• No results found

The preparation and properties of metallic optically transparent electrodes

N/A
N/A
Protected

Academic year: 2021

Share "The preparation and properties of metallic optically transparent electrodes"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The preparation and properties of metallic optically

transparent electrodes

Citation for published version (APA):

Janssen, L. J. J., & Kuhn, A. T. (1983). The preparation and properties of metallic optically transparent electrodes. Surface Technology, 20(1), 41-49. https://doi.org/10.1016/0376-4583(83)90075-4

DOI:

10.1016/0376-4583(83)90075-4 Document status and date: Published: 01/01/1983

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Surface Technology, 20 (1983) 41 - 49 41

T H E P R E P A R A T I O N A N D P R O P E R T I E S O F M E T A L L I C O P T I C A L L Y T R A N S P A R E N T E L E C T R O D E S

L. J. J. JANSSEN

Department o f Chemical Technology, Laboratory o f Electrochemistry, Eindhoven Uni- versity o f Technology, P.O. B o x 513, 5600 MB Eindhoven (The Netherlands)

A. T. KUHN

Department o f Biomaterials Science, Institute o f Dental Surgery, Eastman Dental Hospital, 256 Gray's Inn Road, London W C I X 8LD (Gt. Brilain)

(Received May 25, 1983)

S u m m a r y

T h e uses o f o p t i c a l l y t r a n s p a r e n t e l e c t r o d e s ( O T E s ) are b r i e f l y dis- cussed t o g e t h e r with t h e d i f f e r e n t t y p e s o f O T E . T h e review is f o c u s e d on metallic O T E s and a s u r v e y o f the various t y p e s , t h e i r m e a n s o f p r e p a r a t i o n a n d t h e i r o p t i c a l a n d electrical p r o p e r t i e s is included.

1. I n t r o d u c t i o n

All t o o o f t e n , e l e c t r o c h e m i s t s or c o r r o s i o n scientists find t h e m s e l v e s , like t h e blind, c u r i o u s t o " s e e " a c t u a l l y w h a t is t a k i n g place at t h e i n t e r f a c e w h i c h is usually t h e f o c u s o f interest. A l t h o u g h " s e e i n g " m i g h t m e a n ac- t u a l l y viewing an e l e c t r o d e or an e l e c t r o d e p r o c e s s with t h e n a k e d e y e or w i t h a m i c r o s c o p e , it will m o r e p r o b a b l y involve t h e m o r e s o p h i s t i c a t e d m e t h o d s o f s p e c t r o s c o p y t o d e t e c t t h e p r e s e n c e o f a given species or to m o n i t o r its c o n c e n t r a t i o n with t i m e . It is n o w a c c e p t e d t h a t a v e r y l i m i t e d n u m b e r o f c o n c e p t u a l a p p r o a c h e s exist. T h e y i n c l u d e (a) specular reflec- t a n c e , (b) t r a n s m i s s i o n and (c) a t t e n u a t e d t o t a l r e f l e c t a n c e ( A T R ) . T h e c o n f i g u r a t i o n s f o r t h e s e are s h o w n in Fig. 1. S p e c u l a r r e f l e c t a n c e will n o t be c o n s i d e r e d f u r t h e r b e y o n d the o b v i o u s c o m m e n t t h a t , a l t h o u g h it m a k e s n o d e m a n d s on t h e p r o p e r t i e s o f the e l e c t r o d e itself, t h e i n c i d e n t and t h e r e f l e c t e d b e a m s o f light m u s t pass t h r o u g h a s o l u t i o n w h i c h will c e r t a i n l y a t t e n u a t e t h e m t o a g r e a t e r or t o a lesser e x t e n t . Nevertheless, various w o r k e r s [1] have m a d e r e m a r k a b l e strides in bringing this m e t h o d (over a wide w a v e l e n g t h b a n d ) t o t h e p o i n t w h e r e it is r o u t i n e l y used. In t h e o t h e r t w o a p p r o a c h e s , h o w e v e r , t h e m e t h o d is based o n t h e t r a n s m i s s i o n o f inci- d e n t a n d r e f l e c t e d light t h r o u g h an o p t i c a l l y t r a n s p a r e n t e l e c t r o d e ( O T E ) . T o achieve this, a m a t e r i a l or c o m b i n a t i o n o f materials is r e q u i r e d , a n d it is t h e a c h i e v e m e n t o f such a c o m b i n a t i o n t h a t will be c o n s i d e r e d h e r e .

(3)

42 ( a ) C

iO aO

I-Z (b) (c)

Fig. 1. Three alternative configurations for speetroelectrochemistry: (a) specular reflec- tanee through solution (C, working electrode; a, counterelectrodes); (b) transmission (plan view) (C, platinum OTE; a, eounterelectrodes; b, reference electrode); (c) ATR using a germanium hemicylinder g with a platinum film OTE C (a, countereleetrode).

T w o p r e l i m i n a r y c o m m e n t s are r e q u i r e d . Firstly, even if a single material was f o u n d to possess t h e criteria o f high t r a n s m i s s i o n o f light and g o o d electrical p r o p e r t i e s (subjects w h i c h will be c o n s i d e r e d b e l o w ) it m i g h t be o f l i m i t e d i n t e r e s t in t h a t t h e m a j o r i t y o f e l e c t r o c h e m i c a l r e a c t i o n s r e l a t e t o a small n u m b e r o f e l e c t r o d e materials, n o t a b l y lead, m e r c u r y and plati- n u m , a n d (unless t h e m a t e r i a l in q u e s t i o n h a d r e m a r k a b l e e l e c t r o e a t a l y t i c p r o p e r t i e s ) m o s t i n t e r e s t , r i g h t l y or w r o n g l y , is in t h e s e materials. T h e s e c o n d c o m m e n t is t h a t , a l t h o u g h t h e t r a n s m i s s i o n c o n f i g u r a t i o n (Fig. l ( b ) ) is h i s t o r i c a l l y p r o b a b l y t h e o l d e s t and m o s t well established, it suffers t h e disadvantages o f b o t h t h e r e f l e c t a n c e m e t h o d

(i.e.

light passing t h r o u g h t h e s o l u t i o n ) and t h e O T E s y s t e m s (in w h i c h t h e e l e c t r o d e s are d i f f i c u l t t o p r e p a r e a n d n o t as r o b u s t as massive materials). O n l y t h e s i m p l i c i t y o f use, in t h a t h o p e f u l l y such cells can be i n s e r t e d i n t o c o m m e r c i a l U V - v i s i b l e s p e c t r o m e t e r s with m i n i m a l a d a p t a t i o n , can be set against t h e s e disadvan- tages. Given all t h e a b o v e f a c t o r s , an e n t i r e l y h e a l t h y " c o m p e t i t i o n " is e x p e c t e d b e t w e e n t h e users o f t h e various a p p r o a c h e s and, in this c o m p e t i - t i o n , d e v e l o p m e n t s in e l e c t r o n i c s

(e.g.

phase-sensitive d e t e c t i o n ) have over- w h e l m i n g l y f a v o u r e d t h e r e f l e c t a n c e a p p r o a c h . In a d d i t i o n , n o v e l materials ( p e r h a p s as " s p i n - o f f s " f r o m a i r c r a f t a p p l i c a t i o n s , solar e n e r g y d e v e l o p m e n t s o r e l e c t r o c h r o m i c displays) m i g h t be e x p e c t e d t o m a k e an i m p a c t on O T E d e v e l o p m e n t s , and o p t i c a l fibre t e c h n o l o g y c o u l d be e q u a l l y i m p o r t a n t . T o

(4)

43

some e x t e n t , the choice o f approach is governed by the i n f o r m a t i o n desired in the e x p e r i m e n t . ATR is, by its nature, useful only to m o n i t o r the layer o f solution very close to the electrode surface. True transmission will e m b r a c e changes w h e t h e r at the surface or in bulk solution, as will specular reflec- tance. However, the use o f twin-beam s p e c t r o s c o p y t o offset background or solution absorbance is one means by which surface p h e n o m e n a can be em- phasized,

e.g.

as shown by Goelz and Heineman [2] who e x a m i n e d specific adsorption o f anions. Modulation of electrode potential, an approach highly developed by Bewick and coworkers, gives even m o r e accurate results.

2. Applications

Although OTEs have been used to view processes such as bubble evolution, their main i m p o r t a n c e must lie in spectroscopic analysis o f reaction p r o d u c t s or intermediates in solution or adsorbed species on the electrode surface. In either case, steady state or non-steady-state conditions m a y be o f interest. A review o f the literature shows t h a t n o t all workers have been aware o f the c o r r e c t use o f OTEs

(e.g.

their useful potential range) and in the present review their preparation, cells for their use and related m e t h o d o l o g y are considered.

3. T y p e s o f optically transparent electrode

Existing OTEs can be divided into three categories as follows.

(a) Thin c o n d u c t i n g films can be s u p p o r t e d on glass, quartz or special IR-transparent materials. Such films can be c o n d u c t i n g oxides {such as SnO2) or metals (platinum or gold). T h e y may be " d u p l e x " films where one metal film is deposited o n t o a n o t h e r metal film or o n t o an oxide layer.

(b) "Massive" OTEs are made of d o p e d silicon, germanium or o t h e r materials.

(c) "Minigrid" electrodes are those where a material such as gold is fabri- cated as a fine grid, exposing a high surface area to the t r a n s m i t t e d light.

We shall focus on the first o f these categories in the present review, and the criteria o f i m p o r t a n c e will be (a) the optical properties (transmission as a f u n c t i o n o f wavelength), (b) the electrical resistance of the film (in ohms per square) and (c) the chemical and electrochemical properties including the potential range over which the OTE can be e m p l o y e d and the electro- catalytic behaviour.

4. General characteristics o f thin film optically transparent electrodes

A most valuable review by Haacke [3] entitled " T r a n s p a r e n t con- ducting coatings" is mainly directed towards applications such as solar

(5)

4 4

e n e r g y , liquid c r y s t a l d i s p l a y s a n d o t h e r t e c h n o l o g i e s using similar m a t e r i a l s . H a a c k e b e g a n w i t h a c o n s i d e r a t i o n o f t h e " f i g u r e o f m e r i t " a p p r o a c h t o t h e c l a s s i f i c a t i o n o f O T E s : T10 ~ T C = - - - Rs w h e r e q~TC is t h e figure o f m e r i t , T is t h e o p t i c a l t r a n s m i s s i o n a n d R s is t h e s h e e t r e s i s t a n c e o f t h e m a t e r i a l ( c o a t i n g ) . As he s h o w e d , t h e figure o f m e r i t c a n also b e e x p r e s s e d b y t h e e q u a t i o n ( ~ T C = o t exp(--10c~t) w h e r e o (~2 1 c m 1) is t h e electrical c o n d u c t i v i t y a n d c~ ( c m 1) is t h e o p t i c a l a b s o r p t i o n c o e f f i c i e n t . H a a c k e p r e s e n t e d a p l o t o f figure o f m e r i t v e r s u s film t h i c k n e s s f o r t h i n films o f c o p p e r , gold a n d C d z S n O 4 a n d f o r a " h y p o t h e t i c a l s e m i c o n d u c t o r " . T h e p e r f o r m a n c e o f t h e C d z S n O 4 is seen to a p p r o a c h t h a t o f a h y p o t h e t i c a l s e m i c o n d u c t o r . With s u c h an a p p r o a c h , t h e individual m a t e r i a l s c o n s i d e r e d as O T E s c a n be discussed. T h e s e m a t e r i a l s c a n be d i v i d e d i n t o m e t a l l i c ( a n d q u a s i - m e t a l l i c ) films o n t h e o n e h a n d a n d s e m i c o n d u c t o r s o n t h e o t h e r h a n d . 5. Metallic f i h n o p t i c a l l y t r a n s p a r e n t e l e c t r o d e s As H a a c k e p o i n t e d o u t , t h e m a n n e r in w h i c h t h i n films o f m e t a l are f o r m e d r e s u l t s in m u c h h i g h e r s h e e t r e s i s t a n c e values f o r such films t h a n m i g h t be e x p e c t e d f r o m d a t a o n b u l k c o n d u c t i v i t y . A n u m b e r o f t r i c k s e x i s t t o m i n i m i z e t h e island f o r m a t i o n o f c l u s t e r s o f m e t a l a t o m s w i t h i n t e r v e n i n g gaps; H a a c k e d e s c r i b e d a f e w o f t h e s e t r i c k s b r i e f l y , a l t h o u g h h e e m p h a s i z e d t h a t t h e p r o d u c t i o n o f such m e t a l l i c film O T E s is m a i n l y a m a t t e r o f undis- c l o s e d " k n o w - h o w " . It is g e n e r a l l y a c c e p t e d t h a t , f o r t h e v e r y small t h i c k - nesses in q u e s t i o n , t h e s e m e t a l films do n o t o b e y t h e B e e r - L a m b e r t law. H a e m a n [4] has s h o w n t h a t t h e l o g a r i t h m o f t r a n s m i s s i o n T (%) d e c r e a s e s l i n e a r l y w i t h t h e t h i c k n e s s ( f o r t h i c k n e s s e s g r e a t e r t h a n 0.1 - 0.2 p m ) w i t h a p r o p o r t i o n a l i t y f a c t o r w h i c h d e p e n d s on t h e m e t a l used. S o m e values o f t r a n s m i s s i o n t a k e n f r o m t h e l i t e r a t u r e f o r p l a t i n u m , gold, nickel a n d lead films 0.6 p m t h i c k are 0 . 0 8 % (at 550 n m ) , 5% (at 550 n m ) , 0 . 0 3 % (at 503 n m ) a n d 0.5% (at 503 n m ) r e s p e c t i v e l y . A m o n g t h e m a t e r i a l s w h i c h h a v e b e e n i n v e s t i g a t e d b y e l e c t r o c h e m i s t s are gold, p l a t i n u m a n d c a r b o n a n d v a r i o u s alloys. T h e p r o b l e m is to d e p o s i t a t h i n a n d c o h e r e n t film o f a m e t a l w i t h s u f f i c i e n t c o r r o s i o n r e s i s t a n c e t o allow its use o v e r a r e a s o n a b l y w i d e r a n g e o f p o t e n t i a l s . T h e t r a d e - o f f b e t w e e n t h i c k e r films ( i m p r o v e d electrical c o n d u c t a n c e ) a n d t h i n n e r films ( i m p r o v e d o p t i c a l t r a n s m i s s i o n ) is n o w evi- d e n t . A f u r t h e r d a n g e r is t h a t , a l t h o u g h t h e film r e m a i n s u n a t t a c k e d , it m a y be lifted a w a y f r o m t h e s u b s t r a t e b y h y d r o g e n gas e v o l u t i o n or b y similar p h e n o m e n a .

(6)

45

The means by which metal film OTEs have been prepared have passed t h r o u g h several phases. Initially, a metal such as platinum was painted o n t o a substrate using a preparation in which the metal was dissolved in organic oils. A f t e r the metal had been painted on, it was fired. Workers such as Ports

e t al. [5] gave directions as t o the best means o f application o f the paint, the n u m b e r of.coats etc. Later [6] the t e c h n i q u e o f " s p i n n i n g " was e m p l o y e d to ensure the m o s t even application o f the paint. However, most recently, the p r e f e r r e d m e t h o d o f application has been some f o r m o f vacuum evaporation. Simultaneous with these ideas has been the recognition that annealing after application improves the electrical characteristics o f the film and also that, rather than deposition o f the metal directly o n t o glass or quartz, an im- proved result is obtained when the metal is deposited o n t o an oxide [7]. More r e c e n t l y [8], the use o f tin oxide has been advocated so t h a t n o t only do the general benefits o f oxides result but also the additional c o n d u c t i v i t y o f the oxide layer can be usefully e m p l o y e d .

Thus Ports e t al. [5] have described h o w a platinum OTE may be form- ed by brushing Liquid Platinum 1 (Engelhard Industries Ltd.) o n t o glass with a fine brush and by firing the film so f o r m e d at 650 - 680 °C, just below the fusion t e m p e r a t u r e o f the glass (borosilicate in their case) o n t o which it was applied. Either a single coat or successive applications and firings m a y be e m p l o y e d . Pons e t al. r e p o r t e d a n u m b e r o f tricks such as the i m p o r t a n c e o f the direction o f the brush stroke. The platinum paint m a y be t h i n n e d with a t h i n n e r such as d i c h l o r o m e t h a n e before application. Inspection u n d e r the m i c r o s c o p e shows t h a t these films are n o t quite u n i f o r m and t h a t t h e y contain holes. Annealing is thus beneficial as might be e x p e c t e d and results in an optical density o f a b o u t 0.4%, with a sheet resistance value o f 25 ~2/D. Even f u r t h e r details are contained in the paper by Van Benken and Kuwana [9] who m e n t i o n e d t h a t such OTEs are stable to anodization, boiling in HNO 3 or immersion in HC1 solution. However, even a brief period o f hydro- gen evolution will suffice to lift o f f the film. Mercuric ions (although n o t m e r c u r y metal) are also damaging. Gold films have a lower electrical resis- tance than platinum films for the same optical density and a plot showing typical optical densities is given in Fig. 2. Pons e t al. [5] also suggested t h a t palladium films, especially when deposited o n t o KRS5 may have special use with a wider IR window (5 - 16 p m ) than those obtainable on germanium

1.0 b 0-5 0 I I I I I I 3 0 0 5 0 0 7 0 0 Wavelength (nm)

Fig. 2. Absorbance vs. wavelength: curve a, p l a t i n u m on quartz (electrical resistance, ~ / ~ ) ; curve b, gold on Bi203 on quartz (electrical resistance, 2.5 ~ / D ) . (After ref. 10.)

(7)

46 ( 2 - 1 0 p m ) . T h e s a m e w o r k e r s s u g g e s t e d t h a t p a l l a d i u m m i g h t h a v e I R t r a n s p a r e n c y o v e r a w i d e r r a n g e (5 - 16 p m ) o n H R S 5 t h a n it has o n ger- m a n i u m (2 - 10 p m ) . V a n B e n k e n a n d K u w a n a [9] d e s c r i b e d t h e d e p o s i t i o n o f p l a t i n u m films d i r e c t l y o n t o b o r o s i l i c a t e or o t h e r glasses or q u a r t z b y e v a p o r a t i o n in a v a c u u m o f (1 - 7) X 10 3 T o r r . T h e glass was first c l e a n e d b y using a g l o w d i s c h a r g e . F o r gold t h e film was a p p l i e d o v e r a Bi203 or P b O 2 c o a t i n g . All films w e r e a n n e a l e d a f t e r use. T h e p l a t i n u m s u r f a c e s w e r e b r i g h t , u n i f o r m a n d silvery. T h e y were m e c h a n i c a l l y s t a b l e , e x c e p t w h e n o x i d i z e d a f t e r h y d r o g e n e v o l u t i o n f o r a f e w s e c o n d s o r d u r i n g t h e d e p o s i t i o n o f m e r c u r y . N o r m a l w a s h i n g a n d cleaning, b o i l i n g in c o n c e n t r a t e d H N O 3 or p r o l o n g e d i m m e r s i o n in HCI s o l u t i o n d i d n o t d i s t u r b t h e film, n o r did c o n t a c t w i t h m e t a l l i c m e r c u r y .

On t h e basis o f e q u a l r e s i s t a n c e , gold films w e r e m o r e t r a n s p a r e n t t h a n p l a t i n u m films. T h e u n d e r c o a t i n g u s e d w i t h gold films i m p r o v e d t h e i r m e c h a n i c a l a n d electric'a] c h a r a c t e r i s t i c s and, in this, t h e p r e s e n t a u t h o r s c a n be said t o h a v e a n t i c i p a t e d t h e P t - S n O 2 O T E o f L a i t i n e n [ 8 ] .

T h e c h a r a c t e r i s t i c s o f t h e s e films are seen in Figs. 2 a n d 3. T h e r e a p p e a r to be f e w e q u a l l y d e t a i l e d a c c o u n t s o f p r e p a r a t i o n a n d p r o p e r t i e s o f such e l e c t r o d e s . Nasielski e t al. [ 1 1 ] m e n t i o n e d gold e l e c t r o d e s p r e p a r e d b y " s u b l i m i n g gold o n t o glass". T h e a v e r a g e t h i c k n e s s was 50 n m a n d t h e t r a n s m i t t a n c e a t 5 5 0 n m was 25% -+ 5%. O n c e t h e p l a t i n u m a n d t h e gold O T E s h a d b e e n d e v e l o p e d , o t h e r t y p e s o f O T E f o l l o w e d . T h e H g - P t O T E is f o r m e d b y t a k i n g a p l a t i n u m O T E ( f o r m e d b y v a p o u r d e p o s i t i o n ) a n d e l e c t r o c h e m i c a l l y d e p o s i t i n g m e t a l l i c m e r c u r y o n t o it f r o m a d i l u t e a q u e o u s s o l u t i o n . A r e l a t i v e l y t h i n l a y e r o f m e r c u r y ( 5 - 50 n m ) i m p a r t s t o t h e p l a t i n u m a " m e r c u r y - l i k e c h a r a c t e r " ,

i,e. t h e high h y d r o g e n e v o l u t i o n o v e r v o l t a g e w h i c h allows c a t h o d i c p r o - cesses t o be s t u d i e d at this e l e c t r o d e is u n h i n d e r e d b y h y d r o g e n f o r m a t i o n . H e i n e m a n a n d K u w a n a [ 1 2 ] d e s c r i b e d t h e p r e p a r a t i o n o f p l a t i n u m O T E s ( r e s i s t a n c e , a b o u t 10 gZ c m - 2 ) , w h i c h w e r e w a s h e d a n d dried a n d t h e n c l e a n e d in a p l a s m a d i s c h a r g e f o r 5 m i n . A f t e r this t h e p l a t i n u m O T E s w e r e i n s e r t e d i n t o a cell w h i c h was filled w i t h a 0.5 m M s o l u t i o n o f Hg2(NO3) 2 in an a c e t a t e b u f f e r o f p H 4. This was d e o x y g e n a t e d f o r 30 m i n a n d t h e O T E was s w i t c h e d f r o m o p e n c i r c u i t t o a p o t e n t i a l o f 0 . 0 0 V m e a s u r e d w i t h r e s p e c t t o a s a t u r a t e d c a l o m e l e l e c t r o d e . T h e o p t i c a l r e s p o n s e was 1 I 0 1 2 3 4 ['ime (h) (a) (b) ~ 2 o 1 0 I ~ l 0 1 2 3 4 'l'i m ~ ( h )

Fig. 3. The effect of annealing on platinum films: (a) optical absorbance vs. time; (b) electrical resistance vs. time. (After ref. 10.)

(8)

47

m o n i t o r e d at 609 nm and the c u r r e n t passing at the same time was inte- grated to allow an estimation of the charge o f the m e r c u r y deposition and hence its thickness. A c o r r e c t i o n for the background c u r r e n t was made in this case. 10 mC o f m e r c u r y per square c e n t i m e t r e (corresponding to a layer a b o u t 15 nm thick) yielded a mercury-like OTE. Heineman and Kuwana [13] also described a cell design which allows admission o f a d e o x y g e n a t e d solution directly into the cell, and a f u r t h e r m o d i f i c a t i o n is shown [14] in which the electrode area is r e d u c e d t o 3 mm 2 and the hold-up volume o f e l e c t r o l y t e is r e d u c e d to a b o u t 1 ml. Heineman and Goelz [15] have de- scribed the application of an H g - P t OTE in the transmission m o d e to moni- t o r the specific absorption of anions. A more detailed a c c o u n t of the same work was s u b s e q u e n t l y r e p o r t e d [2]. Goelz and Heineman [16] have re- p o r t e d a s t u d y in which these electrodes were characterized in terms o f their electrochemical behaviour on v o l t a m m e t r i c stripping and their appearance u n d e r the optical microscope. F o r a useful stable electrode, Goelz and H e i n e m a n advocated a m e r c u r y layer 5 nm thick. Transmission values o f 85% are shown. Optical m i c r o s c o p y taken in c o n j u n c t i o n with the vol- t a m m e t r i c data shows h o w excess m e r c u r y deposition leads to globules o f the metal on the surface. These globules can be r e m o v e d by anodic oxidation, leaving behind the P t - H g intermetallic phase which is the desired structure. Discussing the longevity o f these OTEs, Goelz and Heineman suggested t h a t t o o m u c h m e r c u r y leads to amalgamation o f the platinum all the way down to the glass substrate, resulting in peeling. If just sufficient m e r c u r y is deposited to f o r m the amalgam, but w i t h o u t the f o r m a t i o n o f droplets, a lifetime o f 8 h or more can result. In addition to their use in the transmission approach, the use o f P t - H g OTEs in internal reflection s p e c t r o s c o p y has also been described [17] using a commercially available cell unit. Data are shown for m e t h y l e n e blue, using a single reflection and time-averaging methods.

The greater o p a c i t y o f metals to light o f longer wavelength led to prob- lems with IR-transparent OTEs. Mattson and Smith [18] described a t t e m p t s by earlier workers t o o v e r c o m e such problems. Metal films o f less than a p p r o x i m a t e l y 3 nm thickness are IR transparent. However, t h e y do n o t have sufficient electrical conductivity. For this reason, Mattson and Smith devised the carbon film OTE using a germanium internal reflection element. The carbon was coated by a commercial organization and, when deposited, had a resistance o f 2000 - 5000 ~ / D for a film a b o u t 30 nm thick, corre- sponding to a value greater than t h a t of bulk graphite by a f a c t o r o f 10. In their paper [18] a comparison is made between background scans f o r plati- num, carbon and germanium prism OTEs and data for p r o t e i n a c e o u s films and o t h e r organic species are shown. The carbon films afford t r a n s p a r e n c y over the entire range o f use with the substrate (germanium). Large ger- m a n i u m prisms with 13 reflections at the G e - C interface gave transmissions from 4% to 8%. Germanium microprisms with t h r e e reflections gave 15% transmission. U n c o a t e d prisms gave 25% - 30% transmission.

A nickel OTE has been used by Janssen and coworkers [19, 20]. These are also commercially prepared by the deposition o f nickel (0.35 × 10 -4 ram)

(9)

48

o n t o an SnO2 (7 × 10 4 m m ) l a y e r on a glass s u b s t r a t e . T h e t r a n s m i s s i o n was a b o u t 12% a n d t y p i c a l electrical r e s i s t a n c e s w e r e 10 - 20 Yt/[:]. E l e c t r o l y t i c b u b b l e f o r m a t i o n ( b o t h h y d r o g e n a n d o x y g e n ) o n t h e s e e l e c t r o d e s was v i e w e d t h r o u g h a m i c r o s c o p e . K O H s o l u t i o n s o f u p t o 7 M w e r e u s e d at t e m p e r a t u r e s f r o m a m b i e n t t o 80 °C. G e n e r a l l y , t h e s e e l e c t r o d e s lasted f o r at least 1 d a y a n d b e c a u s e o f its c h e m i c a l s t a b i l i t y an N i - S n O 2 e l e c t r o d e was m o s t u s e f u l f o r o x y g e n e v o l u t i o n [ 2 1 ] .

T h e A u - C r O T E has also b e e n used b y o n e o f us ( L . J . J . J . ) to s t u d y h y d r o g e n b u b b l e f o r m a t i o n in K O H . This e l e c t r o d e was b a s e d on an u n d e r - l a y e r o f c h r o m i u m 10 n m t h i c k w i t h 40 n m o f gold a b o v e . T h e t r a n s p a r e n c y was 9% a n d t h e e l e c t r i c a l r e s i s t a n c e was 2.7 YZ/[N. H o w e v e r , o x y g e n evolu- t i o n led to lifting o f t h e gold film f r o m t h e surfaces.

De Angelis e t al. [ 1 4 ] d e s c r i b e d a c a r b o n O T E d e p o s i t e d o n t o glass or q u a r t z a n d a m e r c u r y - c o a t e d v e r s i o n o f a similar e l e c t r o d e . As in t h e p r e v i o u s w o r k o f M a t t s o n a n d S m i t h [ 1 8 ] t h e e l e c t r o d e s w e r e p r e p a r e d b y a c o m m e r - cial o r g a n i z a t i o n w h i c h u s e d e l e c t r o n b e a m e v a p o r a t i o n o f c a r b o n . F i l m r e s i s t a n c e s o f 1 0 0 0 - 1 7 0 0 ~ / [ ] w e r e o b t a i n e d , a n d t h e H g - C O T E b e h a v e d e l e c t r o c h e m i c a l l y in a s i m i l a r w a y to m e r c u r y itself. F i n a l l y , t h e use o f O T E s in n o n - a q u e o u s m e d i a s h o u l d be m e n t i o n e d , t h e p a p e r b y Osa a n d K u w a n a [ 2 2 ] b e i n g an e x c e l l e n t o v e r v i e w o f this a r e a o f t h e s u b j e c t . O t h e r i n f o r m a t i o n p e r t a i n i n g t o n o n - a q u e o u s s o l v e n t s a n d O T E s c a n be f o u n d in ref. 10. In this s h o r t p a p e r t h e " h a r d w a r e " a s p e c t s o f m e t a l l i c O T E s h a v e b e e n r e v i e w e d ( s e m i c o n d u c t i n g t y p e s i n c l u d i n g t h e i m p o r t a n t S n O 2 t y p e s h a v e n o t b e e n c o v e r e d here). In a d d i t i o n , t h e electrical a n d e l e c t r o c h e m i c a l p r o p - erties o f O T E s , w h i c h basically r e s e m b l e t h o s e o f t h e p a r e n t m e t a l s , w i t h t h e c a v e a t t h a t h y d r o g e n e v o l u t i o n ( a n d p r e s u m a b l y also o x y g e n e v o l u t i o n ) m a r k s t h e d a n g e r z o n e s in w h i c h t h e y c a n n o t be used, h a v e also b e e n dis- cussed. F o r a d e s c r i p t i o n o f cells i n c o r p o r a t i n g t h e s e O T E s a n d t h e m e t h o d - o l o g y u n d e r l y i n g t h e i r use, e s p e c i a l l y f o r t h e d e r i v a t i o n of t r a n s i e n t d a t a , o n e o f t h e fullest, b e s t a n d m o s t d e t a i l e d a c c o u n t s is given in ref. 10, to w h i c h t h e r e a d e r is r e f e r r e d a n d f r o m w h i c h s o m e i n f o r m a t i o n has b e e n o b t a i n e d f o r this s h o r t review.

Acknowledgment

T h e a u t h o r s are g r a t e f u l to Dr. Alan B e w i c k f o r his v a l u a b l e c o m m e n t s on this p a p e r .

References

1 A. Bewiek, J. Electroanal. Chem. Interracial E l e c t r o c h e m . , 60 (1975) 163; 119 (1981) 175.

A. Bewick, E l e c l r o c h i m . Acta, 25 (1980) 931.

J. D. E. McIntyre, A d v . E l e c l r o c h e m . E l e c t r o c h e m . Eng., 9 (1973) 61. E. Yeager, Surf. Sci., 4 6 (1974) 1.

(10)

49 2 J. F. Goelz and W. R. Heineman, J. Electroanal. Chem., 103 (1979) 155.

3 G. Haacke, A n n u . Rev. Maler. Sci., 7 (1977) 73. 4 D. Haeman, Balzers H o c h v a k u u m Fachber., 4 (1965) 8.

5 B. S. Pons, J. S. Mattson, L. O. Winston and H. B. Mark, Anal. Chem., 39 (1967) 685. 6 A. Prostak, H. B. Mark and W. N. Hansen, J. Phys. Chem., 72 (1968) 2576.

7 L. Holland, V a c u u m Deposition o f Thin Films, Chapman and Hall, London, 1958. 8 H. A. Laitinen, U.S. P a t e n t 4,273,624, June 1981.

9 W. Van Benken and T. Kuwana, Anal. Chem., 42 (1970) 1114. 10 T. Kuwana and N. Winograd, Electroanal. Chem., 7 (1974) 1.

11 J. Nasielski, A. Kitsch-de Mesmaeken and L. Lempoel, Electrochim. Acta, 23 (1978) 605.

12 W. R. Heineman and T. Kuwana, Anal. Chem,, 43 (1971) 1075. 13 W. R. Heineman and T. Kuwana, Anal. Chem., 44 {1972} 1972.

14 T. P. De Angelis, R. W. Hurst, A. M. Yacynych, H. B. Mark, W. R. Heineman and J. S. Mattson, Anal. Chem., 49 (1977) 1395,

15 W. R. Heineman and J. F. Goelz, J. Electroanal. Chem., 89 (1978) 437. 16 J. F. Goelz and W. R. Heineman, J. Electroanal Chem., 103 (1979) 147.

17 J. F. Goelz, A. M. Yacynych and H. B. Mark, J. Electroanal. Chem., 103 (1979) 277. 18 J. A. Mattson and C. A. Smith, Anal. Chem., 47 (1975) 1122.

19 L. J. J. Janssen and S. J. D. Van Stralen, Electrochim. Acta, 26 (1981) 1011.

20 R. M. De Jonge, E. Barendrecht, L. J. J. Janssen and S. J. D. Van Stralen, Proc. 3rd

World Hydrogen Energy Conf., T o k y o , June 23 - 26, 1980, Pergamon, Oxford, 1980.

21 C. W. M. P. Sillen, Thesis, Eindhoven University of Technology, Eindhoven, 1983. 22 T. Osa and T. Kuwana, J. Electroanal. Chem., 22 (1969) 389.

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of