• No results found

Toward an explicit 2-descent on the Jacobian of a generic curve of genus 2

N/A
N/A
Protected

Academic year: 2021

Share "Toward an explicit 2-descent on the Jacobian of a generic curve of genus 2"

Copied!
30
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Toward an explicit

2-descent on the

Jacobian of a generic curve of genus

2

Ronald van Luijk CRM, Montreal MSRI, Berkeley

Joint work in progress with Adam Logan

CRM, Montreal Waterloo, Canada

January 15, 2006 San Antonio

(2)

Goals:

(1) Computing Mordell-Weil groups of Jacobians

(2) Constructing nontrivial elements of Shafarevich-Tate groups

Tools:

(a) 2-descent on Jacobians

(3)

Let C be a smooth, geometrically irreducible curve of genus 2 over a number field K, and J the Jacobian of C.

Mordell-Weil Theorem:

(4)

Let C be a smooth, geometrically irreducible curve of genus 2 over a number field K, and J the Jacobian of C.

Mordell-Weil Theorem:

J(K) is finitely generated.

Primary goal:

Compute J(K) ∼= J(K)tors ⊕ Zr.

• J(K)tors: finite, easy to compute.

• J(K)tors and r known ⇒ J(K) computable. • The rank r can be read off from

(5)

There are cohomologically defined finite groups

Sel(2)(K, J), the 2-Selmer group,

X(K, J), the Shafarevich-Tate group,

with

0 → J(K)/2J(K) → Sel(2)(K, J) → X(K, J)[2] → 0.

2-descent: compute Sel(2)(K, J) and decide which

(6)

There are cohomologically defined finite groups

Sel(2)(K, J), the 2-Selmer group,

X(K, J), the Shafarevich-Tate group,

with

0 → J(K)/2J(K) → Sel(2)(K, J) → X(K, J)[2] → 0.

2-descent: compute Sel(2)(K, J) and decide which

of its elements come from J(K)/2J(K) (i.e., map to 0).

Assumption: We can compute Sel(2)(K, J).

(7)

Element of Sel(2)(K, J): a twist π : Y → J of the map [2] : J → J

(over K there is an isomorphism σ such that YK =∼σ

π

JK [2] JK JK

commutes), where Y is locally soluble everywhere.

(8)

Element of Sel(2)(K, J): a twist π : Y → J of the map [2] : J → J

(over K there is an isomorphism σ such that YK =∼σ

π

JK [2] JK JK

commutes), where Y is locally soluble everywhere.

The element Y → J maps to 0 in X(K, J)[2] iff Y (K) 6= ∅.

(9)

Solution: A quotient of Y .

[−1] on J commutes with translation by 2-torsion points ⇒

(10)

Solution: A quotient of Y .

[−1] on J commutes with translation by 2-torsion points ⇒

it induces a unique involution ι of YK, defined over K. Set X = Y /ι.

Advantages:

• X is a complete intersection of 3 quadrics in P5. • X(K) = ∅ ⇒ Y (K) = ∅

Disadvantage:

(11)

Solution: A quotient of Y .

[−1] on J commutes with translation by 2-torsion points ⇒

it induces a unique involution ι of YK, defined over K. Set X = Y /ι.

Advantages:

• X is a complete intersection of 3 quadrics in P5. • X(K) = ∅ ⇒ Y (K) = ∅

Disadvantage:

• This only gives sufficient conditions for Y (K) = ∅.

Situation: Such K3 surfaces are everywhere locally soluble, but may still satisfy X(K) = ∅. Do they?

(12)
(13)

Tool: Brauer-Manin obstruction.

For any scheme Z we set Br Z = H´et2 (Z,Gm).

For any K-algebra S and any S-point x : Spec S → X, we get a homo-morphism x∗: Br X → Br S, yielding a map

(14)

Tool: Brauer-Manin obstruction.

For any scheme Z we set Br Z = H´et2 (Z,Gm).

For any K-algebra S and any S-point x : Spec S → X, we get a homo-morphism x∗: Br X → Br S, yielding a map

ρS: X(S) → Hom(Br X, Br S).

Apply this to K and to the ring of ad`eles

AK = Y v∈MK

0 K

(15)

From class field theory (and comparison theorems) we have

0 → Br K → BrAK → Q/Z

(16)
(17)

0 → Hom(Br X, Br K ) → Hom(Br X, Br AK) → Hom(Br X,Q/Z) X(K)

ρK ρAK

(18)

0 → Hom(Br X, Br K ) → Hom(Br X, Br AK) → Hom(Br X,Q/Z)

X(K) X(AK)

(19)

0 → Hom(Br X, Br K ) → Hom(Br X, Br AK) → Hom(Br X,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)Br = ψ−1(0)

(20)

0 → Hom(Br X, Br K ) → Hom(Br X, Br AK) → Hom(Br X,Q/Z) X(K) X(AK) ρK ρAK X(AK)Br = ψ−1(0) ψ X(AK)Br = ∅ ⇒ X(K) = ∅

(21)

0 → Hom(Br1X,Br K ) → Hom(Br1X,BrAK) → Hom(Br1X,Q/Z) X(K) X(AK) ρK ρAK X(AK)Br1= ψ−1 1 (0) ψ1 X(AK)Br1= X(K) = ∅ Br X = ker(Br X → Br X)

(22)

X(AK)Br1 = X(K) = ∅.

Two steps:

• Compute Br1 Z/ Br K for the desingularization(!) Z of X = Y /ι. The Hochschild-Serre spectral sequence gives

(23)

X(AK)Br1 = X(K) = ∅.

Two steps:

• Compute Br1 Z/ Br K for the desingularization(!) Z of X = Y /ι. The Hochschild-Serre spectral sequence gives

Br1 Z/ Br K ∼= H1(GK, Pic Z).

(24)

1 2 12 34 134 156 56 35 36 45 46 135 146 136 145

(25)

Proposition: Generically the group Pic Z has rank 17, generated by the set Λ of 32 lines.

Corollary: GK acts on Pic Z through a subgroup of AutintΛ (which has size 23040).

We can compute H1(G, Pic Z) for all 2455 possible subgroups G of Autint Λ (up to conjugacy).

(26)

Z/2 Z/4 (Z/2)2 Z/4 (Z/2)2 (Z/2)3 (Z/2)3 Z/2 × Z/4 (Z/2)2 Z/2 × Z/4 Z/2 × Z/4 Z/2 AutintΛ 12 15 20 120 24 24 48 48 96 96

(27)

Z/2 Z/4 (Z/2)2 Z/4 (Z/2)2 (Z/2)3 (Z/2)3 Z/2 × Z/4 (Z/2)2 Z/2 × Z/4 Z/2 × Z/4 Z/2 AutintΛ 12 15 20 120 24 24 48 48 96 96

These 11 subgroups, including AutintΛ, induce all nontrivial Brauer elements.

(28)

Z/4 (Z/2)2 Z/4 (Z/2)2 Z/2 AutintΛ 12 15 20 120 24 24 48 48 96 96 (Z/2)3 (Z/2)3 Z/2 × Z/4 (Z/2)2 Z/2 × Z/4 Z/2 × Z/4

(29)

There is a group E of order 384 such that if the Galois action factors through E, then Z has an elliptic fibration over K.

Results:

• We can write down this fibration generically, • Computing Z(AK)Br1 is easier,

• There are 6 subgroups like the 11 before,

(30)

There is a group E of order 384 such that if the Galois action factors through E, then Z has an elliptic fibration over K.

Results:

• We can write down this fibration generically, • Computing Z(AK)Br1 is easier,

• There are 6 subgroups like the 11 before,

• For one, an algorithm for computing Z(AK)Br1 is implemented.

Non-result:

Referenties

GERELATEERDE DOCUMENTEN

tact. Daardoor komt er ook weinig terecht van het zich verplaatsen in de positie van de ander en van inzicht in objectieve problemen. Hiermee kan het gedrag

Introduction: Sagittal synostosis or scaphocephaly is the most common isolated single-suture synostosis that accounts for 40% to 60% of all craniosynostosis cases

Om die proses verder te verstaan word die volgende vraag gevra: “Het die kultuur en invloede wat identiteit in die verlede gevorm het, verdwyn?” Is dit waar dat die tyd waarin

In this thesis we give explicit formulas for the Tate local pairings in terms of the Hasse invariant of certain central simple algebras over non-Archimedean local fields

Definition/Theorem: The Jacobian of a curve is a g-dimensional projective group variety of which the rational points represent the galois-stable divisor classes of degree 0...

The ⟨destination name⟩ is encoded with the method stored in in \l__hyp_text_enc_- dest_tl. The location should be one of fit, fith, fitv, fitbv, fitbh, fitr, xyz, fitrbx.. They

When considering the infinite-dimensional Lie group G of gauge transformations on a principal bundle, its Lie algebra Lie (G ), and their role in the descent equations, we will see

A ls consu- menten zich al het land van herkomst herinneren, dan gaat het vaak om groente en f ruit, en als consumenten het land van herkomst al mee laten wegen tijdens