• No results found

A note on weak diamond properties

N/A
N/A
Protected

Academic year: 2021

Share "A note on weak diamond properties"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A note on weak diamond properties

Citation for published version (APA):

Bruijn, de, N. G. (1978). A note on weak diamond properties. (Eindhoven University of Technology : Dept of Mathematics : memorandum; Vol. 7808). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1978

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics Menorandurn 78-08. I s s u e d August 1978. A n o t e on weak diamond p r o p e r t i e s . by N.G. d e B r u i j n . Eindhoven U n i v e r s i t y of Technology Department of Mathematics P.O.Box 513 5600 MB Eindhoven The N e t h e r l a n d s .

(3)

A n o t e on weak diamond p r o p e r t i e s .

1 , I n t r o d u c t i o n . L e t S be a s e t w i t h a b i n a r y r e l a t i o n >. We assume i t

t o s a t i s f y x > x f o r a l l X E S. We a r e i n t e r e s t e d i n e s t a b l i s h i n g a

p r o p e r t y CR (named a f t e r i t s r e l e v a n c e f o r t h e Church-Rosser theorem of lambda c a l c u l u s , c f . [ I ] ) . We s a y t h a t x - y i f x > y o r y > x . We

*

s a y t h a t x > y i f t h e r e i s a f i n i t e sequence x , ,

...,

x w i t h x=x > x >

n 1 2

>

...

> xn=yY and a l s o i f x=y. We s a y t h a t S s a t i s f i e s CR i f f o r any sequence x l ,

...,

x w i t h n

*

*

t h e r e e x i s t an element X E S w i t h b o t h x > z and x > z. 1 n I t i s u s u a l t o s a y t h a t ( S , > ) h a s t h e diamond p r o p e r t y (DP) i f f o r a l l x , y , z w i t h x > y , x > z t h e r e e x i s t s a w w i t h y > w , z > w.

where x > y i s i n d i c a t e d by a l i n e from x downwards t o y , e t c . The l i t t l e c i r c l e s around y and z i l l u s t r a t e t h e l o g i c a l s i t u a t i o n : t h e diagram y& can b e c l o s e d by

Yt/Z

.

W It i s n o t h a r d t o show t h a t DP i m p l i e s CR. A s i m p l e way t o p r e s e n t a proof i s by c o u n t i n g " i n v e r s i o n s " i n sequences l i k e x > x < x 1 2 3 < X4> > x5 < x x7: i f i < j and x . < x 6 1 i + l Y X j > Xj + l ' t h e n we s a y t h a t t h e p a i r ( i , j ) forms an i n v e r s i o n . A p p l i c a t i o n s of DP, l i k e r e p l a c i n g x <

*

3 X4 > > x5 by x3 > x 4 < x d e c r e a s e t h e number of i n v e r s i o n s . Once a l l i n - 5 ' v e r s i o n s a r e gone, w e have e s t a b l i s h e d CR. The f o l l o w i n g p r o p e r t y WDP i s weaker t h a n DP. I t s a y s : " i f x > y 1

and x > z t h e n w e x i s t s such t h a t y >* .w and z >* w". I t i s v e r y f r u s t r a t - i n g i n a t t e m p s t o p r o v e t h e Church-Rosser theorem f o r v a r i o u s systems, t h a t

WDP

does n o t imply CR. A counterexample can b e o b t a i n e d by means of t h e

1

-

f o l l o w i n g pi'cture ( c f

.

[ 2 1 p. 49) : X 4 Y4 z 1 e t c . 4

(4)

T h i s example a l s o shows t h a t CR n e i t h e r f o l l o w s from WDP2 where WDP 2 i s s l i g h t l y s t r o n g e r t h a n WDP and s a y s : " i f x > y and x > z t h e n w e x i s t s

*

*

I

such t h a t y > w and z > w and a t l e a s t one of y > w and z > w". S t r o n g e r a g a i n i s WDP3, e x p r e s s i n g : I t i f x > y and x > z t h e n w e x i s t s such t h a t y > * w and z > w." T h i s WDP3 does imply CR. A c t u a l l y WDP3 i m p l i e s WDP4, which s a y s :

*

*

*

*

" i f x > y and x > z t h e n w e x i s t s such t h a t b o t h y > w and z > w." T h i s

*

*

WDP i s t h e DP f o r ( S , > ) , and t h e r e f o r e i m p l i e s CR f o r (S,> ) , and t h a t 4

i s t h e same t h i n g a s CR f o r ( S , > ) . The d e r i v a t i o n of WDP4 from WDP i s 3

i l l u s t r a t e d by t h e f o l l o w i n g p i c t u r e ( c f . C29 p. 59) which s p e a k s f o r i t s e l f :

I n t h i s n o t e we go c o n s i d e r a b l y f u r t h e r . I n s t e a d of h a v i n g j u s t one r e l a t i o n > we c o n s i d e r a s e t of r e l a t i o n s > where m i s t a k e n from an i n d e x

m

s e t M. The i d e a behind t h i s i s t h a t i n t h e Church-Rosser theorem t h e r e l a t i o n s r e p r e s e n t lambda c a l c u l u s r e d u c t i o n s ; t h e r e may be r e d u c t i o n s of v a r i o u s t y p e s , and diamond p r o p e r t i e s may depend on t h e s e t y p e s . I t i s o u r p u r p o s e t o e s t a b l i s h weak diamond p r o p e r t i e s which g u a r a n t e e CR (where CR h a s t o b e i n t e r p r e t e d a s i n

s e c t i o n 4.

2 . The index s e t .

( M y < )

i s a w e l l - o r d e r e d s e t . T h a t i s , t h e o r d e r < i s t o t a l ( i . e . i t i s t r a n s i t i v e , and f o r a l l m ,m we have e x a c t l y one of m =m

1 2 1 2' m l < m2'

m < m and t h e r e a r e no i n f i n i t e d e s c e n d i n g c h a i n s m >

m

2 1

'

1 2 > m 3 > " '

Note t h a t i n M we do n o t have m

< m y

i n c o n s t r a s t t o what w i l l b e assumed i n S. There might b e u s e f o r c a s e s w i t h more g e n e r a l (M; <), l i k e p a r t i a l o r d e r w i t h d e s c e n d i n g c h a i n c o n d i t i o n . We s h a l l n o t s t u d y such e x t e n s i o n s i n t h i s n o t e .

3. The s e t S w i t h i t s o r d e r r e l a t i o n . S i s a s e t , and f o r each T E M t h e r e i s a r e l a t i o n > on S. The o n l y t h i n g we r e q u i r e i s t h a t x > x f o r a l l x E S and a l l

m m

m E M .

For a l l mcM we now i n t r o d u c e two f u r t h e r r e l a t i o n s > and >

.

We s a y t h a t

m+ m-

x > y i f t h e r e i s a f i n i t e c h a i n x = x O , x l ,

...

x =y ( p o s s i b l y n=O x=y) and elem-

m+ n

e n t s k , m y

...,

k

<

m such t h a t x

0 'kl x I > k 2

.

.

.

> x And we s a y t h a t

n k n '

(5)

x > y i f t h e r e i s a c h a i n x=x

0 > k l x I >k2

...

> x = y w i t h k e m y

m- k n

n 1

k < m . Again t h i s i n c l u d e s t h e c a s e t h a t n=O, x=y, even i n t h e c a s e t h a t n

m i s t h e minimal element of M and no k w i t h k ' < m e x i s t . Note t h a t i f x > m- y t h e n (x=y) v 3 ~ E M ~ I C < m 'k+ 4. The p r o p e r t i e s CR(m). We w r i t e x

-

y

if

k c M e x i s t s w i t h k

<

m and m x > y o r y >k x . We w r i t e x - y i f mcM e x i s t s w i t h x

-

y. I n o t h e r k m

words, x - y means t h a t k c M e x i s t s such t h a t x >k y o r y > k x. L e t mcM. We s a y t h a t CR(m) h o l d s i f f o r e v e r y f i n i t e sequence x x

-

. . .

-

x t h e r e e x i s t s z such t h a t b o t h x >m+ z and x > z. 1 m 2 m m n 1 n m+ We s a y t h a t CR h o l d s i f f o r e v e r y f i n i t e sequence x l U x 2

...-

x n t h e r e e x i s t s z such t h a t b o t h x l >m+ z a n d x > Z f o r s o m e m . n m+ Obviously CR i s e q u i v a l e n t t o V CR(m)

.

meM

5. The b a s i c diamond p r o p e r t i e s . I f EM, t h e diamond p r o p e r t y D 1 (m) i s d e f i n e d by t h e f o l l o w i n g diagram.

D l (m) :

m+

9;-

m-

T h i s h a s t o b e r e a d a s f o l l o w s (and f u r t h e r diagrams have t o be i n t e r - p r e t e d a n a l o g o u s l y : I f x , y , z a r e such t h a t x >m y , x > z , t h e n u,v,w e x i s t

m such t h a t

( s o on t h e l e f t we have a c h a i n from y t o w w i t h a l l l i n k s 5 m; on t h e r i g h t we have a c h a i n from z t o w w i t h a l l l i n k s I m b u t w i t h a t most one = m).

Note t h a t Dl(m) i s a g e n e r a l i z a t i o n of WDP and n o t of WDP ( s e e s e c t i o n 3

-

2 1 ) . We g e t WDP a s a s p e c i a l c a s e of D (m) i f m i s t h e minimal element of M 3 1 and i f > i s j u s t w r i t t e n a s >

.

m

The second diamond p r o p e r t y t o b e c o n s i d e r e d depends on two e l e m e n t s m,k of M , w i t h k < m. I t s diagram i s

(6)

6. Some a u x i l i a r y diamond p r o p e r t i e s . We i n t e n d t o show t h a t Dl(m) and D,(m,k) ( f o r a l l m,k w i t h k < m ) l e a d t o CR. I n o r d e r t o a c h i e v e t h i s

L

we f o r m u l a t e a number of diamond p r o p e r t i e s t h a t w i l l p l a y a r 8 1 e i n t h e

The diagrams D and D w i l l p l a y t h e i r r 8 1 e o n l y i f k <

m,

and D o n l y i f

3 7 4

(7)

7. D e r i v a t i o n of CR from t h e b a s i c diamond p r o p e r t i e s . Throughout t h i s s e c t i o n we assume t h a t f o r a l l m E M we have D (m)

,

and f o r a l l k E M , m r M

1 w i t h k < m we have D (m,k).

2

F o r b r e v i t y we i n t r o d u c e C R * ( ~ ) by

Lemma 1 . L e t m , k ~ M , k < m. Then we have

P r o o f . I n t h e diagram f o r D j we s e e a b r a n c h k+. It c o n s i s t s of a number of s t e p s x

o

'11 x 2 '12

...

> 1

x

n w i t h a l l l . ' s 1 2 k . The c a s e n=O i s t r i v i a l . n

We p r o v e t h e g e n e r a l c a s e by i n d u c t i o n w i t h r e s p e c t t o n. The b r a n c h k+ c a n b e s p l i t i n a b r a n c h 1 ( w i t h 1

r

k ) and a b r a n c h k+ (of n-l s t e p s ) . The f o l l o w i n g diagram now produces t h e p r o o f :

I n s i d e t h i s d i a g r a m we have g i v e n r e f e r e n c e t o a p p l i e d p r o p e r t i e s .

( 1 ) V 1 e ~ l l

r

k ' h c ~ l h < k D4(m*k91,h)

( n o t e t h a t i f t h e r e i s no h < k we j u s t a p p l y D ( m , l ) ) , 2

(8)

Lemma

2.

Let m y k y l y h ~ M y

h'

< k

<

m y 1

I

k. Assume D

3

(m,t) for all t e M

with

t <

k,and Dj(syt) for all s y t

E M

with

t' <

s

<

m. Furthermore assume

CR*(~). Then we have D4(m,kylyh

) .

Proof. If 1

I

h the argument is

with

(3) as above,

(4)

D3(m,h)

For h

<

1 we proceed by induction with respect to h

by

means of the

following

(9)

Lemma 3 . L e t me M. Assume C R * ( ~ ) and assume t h a t f o r a l l h E M w i t h h < m we have D (m,k). Then D5(m).

3

P r o o f . I t s u f f i c e s t o p r o v e t h e diagram

-

f o r a l l h < m. (Note t h a t i f m i s t h e minimal element of M t h e n t h e b r a n c h e s denoted by m- a r e empty and t h e r e i s n o t h i n g t o b e p r o v e d ) .

The proof i s g i v e n by t h e f o l l o w i n g p i c t u r e .

Lemma 4. I f meM t h e n D (m) i m p l i e s D (m).

5 6

P r o o f . The upper l e f t b r a n c h m+ can b e s p l i t i n t o a number of p i e c e s of t h e form (m-,m,m-) ( l i k e t h e b r a n c h e s o c c u r r i n g i n t h e diagram D (m); i f 5 no > o c c u r i n t h a t b r a n c h we i n t r o d u c e one a r t i f i c i a l l y , u s i n g x > x). m m To t h e s e p i e c e s we a p p l y D

(m)

i n s u c c e s s i o n . 5

Lemma 5. L e t m,k e M,

k

< m. Assume C R * ( ~ ) , D5(m)

,

D6(m)

,

and D (m,h) f o r 3

a l l h w i t h h < m. Then we have D (m,k)

.

7

P r o o f . We a p p l y i n d u c t i o n w i t h r e s p e c t t o k , assuming D (m,h) f o r a l l h 7

(10)

Lemma 6. L e t m e M and assume D (m,k) f o r a l l k < m. Then we have CR(m). 7 P r o o f . S i n c e D (m,k) f o r a l l k <

m,

we have t h e diagram D (m) ( i f t h e r e 7 8 a r e no k

<

m we a p p l y D (m)). The b r a n c h m+ c a n b e s p l i t i n t o a number 1 of p i e c e s (m-,m,m-), s o we c a n i n t e r p r e t D8(m) a s p r o p e r t y WDP f o r t h e 3

r e l a t i o n > which i s d e f i n e d a s f o l l o w s : x > y i f u and v e x i s t such t h a t

X >

m- u > m v > m- y. By t h e p r o c e d u r e d e s c r i b e d i n s e c t i o n 1 we now g e t t o CR f o r ( S , > ) , and t h a t means e x a c t l y t h e same t h i n g a s CR(m).

Theorem. F o r a l l meM we have CR(m).

*

P r o o f . Assume t h e theorem f a l s e . Then we have an m such t h a t CR (m) i s t r u e , b u t CR(m) f a l s e . We cannot have D (m,h) f o r a l l h w i t h h < m, f o r

3

t h e n we would have D (m) by lemma 3 , D6(m) by lemma 4 , and t h e n lemmas

5

5 and 6 would l e a d t o CR(m). So t h e r e i s some k w i t h k < m and D3(m,k) f a l s e . L e t n be t h e s m a l l e s t element of M f o r which j

E M

e x i s t s w i t h j < n and D ( n , j ) f a l s e . Next l e t

i

b e t h e s m a l l e s t i n d e x < n w i t h D ( n , i ) f a l s e .

3 3

By lemma 1 we have ( n o t e t h a t n I m) 1 and h such t h a t 1

<

i,

h < i ,

D ( n , i , l , h ) f a l s e . Now lemma 2 l e a d s t o a c o n t r a d i c t i o n . 4

(11)

References.

[I] Barendregt, H.P.: The Type Free Lambda Calculus, ch. D7 in Hand-

book of Mathematical Logic, ed. J.Barwise, North- Holland Publ.Comp., Amsterdam-New York

-

Oxford

1977.

Nederpelt, R.P.: Strong normalization in a typed lambda calculus with lambda structured types, Ph.D.Thesis, Eindhoven University of Technology, 1973.

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of