• No results found

The enthalpies of formation and of dehydration of some AFm phases with singly charged anions

N/A
N/A
Protected

Academic year: 2021

Share "The enthalpies of formation and of dehydration of some AFm phases with singly charged anions"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The enthalpies of formation and of dehydration of some AFm

phases with singly charged anions

Citation for published version (APA):

Houtepen, C. J. M., & Stein, H. N. (1976). The enthalpies of formation and of dehydration of some AFm phases with singly charged anions. Cement and Concrete Research, 6(5), 651-658. https://doi.org/10.1016/0008-8846(76)90029-6

DOI:

10.1016/0008-8846(76)90029-6

Document status and date: Published: 01/01/1976

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

CEMENT and CONCRETE RESEARCH. Vol. 6, pp. 651-658, 1976. Pergamon Press, Inc

Printed in the United States.

THE ENTHALPIES OF FORMATION AND OF D E H Y D R A T I O N OF SOME A F m PHASES WITH SINGLY CHARGED ANIONS 2.

C.J.M. Houtepen and H.N. Stein L a b o r a t o r y of General C h e m i s t r y

T e c h n o l o g i c a l University, Eindhoven, The N e t h e r l a n d s

(Communicated by H. F. W. Taylor)

(Received June 23, 1976)

A B S T R A C T

The enthalpies of formation of some A F m phases of the type C a 2 A I ( O H ) 6 X . x H 2 0 (X = CI-, Br-, I-, NO~, CIO~, CIO3, BrO~ and IOn) were d e t e r m i n e d by m e a s u r i n g £he he~ts of solution in h y d r o c h l o r i c or perchloric acid. F r o m the d i f f e r e n c e s between the heats of solution of the compounds and their d e h y d r a t i o n products, the enthalpies of

d e h y d r a t i o n were established. They increase w i t h increasing enthalpies of h y d r a t i o n of the individual anions X in aqueous solution. However, this r e l a t i o n s h i p is not the same for halide ions as for oxy-anions.

Die B i l d u n g s e n t h a l p i e n einiger A F m Phasen Ca2AI(OH) 6X.xH20 (X = CI-, Br-, J-, NO~, CIO~, CIO~, BrO~ und IOn) wurden b e s t i m m t durch M e s s u n g der L ~ s u n g s w M r m e dieser

V e r b i n d u n g e n in HCI oder HCIO 4. M i t t e l s der D i f f e r e n z e n zwischen den L ~ s u n g w ~ r m e n d e r - h y d r a t i s i e r t e n und

d e h y d r a t i s i e r t e n V e r b i n d u n g e n wurden die D e h y d r a t a t i o n s - e n t h a l p i e n festgestellt. Diese nehmen zu mit steigender H y d r a t a t i o n s e n t h a l p i e der i n d i v i d u e l l e n Anionen X in w ~ s s e r i g e r L6sung; aber die R e l a t i o n ist v e r s c h i e d e n

fur H a l o g e n i o n e n und f~r Oxy-anionen.

2 P a r t of the Ph.D. Thesis by C.J.M. Houtepen, E i n d h o v e n 1975, and p r e s e n t e d as a s u p p l e m e n t a r y paper at the 6~h International Congress on the C h e m i s t r y of Cement,

M o s c o w 1974.

(3)

652 Vol. 6, No. 5 C. J. M. Houtepen, H. N. Stein I n t r o d u c t i o n A n u m b e r of d a t a c o n c e r n i n g the e n t h a l p i e s of f o r m a t i o n of c a l c i u m a l u m i n a t e s and s i l i c a t e s h a v e b e e n p u b l i s h e d (I-13). T h e s e v a l u e s are b a s e d p a r t l y on c a l c u l a t e d , p a r t l y on e x p e r i m e n t a l l y d e t e r m i n e d q u a n t i t i e s . T h u s B a b u s h k i n and M c h e d l o v - P e t r o s y a n (I) c a l c u l a t e d the e n t h a l p y of f o r m a t i o n of C 4 A H 1 3 (-1983 kcal) m a k i n g use of the c o n t r i b u t i o n s to this q u a n t i £ y f r o m Ca(OH) 2, AI(OH) 3 and the lattice water. The c o n t r i b u t i o n s f r o m Ca(OH) 2 and AI(OR) 3 to the e n t h a l p y of f o r m a t i o n w e r e c a l c u l a t e d f r o m t h a t of C 3 A H 6

(-1317.6 kcal), on the s u p p o s i t i o n t h a t t h i s c o m p o u n d c o n s i s t s of 3Ca(OH) 2 . 2 A I ( O H ) 3 , and f r o m the e n t h a l p y of f o r m a t i o n of C 2 A H 5

( 2 C a ( O H ) 2 . 2 A I ( O H ) 3 ) , -1078 k c a l (11). S u c h c a l c u l a t i o n s m a y be j u s t i f i e d in some cases, b u t in o t h e r s t h e y lead to l a r g e errors. T h u s the e n t h a l p y of f o r m a t i o n of C 3 A H 6 c a l c u l a t e d f r o m t h a t of C 3 A (8) u s i n g an a p p r o x i m a t e g e n e r a l r e l a t i o n s h i p for the e n t h a l p y of h y d r a t i o n of a n h y d r o u s c o m p o u n d s (14, 15) is - 1 2 8 3 . 5 kcal, but the e x p e r i m e n t a l v a l u e is -1326 k c a l (8). C l e a r l y t h e r e is a n e e d for e x p e r i m e n t a l data. The A F m c o m p o u n d s of g e n e r a l f o r m u l a C a 2 A I ( O H ) 6 X . x H 2 0 have a l m o s t i d e n t i c a l c r y s t a l s t r u c t u r e s , w h i c h are e s s e n t i a l l y u n a f f e c t e d by r e m o v a l of the i n t e r l a y e r w a t e r (16-18). D e h y d r a t i o n c a u s e s m a i n l y a d e c r e a s e of the l a y e r t h i c k n e s s c and is r e v e r s i b l e as l o n g as the d e h y d r a t i o n c o n d i t i o n s are n o t too severe. The q u e s t i o n is w h e t h e r any r e l a t i o n s h i p e x i s t s b e t w e e n the e n t h a l p i e s of d e h y d r a t i o n of t h e s e c o m p o u n d s and the e n t h a l p i e s of h y d r a t i o n of the i n d i v i d u a l a n i o n s X. For the c l a y m i n e r a l s s u c h as

m o n t m o r i l l o n i t e and v e r m i c u l i t e , the c a t i o n s l o c a t e d in the

i n t e r l a y e r s h a v e an i m p o r t a n t e f f e c t on the a b i l i t y to a c c o m o d a t e i n t e r l a y e r w a t e r (19-21); the e n t h a l p i e s of d e h y d r a t i o n of t h e s e c l a y m i n e r a l s d e p e n d on the e n t h a l p i e s of h y d r a t i o n of the c a t i o n s in a q u e o u s solution. In the A F m p h a s e s a n i o n s m i g h t p l a y a s i m i l a r role. P r e p a r a t i o n and C h a r a c t e r i z a t i o n S a m p l e s w e r e p r e p a r e d by the f o l l o w i n g m e t h o d s : a. To a s u s p e n s i o n of C 3 A (2.7 g) in 2 - p r o p a n o l (50 ml), p r e p a r e d as d e s c r i b e d by De J o n g ~22), was a d d e d a s o l u t i o n of 50 to 100 m m o l e s C a X 2 . z H 2 0 in C 0 2 - f r e e w a t e r (500 ml). The 2 - p r o p a n o l was u s e d to p r e v e n t a too r a p i d h y d r a t i o n of C3A. The r e a c t i o n m i x t u r e w a s m a g n e t i c a l l y s t i r r e d for at l e a s t five d a y s at r o o m t e m p e r a t u r e T h e p r e c i p i t a t e was f i l t e r e d off, w a s h e d w i t h a m e t h a n o l - w a t e r m i x t u r e f o l l o w e d by a m e t h a n o l - a c e t o n e m i x t u r e , and d r i e d o v e r

s a t u r a t e d C a C I 2 . 6 H 2 0 (37% r e l a t i v e humidity) in a v a c u u m d e s i c c a t o r b. C 3 A H 6 w a s ~ r e p a r e d by h e a t i n g C 3 A (2.7 g) in w a t e r (250 ml) at

175oc in an a u t o c l a v e for 120 hours, as d e s c r i b e d by T h o r v a l d s o n (2).

c. "C4AH13" was p r e p a r e d at 0°C by a d d i n g a s o l u t i o n of s o d i u m a l u m i n a t e to a s a t u r a t e d s o l u t i o n of c a l c i u m h y d r o x i d e in s u c h a w a y t h a t the C a / A 1 r a t i o in the s o l u t i o n w a s a l w a y s g r e a t e r t h a n

two. This m e t h o d is a n a l o g o u s to that e m p l o y e d by B u s e r (23). d. S a m p l e s of C a 2 A I ( O H ) 6 N O 3 . x H 2 0 w e r e p r e p a r e d by a m e t h o d

a n a l o g o u s to m e t h o d a, but a b o u t 175°C in an a u t o c l a v e , r e s u l t i n g in l a r g e r c r y s t a l s .

e. The i o d a t e c o m p o u n d was p r e p a r e d as d e s c r i b e d by Le Bel and G r a s l a n d (18).

(4)

Vol. 6, No. 5 653 ENTHALPY, FORMATION, HYDRATION, AFM PHASES

In all p r e p a r a t i o n s p r e c a u t i o n s w e r e taken a g a i n s t

c a r b o n a t i o n . The w a t e r u s e d was d i s t i l l e d twice at r e d u c e d p r e s s u r e F i l t r a t i o n was p e r f o r m e d in a C O 2 - f r e e g l o v e box. All s a m p l e s w e r e a n a l y s e d c h e m i c a l l y . Table I gives the c o m p o s i t i o n s of the s a m p l e s and their d e h y d r a t i o n products; d e s p i t e the p r e c a u t i o n s t a k e n some c a r b o n a t i o n u s u a l l y o c c u r r e d . The s a m p l e s and d e h y d r a t i o n p r o d u c t s w e r e also c h a r a c t e r i z e d by X - r a y d i f f r a c t i o n , care b e i n g taken to e x c l u d e CO 2 and H20 by c o v e r i n g the samples w i t h "Mylar" foil. For the h y d r a t e d p h a s e s no d i f f e r e n c e s w e r e found b e t w e e n X - r a y

d i f f r a c t i o n p a t t e r n s m a d e w i t h and w i t h o u t such a foil, e x c e p t for C4AH13. The h e m i c a r b o n a t e p h a s e w i t h layer t h i c k n e s s 8.2 ~ was absent, but the 7.9 ~ r e f l e c t i o n had a s h o u l d e r on the l o w - a n g l e side and c h e m i c a l a n a l y s i s (Table I) s h o w e d that CO 2 was present. In g e n e r a l the layer t h i c k n e s s e s found for the A F m p h a s e s and their d e h y d r a t i o n p r o d u c t s a g r e e d w i t h those in the l i t e r a t u r e (17, 18). R e s u l t s of i n t e r e s t w e r e for the h y d r a t e d c h l o r a t e compound,

9.30 ~; for the d e h y d r a t e d nitrate, 7.28 ~; and for the

d e h y d r a t e d bromate, 8.36 ~. All m o l a r q u a n t i t i e s used in this p a p e r r e l a t e to f o r m u l a e of the type Ca2AI(OH) 6X.xH20.

Heat of S o l u t i o n M e a s u r e m e n t s

The heats of s o l u t i o n of the A F m p h a s e s w e r e d e t e r m i n e d in HC1 (IN or 2N) or in p e r c h l o r i c acid (1N) at 25oc w i t h a p r e c i s i o n c a l o r i m e t e r , LKB 8700-I (24). The heats of s o l u t i o n were

c a l c u l a t e d using the g r a p h i c a l e x t r a p o l a t i o n m e t h o d of D i c k i n s o n (25, 26). The c a l o r i m e t e r was c a l i b r a t e d e l e c t r i c a l l y and

c h e m i c a l l y by m e a s u r i n g the heat of s o l u t i o n of CaO, p r e p a r e d by b u r n i n g CaCO 3 (Merck p.a.) at 1100°C for s e v e r a l hours. AHsoln" was found to be -46.7 + 0.3 kcal m o l e -I w h i c h i m p l i e s ~H~ CaO, c = - 1 5 1 . 9 ~ 0 . 3 kcal mole-T, in a g r e e m e n t w i t h l i t e r a t u r e d a t a (10). For a c c u r a t e d e t e r m i n a t i o n s the heat of d i l u t i o n c a u s e d by the d i s a p p e a r e n c e of the acid and the f o r m a t i o n of w a t e r on d i s s o l u t i o n of the s a m p l e s m u s t be t a k e n into account. It can, however, be p r o v e d that, if the a m o u n t of s a m p l e (0.2 mmole) is small c o m p a r e d w i t h the a m o u n t s of acid (80 mmoles) and of w a t e r (4.5 mole), the h e a t of d i l u t i o n is n e g l i g i b l e . The e n t h a l p y of d e h y d r a t i o n i.e. the c h a n g e of e n t h a l p y i n v o l v e d in the h y p o t h e t i c a l reaction:

C a 2 A I ( O H ) 6 X . x H 2 0 ( c ) + Ca2AI(OH) 6X(c) + xH20(1) (I) was d e t e r m i n e d as the d i f f e r e n c e b e t w e e n the heats of s o l u t i o n of the d e h y d r a t e d and the h y d r a t e d c o m p o u n d s . This p r o c e d u r e is j u s t i f i e d b e c a u s e , if e q u i m o l a r a m o u n t s of the h y d r a t e d c o m p o u n d s are d i s s o l v e d , the final states of the r e s u l t i n g s o l u t i o n s are n e a r l y the same.

E n t h a l p i e s of F o r m a t i o n

The e n t h a l p i e s of f o r m a t i o n of the A F m p h a s e s w e r e d e t e r m i n e d f r o m h e a t s of s o l u t i o n in HCI u s i n g the f o l l o w i n g r e a c t i o n scheme:

Ca2AI(OH) 6. yX. 0 . 5 ( I - y ) C O 3. x H 2 0 + n I H C I + n 2 H 2 0 2Ca2+ + A 1 3 + + yX- + (7-y)Cl- + 0 . 5 ( 1 - y ) C O 2 ( a q) + n 3 ( = n I - 7 + y ) H C l + n 4 ( = n 2 + 6.5 - 0.5y + x ) H 2 0

(5)

654 Vol. 6, No. 5 C. J. M. Houtepen, H, N. Stein

The enthalpy of formation is then:

&H~ Ca2AI(OH) 6. yX. 0.5(I-y)CO 3. xH20 : 2 ~H~eaCl2, n 4 / 2 H 2 ~ + &H~[AICI3, n4H20 , n3HCI ] + y & H ~ X, n4/YH20 ] - y A H ~ HCI, n 4 / Y H 2 ~

+ 0.5(1-y)&H~CO2(a q) - n2HI(H20) - nIHI(HCI) + n4H2(H20)

+ n3H2(HCI ) - AHsoln" (2)

&H~[CaCIg, n4/2H?O L is the enthalpy of formation of one mole CaCI~ in'n4/2 ~ole=H20~ HI(H20) and H2(H~O) are the partial molar

enthalpies of water in solutions o5 one mole H20 with nl/n 2 mole HCI or n3/n 4 HCl,respectively. HI(HCI) and H2(HCl) are the partial molar enthalpies of HCl in solutions of one mole HCI with n2/n I

and n4/n 3 mole H20 respectively. The enthalpy of formation of AICI 3 in aqueous solution depends strongly on the water and HCI concentrations (12). This enthalpy was found by interpolation of literature data (12) &H~[AICI~, 200HCI, 11000H20 ] = -245.7 kcal mole-1. The other data~were {aken from literature (8,12,13). In

the calculations, thermochemical data for CO 2 dissolved in water have been used (12). This may be questionable in view of the small solubility of CO 2 in IN HCI. However, the difference between the enthalpies of formation of CO 2 in aqueous solution and in the gas phase is too small to have any noticeable influence on the

calculations.

If the heat of solution in perchloric acid was measured, the enthalpy of formation was established as follows:

AH~ Ca2AI(OH) 6. yX. 0.5(I-y)C03. xH20 = -AHsoln" + 2 A H ~ C a 2+, n 4 / 2 H 2 ~ + AH~ A13+, n4H20 ] + yAH~[X, n4/YH2~ +

0.5(1_y)AH~CO2(aq ) + (n4-n2)AH~[H20, n3/n4HCl04] (3)

AH~[Ca 2+, n4/2H20 ] = AH~[ CaCI2, n4/2H20 ] - 2AH~[ HCI, n4/4H20 ] (4)

A H ~ A13+, n4H20 ] = AH~[AICI3, n4H20 ]- 3AH~[ HCI, n4/3H20 ] (5) Discussion

A. The Heats of Solution and the Enthalpies of Formation

The heats of solution of the Ca2Al(OH) 6X±xH20_com~ound ~ are nearly independent of X, if x = 2 and X = C1 , Br , I , NO , CIO-

of solution or C103(Table I). If x > 2 (X = BROW, IOn) the heats 3 4 decrease with increasing amount of interlayer water. With

increasing carbonation the heat of solution increases, since the heat of solution of Ca AI(OH) 6.0.5CO3.2.39H20 is -63.7 kcal (5) 2 which is relatively large. The heat-of solution of the iodide compound containing 0.03 mole % CO 2 differs about I kcal from that of the almost C02-free compound (Table I). The heat of solution of Ca2AI(OH) 6.0.92OH, 0.04CO3.3H20 (-76.9 kcal) differs

considerably from those of the other AFm phases. The heat of solution of pure Ca2AI(OH) 6OH.3H20 (-78 kcal) was established by

(6)

Vol. 6, No. 5 655

ENTHALPY, FORMATION, HYDRATION, AFM PHASES

e x t r a p o l a t i o n , a s s u m i n g a l i n e a r r e l a t i o n b e t w e e n the heats of s o l u t i o n of C a 2 A I ( O H ) 6 . 0.920H. 0 . 0 4 C O 3. 3H20 and of

Ca2AI(OH) 6. 0 5CO 3 2-39 H 0 The h e a t s of s o l u t i o n of the

2

d e h y d r a t i o n p r o d u c t s can be c o r r e l a t e d w i t h the i n t e r a c t i o n e n e r g i e s b e t w e e n the a n i o n s X and the Ca2Al(OH) 6 - 1 a y e r s (27). We can c o n c l u d e from e q u a t i o n 2 that, if_x = 2, the e n t h a l p i e s of Zormation of C a ~ A I ( O H ) 6 . X . x H ~ O (X = C1 , Br , J , NO3, CIO 4 and CIO 3) can be ~ x p r e s s e d by The equation:

&H~ C a 2 A I ( O H ) 6 X . 2 H 2 0 = - 8 7 4 ( + I ) + ~Hf[X, I 0 . 0 0 0 H 2 0 ] (6) This m e a n s that the l a t t i c e e n t h a l p i e s of these A F m p h a s e s d e p e n d l i n e a r l y on the e n t h a l p i e s of h y d r a t i o n of the a n i o n s X concerned. For: A H l a t t i c e = ~H~[ Ca2AI(OH) +6, g] + AHf~ X, g] + 2 & H ~ [ H 2 0 , g ]

- AH~ Ca2AI(OH) 6 x . 2 H 2 0 (7)

The C a ~ A l ( O H ) ~ - i o n in the gas p h a s e is an h y p o t h e t i c a l ion. F r o m e q u a t i o n 6 and 7 follows:

= C I + ~H~(X-, g) - &H~(X-, aq) = C I - &Hhydr. (X- , g) AHlat.

(8)

since ~Hhydr.(X-, g) = AH~(X-, aq) - & H ~ (X-, g) (9) The e n t h a l p y of f o r m a t i o n of pure C4AH13 , c a l c u l a t e d f r o m the h e a t of solution, -156 kcal m o l e -I and the e n t h a l p i e s of f o r m a t i o n of the r e a c t a n t s is -1988 kcal. B a b u s h k i n c a l c u l a t e d -1983 kcal; the a g r e e m e n t is in this case very s a t i s f a c t o r y • But if we

c a l c u l a t e the e n t h a l p y of f o r m a t i o n of e.g. C a 2 A I ( O H ) 6 C I . 2 H 2 0 by the m e t h o d of B a b u s h k i n , s u p p o s i n g that the h y d r a t e c o n s i s t s of 1.5 Ca(OH)2, A I ( O H ) ~ and 0.5 C a C I 2 . 4 H 2 0 we get -899 kcal. The e x p e r i m e n t a l v a l u e zs -914 kcal. This d i f f e r e n c e o c c u r s b e c a u s e the s u r r o u n d i n g s of the ions in the A F m p h a s e s d i f f e r from those in Ca(OH)2, AI(OH) 3 and C a C l 2 . 4 H 2 0 , to e x t e n t s that a p p a r e n t l y c a n n o t be n e g l e c t e d .

B. The E n t h a l p i e s of D e h y d r a t i o n

In Fig.1 the e n t h a l p i e s of d e h y d r a t i o n of the A F m phases are g i v e n t o g e t h e r w i t h the a b s o l u t e e n t h a l p i e s of h y d r a t i o n of the anions X. For the h a l i d e ions, the h y d r a t i o n e n t h a l p i e s w e r e c a l c u l a t e d from the e n t h a l p i e s of f o r m a t i o n in the gas state and the "absolute" e n t h a l p i e s of f o r m a t i o n in a q u e o u s solution. The "absolute" e n t h a l p i e s of f o r m a t i o n are r e l a t e d to the c o n v e n t i o n a l e n t h a l p i e s of f o r m a t i o n (tabulated in the literature) by the

e q u a t i o n :

AH~(X, aq)abs. = AH~(X, aq)conv. - ~H~(H ~, aq)abs. (10) °(H+, aq)abs = 95.6 kcal m o l e - 1 ( r e f . 30). w h e r e &Hf

The e n t h a l p i e s of d e h y d r a t i o n of the A F m p h a s e s are l i n e a r l y r e l a t e d to the e n t h a l p i e s of h y d r a t i o n of the a n i o n s X (Fig.l).

For the o x y - a n i o n s , the h y d r a t i o n e n t h a l p i e s are not k n o w n p r e c i s e l y , b e c a u s e the e n t h a l p i e s of f o r m a t i o n of the g a s e o u s

(7)

656 Vol. 6, No. 5 C. J. M. Houtepen, H. N. Stein

TABLE I

Analytical and thermochemical results

Chemical composition prep.

method Ca2AI(OH) 0.920H. 0 04CO.. 3.0H~O c Ca~AI(OH) 6[ 0.96N03. G.02C~ 3. 2.0~20 d

Ca~AI(OH)~. 0.96N03. 0.02C03. f

Ca~AI(OH) 6. 0.98CI04. 0.01C03. 2.1H20 a Ca2AI(OH) e.. 0.98CIO 4. 0.01C03 f Ca2A1 (OH)

6

6 [ I. 00el. 2. I H20

a

Ca2AI (OH) I. 00CI f

Ca2AI(OH) 6. 0.96Br. 0.02C03. 2.1H20 a Ca2AI(OH) 6. 0.96Br. 0.02CO 3 f Ca2AI(OH) 6[6 0 . 9 4 I . 0.03C03. 2.1H20 a Ca2AI ( O H ) 0.941. 0.03CO 3 f Ca2AI(OH) ~. 1 . 0 0 I . 2.0H20 a Ca2AI(OH)~. 1.00I f

Ca2AI(OH) 6. 0.98CLO 3. 0.01CO 3. 2.1H20 a Ca2AI(OH) 6. 0 98CIO 3 0.01CO 3 f Ca2AI(OH) 6- 0.98BrO 3. 0.01C03. 2.8H20 a Ca2AI(OH) 6- 0.98BrO 3. 0.01CO 3 f

Ca2AI(OH) 6- 1.00IO 3. 4.1H20 e

Ca2AI(OH) 6" 1.00IO 3 f

C3AH 6 b

mmoles 7&HHoln. -AH~

Kcaz kcal 0.3924 76.9 993 0.4238 61.0 992 0.3982 67.7 0.4416 60.9 910 0.3841 66.2 0.4092 62.0 917 0.4171 72.0 0.4074 60.9 913 0.4084 70.5 0.3585 61.6 894 0.3801 69.2 0.4038 60.5 887 0.4131 68.31 0.4139

60.91

904

0.4113 68.71 0.3916

58.61

950

0.3909

70.01

0.3395

53.41

1074

0.3389

72.3

0.2311 139.1 1326 XFor m e a s u r i n g the heats of solution of A F m phases with oxy-anions

incorporated, HCIO 4 (IN) was used. f = d e h y d r a t i o n product.

I I I ! I 20

is

cc

BFo...po

20

Z /

s[

o % 0 g

/UctoZ

, = = i i i / 60 70 80 90 100

-AHhydr" (keaL mole -1)

FIG. 1 TABLE II X AHhydr" -AHhydr" IO 3 1 8.9 97.6 BrO 3 11.4 79.3 CI-- 10.0 76.7 CIO 3 7.8 72.9 Br- 9.6 68.7 NO 3 _ 6.7 67.1 C104 5.3 65.9 I- 7.8 61.8

The enthalpies of dehydration of some compounds of general

formule C a 2 A I ( O H ) 6 X . x H 2 0 plotted against the "absolute" hydration enthalpiesQf the individual anions X in aqueous solution.

(8)

Vol. 6, No. 5 657

ENTHALPY, FORMATION, HYDRATION, AFM PHASES

ions cannot be determined experimentally. The most reliable way of e s t i m a t i n g them seems to be that first p r o p o s e d by Morris (28), w h i c h is based on the hypotheses that the s a l t i n g - o u t of iyophilic colloids by e l e c t r o l y t e s is d e t e r m i n e d by the h y d r a t i o n enthalpies of the ions present (29). The salting-out properties of an anion, expressed as a "lyotropic number", can be m e a s u r e d for both

halides and oxy-anions; assuming that the same relation between enthalpy of hydration and lyotropic number applies for halides and oxy-anions, the hydration enthalpies of the oxy-anions are known. Hydration enthalpies thus obtained are shown in Fig.1. As for the halides a linear r e l a t i o n s h i p is found, but the points for the oxy-anions do not lie in the same curve as those for the halides. This is ascribed to d i f f e r e n c e s in the sizes and

chemical c h a r a c t e r i s t i c s of the two kinds of ion. A c k n o w l e d g e

The authors wish to thank Mr. C.L.M. Holten and Mr. F.E.A.M.B. L e m m e r l i n g for their contributions to this investigation.

References

I. V.I. Babushkin, G.M. M a t v e e v and O.P. M c h e d l o v - P e t r o s y a n , T h e r m o d y n a m i k der Silikate, 2th ed., VEB V e r l a g f~r Bauwesen, Berlin.

2. T. Thorvaldson, W.G. Brown and C.R. Peaker, J. Am. Chem. Soc. 32, 910, 3927 (1930).

3. V. Cirrilli, Ric. Sci. 10, 559 (1939).

4. J.P. Coughlin, J. Am. Chem. Soc. 78, 5479 (1956).

5. H.A. Berman and E.S. Newman, J. Res. NBS 65A, 197 (1961). 6. H.A. Berman and E.S. Newman, Proc. 4th. Intern. Symp. Chem.

Cement, W a s h i n g t o n 1960.

7. H.A. Berman and E.S. Newman, J. Res. NBS 67A, I (1963). 8. V.B. Parker, D.D. Wagman and W.H. Evans, NBS Technical Note

270-6, Selected Values of Thermodynamic Properties, U.S. g o v e r n m e n t printing office, Washington.

9. T. Thorvaldson, W.G. Brown and C.R. Peaker, J. Am. Chem. Soc. 51, 2678 (1929).

10. E.J. Hueber and C.E. Holley, J. Phys. Chem. 60, 498 (1956). 11. F.D. Rossini, D.D. Wagman, W.H. Evans, S. Levine and J. Jaffe,

Selected Values of Chemical Thermodynamic Properties, NBS circ. 500, U.S. government printing office, W a s h i n g t o n 1952. 12. D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Baily

and R.H. Schumm, Selected Values of Chemical T h e r m o d y n a m i c Properties, NBS Technical Note 270-3, U.S. g o v e r n m e n t printing office, Washington.

13. Intern. Critical Tables of Numerical Data, Physics, C h e m i s t r y and Technology, Ed. E.W. Washburn, M c G r a w Hill B. Comp.

New York, London, 1929.

(9)

658 Vol. 6, No. 5 C. J. M. Houtepen, H. N. Stein

15. L.V. Gorbunov. Russ. J. Phys. Chem. 45 ( 7 ) , 921 (1971). 16. S.J. A h m e d and H.F.W. Taylor, Nature 215, 622, 1967.

17. H.J. Kuzel, Proc. 5th. Intern. Symp. Chem. Cement Tokyo 1968, Vol. II, p. 92.

18. F. le Bel and G. Grasland, Proc. 5th. Intern. Symp. Chem. Cement Tokyo 1968, Vol. II, p. 79.

19. H. van Olphen, J. Coll. Sci. 20, 822 (1965).

20. G. Sposito and K.L. Babcock, Clays and Clay Min. Proc. 14th Intern. Conf., p. 133, 1966.

21. A.G. Keenan, R.W. M o o n e y and L.A. Wood, J. Phys. Chem. 55, 1462 (1951).

22. J.G.M. de Jong, H.N. Stein and J.M. Stevels, Proc. 5th. Intern. Symp. Chem. Cement Tokyo 1968, Vol. II, p. 311. 23. W. F e i t k n e c h t and H. Buser, Helv. Chim. A c t a 34, 128 (1951). 24. J. Wads~, Science Tools 13, 33, 1966 ( c . f . C . A . 6_99, 30771u). 25. J. Coops, R.S. Jessup and K. van N e s s i n Rossini F.D.,

E x p e r i m e n t a l Thermochemistry, Interscience, New York, 1956. 26. S.R. Gunn, J. Chem. T h e r m o d y n a m i c s 3, 19 (1971).

27. C.J.M. H o u t e p e n and H.N. Stein, to be p u b l i s h e d in J. Coll. and Interface Sci.

28. D.F.C. Morris, J. Inorg. Nucl. Chem. 6, 295 (1958). 29. A. Voet, Chem. Rev. 20, 169 (1937).

30. J.E. D e s n o y e r s and C. J o l i c o e u r in M o d e r n A s p e c t s of

E l e c t r o c h e m i s t r y Vol. 5, Ed. J.O.M. Bockris and B.E. Conway, P l e n u m Press, New York 1969.

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of