ed e x p e rim e n ta lly . In c o rp o ra tin g e q u a tio n (2.64)

in to (2.fid) yields

S = ‘l a b ( hd i - ' A) I _ p C ~ l . (2.65)

h or e q u a t i o n (2.60) at I = I) to hold true* when the* s tra in energy fu n c tio n is

given hy <*quation (2.61), one* obtains

p |f=» = Pd = 2ab. (2.66)

T he* stress d efo rm a tio n re la tio n given in e q u a tio n (2.65) gives r i e to a

U nite elem ent fo rm u la tio n , th a t is, b o th disp lace m e n t and pressure

(;/,/>) arc* lake'll as independent unknow ns [27]. H ow ever, th e e lim in a tio n

o f p from she system o f equations can be accom plished by re la x in g th e in-

c o m p re s s ib ility c o n s tra in t, / ;J — 1, using a p e n a lty fu n c tio n . In the* p e n a lty

fo rm u la tio n o f the incom pressible p ro b le m the* c o n s tra in t given b y (2 .26 ) is

relaxed using

V -r'V + ^ = 0, (2.67)

w here A is a p e n a lty p aram ete r. A ssum in g the* pressure to be a fu n c t io n o f th e

d ila ta tio n , the* so lu tio n o f (2.67) can be expressed in te rm s o f th e in v a ria n t

/;i OK

/» = /> ..- h ) . (2.68)

KH'eetively, th e pro ble m becomes one o f m o d e llin g a n e a rly in c o m p re s s ib le

(36)

2. Theoret ical F o r mu l at i on and Development 28

to in iin ity . This approach allows the n um ber o f system equations to be

d ra s tic a lly reduced w h ile m a in ta in in g (near) in c o m p re s s ib ility . In a d d itio n ,

due to th e fin ite d ig ita l accuracy o f c o m p u ta tio n , the' m a g n itu d e o f \ is

re s tric te d so th a t the problem is not ill c o n d itio n e d [.'iV].

2 .8

S tr e ss a n d S tra in R a te s

R e la tio n sh ip s in term s (if stress and stra in raies should be independent o f an

observer tra n s fo rm given by ( x . /) - > ( x * , / * ) w it h

x * = c ( /) + Q ( / ) x , /* I (/. (2.(i!))

w h e n ’ c is a tra n s la tio n and Q is a proper o rtho g on a l tensor.

T h e te rm o b j t d i r t is used to describe a tensor w hich is in d ep e nd e nt o f

an observer tra n s fo rm as defined in Ref. jf ilj . One such fram e in va ria n t

ra te used for th e c o n s titu tiv e law in the reference c o n fig u ra tio n is th e rate

o f tht* second P iola K irc h h o ff stress and (Ireen s stra in rate tensors. For

e q u a tio n (2.58) the ra te form is s im p ly expressed as

()2W

i)2\Y

S = : C - S‘d = “ r,T7 V, , < r j . 7 ( h

c C ( ) ( ,vr

wh(*re th e sym b o l : is used to denote the in n e r product o f a fourt h and s e c o n d

o rd e r tensor. A lte rn a tiv e ly , the ra te form o f S given in term s o f ( b e e n ' s s tra in

ten so r E fo r an incom pressible m a te ria l governed by equal ion (2 .(i2 j b e c o m e s

H ow ever, for th e fin ite element im p le m e n ta tio n one m ay consider a m ore

useful fo rm o f (2.71), in term s o f (Ire e n ’s stra in ra te , that is

(37)

2. I h c o r d u ni Ft n n u h i t i n i i mi d D r v c l o p u u m t 29

w here (’ is a fo u rth order m a te ria l response tensor in the reference c o n fig u ­

ra tio n . A lso, (Jreen's stra in rate is related to the ra te o f d e fo rm a tio n tensor

by

E = = F r r iF . (2.73)

A n a lte rn a tiv e fo rm o f (2.71) can be w ritte n in co m p on e nt fo rm as

A V , (2.74) ,s'

-w h e r e th e te rm inside the square brackets is e qu iva le nt t o t ’ in e q u a tio n (2.72). F u rth e r, the in c o m p re s s ib ility co nstra in t (2.2(i) m ust also h old fro m mass

conservat ion.

For the fin ite elem ent fo rm u la tio n th e sp a tia l fo rm o f th e ra te equa­

tio n (2.72) is re quired. A d o p tin g th e T ruesdell stress ra te w h ic h is a s u ita b le

o b je ctive 1 stress rate1 [91], th e corresponding ra te -ty p e c o n s titu tiv e e q u a tio n

is given by

o <1 / )>

(T - £ \ d, (2.75)

w here £ is th e fo u rth order instantaneous m a te'ria l response tensor, and d is

th e (s p a tia l) d e fo rm a tio n ra te tensor defined in e q u a tio n (2.13). In a d d itio n ,

<r can be relat ed t o t he i at e o f change' o f t lie' see'onel Pierla KirchherfF stre*ss

tensor by

< T r " = , r l F S F r . (2.7(5)

N ow , ta k in g the' tim e' ele'rivative erf eepiation (2.38) anel s u b s titu tin g in to

c'epiation (2.7(5) for S yiedels

Referenties

GERELATEERDE DOCUMENTEN

In this study, we gathered information regarding various potential confounders of the relation between PPE use and our primary endpoint (confirmed ED staff infection rate),

Als de schoonzoon van Steurs vanaf 1908 het domein onder handen laat nemen, krijgt het niet enkel een nieuwe naam – kasteel Dereine – maar ook een heroriëntatie: in het kader van

29 In short Horace’s reference to the world of myth and the founding of the Roman state, serves as backdrop as well as benchmark against which a Roman citizen, as well as

In this paper we solve (approximately) the problem of finding the minimum number of colours with which the vertices of a complete, balanced, multipartite graph G may be coloured

Using coupling and a sample path argument it is shown that the throughput of an open queueing network with general interarrival and service times is decreasing

ten Vregelaar, An algorithm for computing estimates for parameters of an ARMA- model from noisy measurements of inputs and outputs, CaSaR-memorandum 87-13, Eindhoven University

De verwerking van normale anisotropie in het procesmodel kan men onderverdelen in verwerking in het model voor dubbele buiging en in de randvoorwaarden.. De

hetgeen zij allemaal voor het welslagen van deze excursie gedaan hebben. het vakgroepsgebeuren weten te betrekken? Dat alleen al zou een prachtig En wat heeft het uitstapje nog