• No results found

Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter

N/A
N/A
Protected

Academic year: 2021

Share "Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Particuology

j o u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / p a r t i c

Effect

of

viscosity

on

the

avalanche

dynamics

and

flow

transition

of

wet

granular

matter

Jens

H.

Kasper

a,∗

,

Vanessa

Magnanimo

b

,

Sjoerd

D.M.

de

Jong

a

,

Arjan

Beek

a

,

Ahmed

Jarray

a,∗

aMulti-ScaleMechanics(MSM),ThermalandFluidEngineering,FacultyofEngineeringTechnology,UniversityofTwente,P.O.Box217,7500AEEnschede,

TheNetherlands

bConstructionManagementandEngineering(CME),FacultyofEngineeringTechnology,UniversityofTwente,P.O.Box217,7500AEEnschede,The

Netherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30July2020

Receivedinrevisedform22October2020

Accepted8December2020 Availableonlinexxx Keywords: Granularavalanche Transition Cohesion Viscosity Rotarydrum DEM

a

b

s

t

r

a

c

t

Thedynamicbehaviourofgranularflowsisimportantingeo-mechanicsandindustrialapplications,yet poorlyunderstood.Westudiedtheeffectsofliquidviscosityandparticlesizeonthedynamicsofwet granularmaterialflowinginaslowlyrotatingdrum,inordertodetectthetransitionfromthe avalanch-ingtothecontinuousflowregime.Adiscreteelementmethod(DEM)model,inwhichcontactforces andcohesiveforceswereconsidered,wasemployedtosimulatethisflowbehaviour.Themodelwas validatedexperimentally,usingglassbeadsinawoodendrumandwater–glycerolmixturestotunethe liquidviscosity.TheDEMsimulationsshowedcomparableresultstotheexperimentsintermsofaverage slopeangleandavalancheamplitude.Weobservedthattheavalancheamplitude,flowlayervelocity andgranulartemperaturedecreaseastheliquidviscosityincreases.Thiseffectismorepronouncedfor smallersizedparticles.Theincreaseinviscousforcescausestheflowingparticlestobehaveasabulk, pushingthefreesurfacetowardsaconvexshape.Inaddition,avalanchesbecomelesspronouncedand thegranularflowtransitionsfromtheavalanchingregimetothecontinuousregime.Theavalanching flowregimeismarkedbyintermittentrigidbodymovementoftheparticulatebedandnear-zerodrops inthegranulartemperature,whilenorigidbodymovementofthebedoccursinthecontinuousflow regime.Weidentifiedtheavalanching-continuousflowtransitionregionasafunctionofadimensionless granularGalileonumber.

©2020ChineseSocietyofParticuologyandInstituteofProcessEngineering,ChineseAcademyof Sciences.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http:// creativecommons.org/licenses/by/4.0/).

Introduction

Granularflowshavebeenextensivelystudiedbyresearchers overthepastyears(Duran,2012;Jarray,Magnanimo,Ramaioli,& Luding,2017;Taghizadeh,Hashemabadi,Yazdani,&Akbari,2018;

Xu,Xu,Zhou,Du,&Hu,2010).Understandingthedynamicsof

flow-inggranularmatterisimportantinbothindustrialapplicationsand themanagementofgeo-physicalphenomena,suchaslandslides andavalanches(Pudasaini&Hutter,2007;Wu,2015).Agranular avalancheoccurswhentheslopeofapileofgrainsexceedsits max-imumangleofstabilitym,whereafterthesurfaceangledecreases

untiltheangleofreposerisreached.Rotarydrumsfilledwith

∗ Correspondingauthors.

E-mailaddresses:j.h.kasper@student.utwente.nl(J.H.Kasper),

a.jarray@utwente.nl(A.Jarray).

particlesarepracticalgeometrieswhichhavebeenadopted exten-sivelytomimiccontinuousgranularavalanches(CourrechDuPont,

Fischer,Gondret, Perrin,&Rabaud,2005;Fischer,Gondret,

Per-rin,&Rabaud,2008;González,Windows-Yule,Luding,Parker,&

Thornton,2015;Jarrayetal.,2017;Jarray,Shi,Scheper,Habibi,&

Luding,2019;Liu,Yang,&Yu,2013;Li,Yang,Zheng,&Sun,2018;

Taghizadehetal.,2018;Vo,Nezamabadi,Mutabaruka,Delenne,&

Radjai,2020;Weinhart,Tunuguntla,Jarray,&Roy,2017;Xuetal.,

2010).Ata low rotational speed,avalanches occurperiodically, whileathighrotationalspeedsacontinuousflowisobserved.

Avalanchedynamicsareoftencharacterizedbytheevolution oftheslopeangleandparticlevelocity.Theavalancheamplitude =m−risfoundtobeawell-definedquantity,thatincreases

withparticlesize (Balmforth&McElwaine, 2018;Jaeger, Liu,& Nagel,1989).Courrech Du Pont etal. (2005)observed thatthe velocity profileduringan avalanche decreasesexponentially in piledepthdirection(perpendiculartothepilesurface)andthatno https://doi.org/10.1016/j.partic.2020.12.001

1674-2001/©2020ChineseSocietyofParticuologyandInstituteofProcessEngineering,ChineseAcademyofSciences.PublishedbyElsevierB.V.Thisisanopenaccessarticle

undertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

Pleasecitethisarticleas:Kasper,J.H.,etal,Effectofviscosityontheavalanchedynamicsandflowtransitionofwetgranularmatter, Particuology,https://doi.org/10.1016/j.partic.2020.12.001

(2)

Nomenclature ˛ contactangle

ˇ glycerolconcentration(inwater–glycerolmixture)  visco-elasticdampingconstant

ı overlapbetweentwoparticles  surfaceangle

 angularpositionvectorofaparticle m maximumangleofstability

r angleofrepose

˙rel relativerotationalvelocityvectorbetweentwo par-ticles

 avalancheamplitude  viscosity

c characteristicviscosity

F coefficientoffriction(CoF)

RF coefficientofrollingfriction(CoRF)

 Poisson’sratio  particledensity  surfacetension  unittangentialvector packingfraction

rotationalspeedofthedrum Ca capillarynumber

d piledepth

d0 liquidbridgerupturedistance

E Young’smodulus

e coefficientofrestitution(CoR) F totalforcevector

Fc contactforcevector

Fcap capillaryforcevector

Fl cohesiveforcevector

Fvis viscousforcevector

G shearmodulus

Gag granularGalileonumber

g gravity g gravityvector

h distance-to-contactpointvector h measureoffluctuationinsurfaceangle I massmomentofinertiaofaparticle k elasticspringconstant

m particlemass N numberofbins

Na numberofadjacentparticles

Np numberofparticlesinthedrum

n casenumber n unitnormalvector

q torquevectorduetorollingresistance R drumradius

r particleradius

r* effectiveradiusatcontactbetweentwoparticles

Tg granulartemperature

ta totalavalancheduration

ts samplingduration

U fluctuationvelocityvector u particlevelocityvector Vbond liquidbondvolume

v

flowlayervelocity

vc

characteristicvelocityofaparticleintheflowlayer w drumwidth

x,y (particle)coordinates x particlepositionvector

steady state develops. Li et al. (2018) found that the variance of theparticlevelocity remains nearly zero when theparticles areatrest,whileitreachesapeakandgraduallydecreasesasan avalancheoccurs.

Theadditionofinterstitialliquidbetweentheparticlesinduces viscous and capillary cohesive forces and alters the dynamics of granular avalanches (Courrech du Pont, Gondret, Perrin, &

Rabaud,2003;Hornbaker,Albert,Albert,Barabási,&Schiffer,1997),

resultingina qualitativelynewbehaviour.Severalstudieshave demonstratedtheimportanceoftheliquids’propertieson gran-ularflowandpilestability(Chou,Liao,&Hsiau,2010;Chou,Yang,

&Hsiau,2019;CourrechduPontetal.,2003;Finger&Stannarius,

2007;Kanule,Ng’etich,&Rotich,2019;Liao,2018;Liu,Yang,&Yu,

2011;Louati,Oulahna,&DeRyck,2017;Royetal.,2019;Samadani

&Kudrolli,2001;Shi,Roy,Weinhart,Magnanimo,&Luding,2020).

Chouet al. (2019)examined theeffect of low viscosityliquids

(<10mPas)oncreepinggranularflows,andobservedthatthe thicknessoftheflowinglayerslightlyincreaseswithliquid

viscos-ity.SamadaniandKudrolli(2001)showedthattheinterstitialliquid

causesparticlestoclumptogether,yieldinganincreaseintheangle ofrepose.Shietal.(2020)demonstratedthatliquid-induced cohe-sioncaneitherdecreaseorincreasethepackingfraction,depending ontheinter-particlefriction.Liquid-inducedcohesionhasalsobeen showntopromotethecollectivemotionofparticles,bykeeping themincontact(Royetal.,2019).Liuetal.(2011)showedthat byincreasingtheliquidsurfacetension,theflowofwetparticles transitions froma steady continuous surfaceflow to a discrete avalanchingflow.Otherstudies byTegzesetal.(1999), Tegzes,

Vicsek,andSchiffer(2003)andTegzes,Vicsek,andSchiffer(2002)

investigatedthetransitionfromintermittentavalanchesto contin-uousflowasafunctionoftheliquidcontent,andidentifiedthree fundamentalregimesofwetparticles:thegranular,thecorrelated, andtheviscoplasticregime.

Despitethese efforts,it is not yetfullyunderstood howthe interstitialliquidaffectsparticlecontacts,andinturntheflowof granularavalanches.Amicromechanicalinterpretationislacking, especiallyforhighlyviscousliquids(>100mPas).Whetherthe viscousforcesenhanceorreducethevolumefractionofwet parti-clesalsoremainsunanswered.Furthermore,theviscosity-induced transitionfromdiscreteavalanching(alsonamedslumping)to con-tinuousflowiscurrentlypoorlyunderstood.

Thisworkfocusesontheeffects of liquidviscosityand par-ticlesize onthedynamics and flow behaviourof wetgranular avalanches.Weusedadiscreteelementmethod(DEM)modelto simulateavalanches.Thesimulationsprovidedextrainformation andallowedawiderrangeofresearchconditionsthanwecould achieveexperimentally.Weusedalimitedsetofexperimentsto validateourDEMmodel,whichyieldedcomparableresultsinterms ofaverageslopeangleandavalancheamplitude,withoutany cali-brationofthesimulationparameters.Weexaminedtheevolution oftheslopeangle,particlevelocity,volumefractionandgranular temperature,asfunctionsofliquidviscosity.Thetransitionfrom theavalanchingtothecontinuousflowregimewasthen charac-terizedusingdimensionlessquantitiesthatcompareparticleand liquidproperties.Theobtainedresultshaveimportantimplications forgeo-mechanicsandlandslidecontrol.

Materialsandmethods Experimentalmethod Drumsetup

Aschematicrepresentationoftheexperimentalsetupisshown inFig.1. Thesetupconsistsof a drum,that waspartiallyfilled withgranular materials and rotated at a speed of =0.5rpm.

(3)

Table1

Propertiesoftheliquidmixtures.

Casenumber,n Glycerolconc.ˇ(%) Mixtureviscosity(mPas) CapillarynumberCa(–) Exp./sim.

0 – – – Exp./sim. 1 0 1.01 0.003 Exp./sim. 2 85 109 0.41 Exp./sim. 3 91 219 0.97 Exp./sim. 4 93 367 1.64 Exp./sim. 5 95 523 2.34 Sim. 6 98 939 4.23 Sim. 7 100 1410 6.39 Sim.

Fig.1.Schematicrepresentationofgranularavalanchesinarotatingdrum.

Thisrotationalspeedprovedlowenoughtoobserveintermittent avalanchingflowinthedryandlowviscositycases.Thedrumisan updatedversionoftheoneusedpreviouslybyWindows-Yuleetal.

(2016)andJarray,Shi,etal.(2019).Itiscomposedofacylinder

witharadiusofR=60.5mmandawidthofw=22mm.Thebases ofthedrumconsistoftwoclearcircularplexiglass(PMMA)walls of5mmthicknesstoallowopticalaccess.Thesewerecoatedwith fluorinatedethylenepropylene(FEP)topreventwetglassparticles fromstickingtothewalls.Thesideofthedrumismadeofpoplar wood.

Ineachexperiment,thedrumwasfilledtocirca35%ofits vol-umewithmonodisperseborosilicateglassparticles,withadensity of=2500kg/m3andaradiusofr=1.25mm.Westudiedadrycase,

aswellasseveralcaseswheretheparticlesweremixedwith4cm3

ofwater-glycerolmixtures,leadingtoapendularstate(Gabrieli,

Lambert,Cola,&Calvetti,2012;Iveson,Beathe,&Page,2002;Jarray,

Shi,etal.,2019;Urso,Lawrence,&Adams,1999).Here,a small

amountofliquidissharedbyneighbouringparticles,butbetween themismostlyair.Thesurfacetensionandcontactangleofthe mixtures staynear-constantasafunctionofglycerol concentra-tion,whiletheliquidviscositystronglyvaries(GlycerineProducers’

Association,1963;Vicente,André,&Ferreira,2012).Therefore,the

inducedviscousforcesstronglyincreasewithglycerol concentra-tion,whilethecapillaryforcesremainrelativelyconstant.Table1

displaysthepropertiesofthemixtures.Thecasen=0indicatesdry conditions.Asubsetofcaseswerereproducedwithboth experi-mentsandsimulations(seeSection“Numericalmodel”),allowing validation. Forliquidswith>370mPas,particlesstarttostick tothefrontwalloftherotatingdrum,obstructingaccurateimage post-processing,thusonlysimulationswereperformed.

Table1alsoshowsthevaluesofthecapillarynumberCa,defined

as Ca= 

vc

cos˛, (1)

withliquidviscosity,surfacetension,contactangle˛and char-acteristicvelocity

vc

.Thecapillarynumberistheratiooftheviscous forcetothecapillaryforce.Sincethevelocityoftheparticlesinthe flowinglayerduringanavalancheismainlyinducedbygravity,the characteristicvelocitywastakenequaltothefree-fallingspeedofa particle,afterfallingadistanceof2r,i.e.

vc

=



4gr,whichyieldsan approximatehigh-endvalueofCa.InTable1,weusedr=1.25mm forthecalculationofCa.

Imagepost-processing

ImagesoftherotatingdrumwererecordedusingaCanonLegria HFG40camera,operatingat50FPS.Theimagescapturedbythe camerawerepost-processedusingFijiImageJ(Ruedenetal.,2017;

Schindelinetal.,2012)toobtaintheslopeangleandtheavalanche

amplitude,asdepictedinFig.1.In thefirstprocessingstep, theirrelevantpartsoftheimagesequence(i.e.thebackgroundand thedrum walls)wereremovedandthelightandcontrastwere adjusted.Subsequently,theTrackmate(Tinevezetal.,2017) pack-agewasusedtodetecttheparticlesbasedonthedifferenceof Gaussiandistributions(Lowe,2004).Thedetectedparticleswere storedintabularformandimportedintothedatavisualization pro-gramParaview(Ayachit,2015).Finally,anin-housePythonscript wasemployedtodeterminethe slopeangle andthe avalanche amplitude.

Numericalmodel

WeemployedthesoftwarepackageLIGGGHTS(Kloss,Goniva,

Hager,Amberger,&Pirker,2012)tosimulatewetparticlesin a

rotarydrum, usingthediscreteelementmethod.Particle trajec-toriesarecalculatedbysolvingNewton’sequationsofmotion.The movementofanarbitraryparticlei,thatisincontactwithNa

adja-centparticles,isdescribedas mi¨xi= Na



j=1



Fcij+Flij



+mig, (2) Ii¨i= Na



j=1



hij×



Fcij+Flij



+qij



, (3)

withmassmi,positionvectorxi,contactforcevectorFcij,cohesive

forcevectorFlij,gravityvectorg,massmomentofinertiaIi,angular

positionvectori,distance-to-contactpointvectorhij and

addi-tionaltorquevectorqij(toaccountforrollingresistance).Notethat

variablesprintedinboldrepresentvectors. Contactmodel

Aspring-dashpotmodel(DiRenzo&DiMaio,2005;Klossetal.,

2012;Silbertetal.,2001)wasusedtocomputetheforceFcijbetween

twocollidingparticlesiandj.Fijcisnonzeroonlyifthereisapositive normaloverlapınbetweentheparticles,whichisdefinedas

ın=



ri+rj





xi−xj



·nij, (4)

(4)

whereristheparticleradiusandnijtheunitnormalvector.When ın>0,Fcijiscomputedas Fcij=



knın−n˙ın



nij+



k ı − ˙ı



ij, (5)

withtangentialoverlapı ,unittangentialvectorij,elasticspring

constantkandvisco-elasticdampingconstant.Thesubscriptsn and denotenormalandtangentialcomponentsrespectively.

The Hertz–Mindlin model (Kloss et al., 2012; Mindlin &

Deresiewicz,1953),basedonHertztheoryinnormaldirectionand

theMindlinno-slipimprovedmodelintangentialdirection,was employedtocalculatetheelasticanddampingconstants.knisgiven

by kn= 4 3



1−2 i Ei + 1−2 j Ej

−1



rın, (6)

withmodulusofelasticityE,Poisson’sratioandeffectiveradius r∗=rirj/



ri+rj



.Furthermore,niscomputedas n=− 2√15ln (e) 3



ln2(e)+ 2



1 i r3i + 1 j r3j

−1 kn, (7)

withcoefficientofrestitution(CoR)eandparticledensity.Asfor thetangentialcomponents,k isdefinedas

k =8

2i Gi + 2−j Gj



−1



rın, (8)

whereGistheshearmodulusand isdefinedas

 =− 2 √ 10ln (e) 3



ln2(e)+ 2



1 i ri3 + 1 j rj3

−1 k . (9)

A constantdirectionaltorquemodel(Ai,Chen,Rotter,&Ooi,

2011;Klossetal.,2012)wasimplementedtoaccountforrolling

resistance,andcontributeswithanadditionaltorquevectorqijto

Eq.(3),whichisgivenby qij=−RFknınr∗



˙rel

˙rel



, (10)

withcoefficientofrollingfriction(CoRF)RF.Thevector ˙relisthe

relativerotationalvelocitybetweenparticlesiandj.Inthecaseof particle-wallcontact,Eqs.(6)–(10)aretakeninthelimitofradius rjgoingtoinfinity.

Liquidcohesionmodel

Acompositionofmodels,assuggestedbyEasoandWassgren

(2013),wasusedtodefinethecohesiveforcebetweenparticlesi

andj.Itisassumedthatasurfaceliquidfilmexistsoneach parti-cle,allowingforaliquidbridgetoformuponcontactwithanother particle. Thebridgeruptureswhen



xi−xj



exceeds therupture

distanced0,whichisgivenby

d0=



1 2+ ˛i+˛j 4



Vbond1/3 , (11)

withcontactangle˛andliquidbondvolumeVbond(Lian,Thornton,

&Adams,1993).ItisassumedthatVbondequals5%ofthecombined

liquidfilmvolume,whichdistributesevenlyoverthetwo parti-clesafterbridgerupture.ThecohesiveforcevectorFlijbetweenthe particlesisdefinedas

Flij=Fcapij +Fvisij , (12)

withcapillaryforcevectorFcapij andviscousforcevectorFvisij .

Thecapillaryforceactsinnormaldirectionandisdefinedby

Soulie,Cherblanc,ElYoussoufi,andSaix(2006)as

Fcapij =− 



rirj



c+exp

a−ın rmax+b



nij, (13)

withliquidsurfacetensionandrmax=max



ri,rj



.Parametersa, bandcaregivenby

a=−1.1

Vbond r3 max



−0.53 , (14) b =[−0.037ln(Vbond r3 max )−0.24](˛i+˛j)2 −0.0082ln(Vbond r3 max )+0.48, (15) c=0.0018ln

Vbond r3 max



+0.078. (16)

Theviscousforceconsistsofatangentialandnormalcomponent andisdescribedbyNase,Vargas,Abatan,andMcCarthy(2001)as

Fvisij =6 r˙ı



8 15ln



r ∗ −ın



+0.9588



ij +6 r∗2˙ın −ın nij, (17)

withliquidviscosity.Thevalueforthenormaloverlapisbounded by

−0.1(ri+rj)≤ın≤−0.01(ri+rj), (18)

topreventlimitlessdevelopmentofthecohesiveforces.Inthecase ofparticle-wallcontact,Fcapij andFvisij aresetequaltozero.

Tosummarize,thetotalforcevectorFijcanbedecomposedin

normalandtangentialcomponentsas Fij =Fcij+Fijl =Fnij+F ij =



knın−n˙ın− 



rirj



c+exp

a−ın rmax+ b



+6 r∗2˙ın −ın



nij+



k ı − ˙ı +6 r∗˙ı



8 15ln



r ∗ −ın



+0.9588



ij, (19)

withtotalnormalforcevectorFnij andtotaltangentialforce vec-torF ij.Furthermore,thetangentialcomponentofthecontactforce Fcij·ijistruncatedtofulfill



Fcij·ij



F



Fnij



, (20)

withcoefficientoffriction(CoF)F,toensurethesatisfactionof

Coulomb’slaw.

DEMsimulationparameters

ThemodelparametersintheDEMsimulationsweresettomimic thephysicalexperiments.Thematerialpropertiesoftheparticles anddrumweresettoresembleglassandpoplarwoodrespectively

(Gray,1972;Green,Winandy,&Kretschmann,1999;Oberg,Jones,

Horton,&Ryffel,2000;Serway&Jewett,2004;SigmundLindner,

2018),andaresummarizedinTables2and3.

Inallsimulations,thedrumwasfilledto35%ofitsvolumewith monodisperseparticlesandrotatedataconstantrotationalspeedof =0.5rpm,provenlowenoughtoobserveintermittentavalanches inthedryand lowviscositycases.Theparticleshadaradiusof

(5)

Table2

Propertiesoftheparticles.

Parameter Value

Radius,r(mm) 1.25,2.0,3.0 Density,(kg/m3) 2500

Young’smod.,E(MPa) 63 Poisson’sratio,(–) 0.21 CoR,epp(–) 0.95 CoF,ppF (–) 0.10(wet) 0.40(dry) CoRF,pp RF(–) 0.01 Table3

Propertiesofthedrum.

Parameter Value

Radius,R(m) 0.0605

Width,w(m) 0.022

Young’smod.,E(MPa) 12 Poisson’sratio,(–) 0.35 CoR,ewp(–) 0.72 CoF,wpF (–) 0.15(wet) 0.30(dry) CoRF,wp RF(–) 0.01

r=1.25,2.0or3.0mm.Weperformedsimulationsunderdry con-ditions,andsimulationswithsevenwater–glycerolmixtures, as presentedinTable1.WeusedareducedCoFforwetparticlesto mimiclubricationeffectsinthegranularsystem.

Ineachsimulation,wetrackedtheparticlepositionsand veloci-tiesfor50seconds,toexaminetheevolutionoftheslopeangleand velocityprofiles.ThesoftwarepackageParaView(Ayachit,2015) andin-housepythoncodeswereusedtoevaluatetheslopeangle ,theavalancheamplitudeandthepackingfraction ,defined asthevolumeofallparticlesdividedbythevolumeofthepacking. Furthermore,weevaluatedthegranulartemperatureTg(Campbell,

2006;Zhou&Sun,2013),definedas

Tg= 1 3Np Np



i=1



Ui



2 , (21)

whereNpisthetotalnumberofparticles.Thefluctuationvelocity

ofparticleiisgivenby

Ui=ui− ¯ui, (22)

whereuiisthevelocityofparticlei,and ¯uithemeanvelocityofthe

particlessurroundingi,withinasphericalregionofradius7ri/3.

Thus,Uiindicatesaparticle’svelocitywithrespecttoits

surround-ingparticles.

Thevelocityprofilesoftheparticlesinthebedwereobtained usingaGaussianKernelpointvolumeinterpolationscheme(Jarray,

Magnanimo,&Luding,2019;Price,2012;Schroeder,Lorensen,&

Martin, 2004), witha kernel radiusof8mmfor thecaseswith

r=1.25mmandr=2mm,andakernelradiusof11mmforthecases withr=3mm.

Resultsanddiscussion Modelvalidation

Tovalidateournumericalmodel,wefirstcomparethesimulated andmeasuredtime-averagedsurfaceangleandtime-averaged avalancheamplitude.Fig.2(a)showsasafunctionofthe interstitialliquid viscosity.Bothexperimentsandsimulations indicatethathasnosignificanteffectonintheinvestigated viscosityrange.However,wetparticlesyieldahigherin com-parisontodryparticles,duetheformationofcapillarybridges.Inall

Fig.2. Experimentalandnumericaltime-averagedavalanchepropertiesasa

func-tionofliquidviscosity,withaparticleradiusofr=1.25mm.(a)Time-averaged

surfaceangle.(b)Time-averagedavalancheamplitude.Symbolsinthegreen

zonerepresentsimulationsandexperimentsunderdryconditions.

wetcases,simulationsyieldaslightlyloweraveragedslopeangle thantheexperiments.In theDEMmodel,theliquid bridge vol-umewassettoalwaysdistributeevenlyoverbothparticlesafter bridgerupture.Thus,weproposetoattributetheobserved differ-encebetweensimulationsandexperimentstotheoccurrenceof in-homogeneousliquidmigrationbetweenparticlesinthe experi-ments.

Fig.2(b)showstheaveragedavalancheamplitudeasafunction of.Weobserveadecreasingtrendofwithliquidviscosity inboththenumericalandexperimentalcases.

Comparable resultsare obtainedfrom the experiments and numericalsimulations,whichconfirmthevalidityoftheadopted model.Sinceexperimentalresearchdidnotallowinvestigationof theavalanchebehaviourforhighviscosityliquids(>370mPas), asdiscussedinSection“Experimentalmethod”,andtogetmore insightsintothemicro-mechanicsofgranularavalanches,wewill henceforthfocusontheresultsobtainedfromtheDEMsimulations. Simulationresults

Timeevolutionofthegranularflow

Fig.3(a)showsatypicalevolutionofthesurfaceangleduring severalsuccessivedryavalanches.Maximumstabilityandrepose anglesmandrrespectivelycorrespondtothelocalmaximaand

(6)

Fig.3.Timeevolutionofgranularavalancheswithaparticleradiusofr=2mm.(a)

Surfaceangleand(b)granulartemperatureTgforthedrycasen=0.(c)and(d)

Tgforthelowviscositywetcasen=1andhighviscositywetcasen=7.

areverypronounced;rigidbodymovementoftheparticulatebed isalternatedwithparticlesflowingdowninthesurfacelayer.Thisis furtherillustratedbytheevolutionofthegranulartemperatureTg,

showninFig.3(b).WeobservepeaksinTgduringtheavalanches,

whichindicatelargerelativemovementsbetweenparticles,that coincidewithdropsin.Inbetweenavalanches,Tgdropstonearly

zero,whiletheparticulatebedisliftedagainasarigidbody. Qualitatively similar behaviour is observed for wet gran-ular avalanches with an interstitial liquid of low viscosity (=1.01mPas, n=1),shownin Figs.1(c)-(d)bythecontinuous blueline.However,forhighviscosity(=1410mPas, n=7),the evolution of thesurfaceangle doesnotshowa steady periodic trend. Smaller fluctuations occur more frequently, while dis-tinctavalanchesdisappear,implyingamorecontinuousflow.We observeasimilartrendinthedevelopmentofTg.Incomparisonto

thedrycasen=0andlowviscositycasen=1,peaksforthecase n=7aresignificantlysmaller.Furthermore,Tgdoesnotdropas

sig-nificantly withtheincreaseof,indicatingthat thereisalways relativemovementbetweenparticles,andtheparticulatebednever behavesasarigidbody.

AninterestingfeatureoftheavalanchesshowninFig.3(a)and (c)istheratherlargevariationintheamplitudesofsuccessive avalanches.Aslowerrotationalspeedofthedrumislikelyto reducethesevariationsandprovideanevenmoreperiodictrend

(Balmforth&McElwaine,2018;Fischeretal.,2008).

Appendix“Additionaldataforotherparticlesizes”depictsthe time evolutionof andTg forsimulationswithr=1.25mmand

Fig.4.Velocityprofilesduringgranularavalancheswithaparticleradiusofr=2mm.

(a)Drycasen=0.(b),(c)and(d)Wetcasesn=1,3,7respectively,withviscositiesof

=1.01mPas,=219mPasand=1410mPas.(e)Particlevelocityvasafunction

ofpiledepthdforn=0,a,3,7,wheredisthedistancealongtheinward-pointing

normaltothefreeflowingsurface,startingfromitsmiddle.

r=3mm.Inthesecasesweobservequalitativelysimilarbehaviour tothosewithr=2mmshowninFig.3.

Velocityprofiles

Fig.4(a)–(d)showstypicalvelocityprofilesforavalancheswith lowtohighliquidviscosity.Inallcases,ahighvelocityflowlayer nearthesurfaceisobserved,whilebelowthislayerparticlesareat restwithrespecttothedrum,i.e.onlymoveduetoitsrotational speed.Thedrycasen=0yieldsalargerflowlayervelocity

v

than thewetcases,forwhich

v

decreaseswithliquidviscosity.Thisresult hasalsobeenobservedbyBrewster,Grest,andLevine(2009),who foundthatcohesiveforceslimitthedevelopmentofthevelocityin theflowlayer.

Fig.4(e)showstheparticlevelocityalongthepiledepthd,which isalongtheinward-pointingnormaltothefreeflowingsurface, startingfromitsmiddle.Inallcases,thevelocityoftheflowing layerdecreasesslowlywithdinitially,nearthesurface;thenmore rapidly,inthemiddleoftheflowinglayer;butthendeclines,until thevelocityoftheparticlesispurelyduetotherotationalspeedof thedrum.Theslopeofthevelocitycurvedecreaseswithviscosity, andissteepestforthedrycase.However,thethicknessoftheflow layerappearstobeindependentofliquidviscosity.

The velocity profiles for particle radii of r=1.25mm and r=3mm,presentedinAppendix“Additionaldataforotherparticle sizes”,showqualitativelysimilarbehaviourtothosewithr=2mm

(7)

Fig.5.Time-averagedavalanchepropertiesplottedasafunctionofliquidviscosity

,forseveralparticlesizes.(a)Avalancheamplitude,wherethesymbolsinthe

greenzonerepresentsimulationswithdryconditions.(b)Dimensionlessavalanche

amplitudewet/dry.(c)Dimensionlessaveragedeviationhwet/hdry.

Theinsetpictureschematicallyshowsthemethodusedtoquantifythefluctuations

inthesurfaceangle.

Fig.6.Avalanchepropertiesplottedasafunctionofviscosity,forseveralparticle

sizes.(a)Time-averagedgranulartemperatureTg.(b)Dimensionlessavalanche

timeparameterta/ts.Symbolsinthegreenzonerepresentsimulationswithdry

conditions.

showninFig.4.Theflowlayervelocitywasobservedtoincreasein magnitudewithparticlesize,yettheoveralltrendsremainsimilar. Avalancheamplitude

Fig.5(a)showsthetime-averagedavalancheamplitudeas afunctionofliquidviscosity,forseveralparticlesizes.Notethat asincreases,becomeslessameasureofavalanche ampli-tude,andmoreameasureofsurfaceanglefluctuationintime,as theflowtransitionsfromtheavalanchingregimetothecontinuous regime.Theavalancheamplitudeisshowntoincreasewithparticle radiusr.Thistrendisconsistentwithexperimentalresearchondry

(Balmforth&McElwaine,2018)andwet(CourrechduPontetal.,

2003)granularavalanches,inwhichlargeravalanchesareobserved astheratioofparticleoverdrumradiusr/Rincreases.Forall parti-clesizes,isobservedtodecreasewithviscosityandsaturate athighvaluesof,inagreementwithstatementsbyCourrechdu

Pontetal.(2003).

We can exclude the effect of the particle size on the wet avalanche amplitude by considering its dimensionless form wet/dry.Asaresult,thenormalizedavalancheamplitude

datacollapseonasingleviscosity-dependantmaster-curve,plotted inadashedlineinFig.5(b).Thefittingcurveisdescribedby wet/dry=a+bexp



−/c



(8)

Fig.7. Avalanchepropertiesplottedasafunctionof



1/Gag,withgranularGalileo

numberGag,forseveralparticlesizes.(a)Dimensionlessavalanchetimeparameter

ta/ts.(b)Time-averagedavalancheamplitude.

where a and b are fitting constants equal to 0.4 and 0.47, respectively.Furthermore,cisacharacteristicviscosityequalto

295mPas.Weinferthatfor<cthedecayofwet/dryis

large,whilefor>c,thedimensionlessamplitudesaturates.

Slopecurvature

Thecurvatureofthesurfacecanbeusedtodifferentiatebetween avalanchingandcontinuousflowbehaviour.Forgranularflowsin theavalanchingregime,thesurfaceangleisgenerallyobservedto beconstantalong thesurface(Fischeretal.,2008;Jaeger etal., 1989).Forcontinuousflowshowever,thesurfaceisobservedtobe “S-shaped”ifthecohesionislowand>5rpm(Jarray,Magnanimo, etal.,2019),orevenslightly convexifcohesiveforcesarelarge

(Brewsteretal.,2009).Significantfluctuationsinthesurfaceangle

(i.e.thedeviationbetweenthelocalsurfaceangleandthe aver-ageangleofthewholesurface)areindicativeofcontinuousflow behaviour.

Wecanquantifythesefluctuationsusingthefollowingmethod. First,weapproximatewhichparticlesarepartofthesurfacelayer bydividingthedrumintoNbinsandconsideringthetopparticle ineachbin.Polyfittingalinearfunctionthroughthecoordinates ofallsurfaceparticlesyieldsaflataveragedsurface(seeinsetof

Fig.5(c)).Fluctuationsinsurfaceangleareevaluatedby

measur-Fig.8.Time-averagedpropertiesasafunctionofliquidviscosity,forseveral

par-ticlesizes.(a)Surfaceangle.(b)Packingfraction .Symbolsinthegreenzone

representsimulationswithdryconditions.(Forinterpretationofthereferencesto

colourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

ingtheaveragedeviationh,ofthedistancebetweenthesurface particlesandthepolyfittedsurface.Wethusdefinehas h= 1 N N



i=1



xi−xfiti



2 +



yi−yfiti



2 , (24)

inwhich(xi,yi)denotethecoordinatesofparticlei,and(xfiti ,yfiti )

denotepointsonthepolyfittedsurface.Fig.5(c)showsthatindeed thetime-averagednormalizedsurfacedeviationhwet/hdry,

slightlyincreaseswithliquidviscosity,andconsistentlydecreases withincreasingparticlesize.

Granulartemperature

The time-averaged granular temperature Tg is plotted in

Fig.6(a),andshowsasimilartrendasthetime-averagedamplitude .Tgdecreaseswithviscosity,butincreaseswithparticlesize.

Asr/Rincreases,Tgisevaluatedoveralargerlocalvolume,thus

largerrelativemovementsareindeedexpected.Thegranular tem-peratureofthedrycasesisofanorderofmagnitudegreaterthan forthewetcases.Theliquid-inducedcohesivebondsbetween par-ticleslimitrelativeparticlemotion.Particlesclumptogether,and thenumber ofinter-particlescollisionsreduces. Thiseffectgets magnifiedasincreasesandthecohesivebondsbecomestronger. Interestingly,the curves for r=1.25mm and r=2mmare quite

(9)

Fig.9.Timeevolutionofgranularavalancheswithaparticleradiusofr=1.25mm.

(a)Surfaceangleand(b)granulartemperatureTgforthedrycasen=0.(c)and

(d)Tgforthelowviscositywetcasen=1andhighviscositywetcasen=7.

smooth,whileforr=3mmsomeoutliersappear.Thisislikelydue tointerlockingofparticles,causedbythehighparticleoverdrum sizeratio(r/R≈0.05).

Liu,Specht,andMellmann(2005)pointedoutthatthe

avalanch-ingregimeismarkedbyintermittentrigidbodymovementofthe particulatebed,duringwhichTgdropstonear-zero(see Fig.3).

Astheliquidviscosityincreases,thetimeintervalsofrigidbody movement become shorter, and the flow transitions from the avalanchingregimetothecontinuousregime.Incompleteabsence oftheseintervals,theflowcanbecharacterizedasfully continu-ous.Inordertoinvestigatethetransitionfromavalanchingflow tocontinuousflow,weevaluateavalanchingtimeratiota/ts.Here

taisthetotalavalanche duration(i.e.thedurationforwhichTg

≥2·10−9m2/s2,correspondingtonon-rigidbodymovementofthe

bed),andtsisthesamplingduration.Fig.6(b)depictsta/tsasa

func-tionofviscosity,wheretswassettothefinal30softhesimulation.

Wefindthatta/tsincreaseslogarithmicallywithliquidviscosity.For

particlesizesr=1.25mmandr=2mm,continuousflowdevelops beyond=520mPasand =940mPas,respectively.The corre-spondingaverageavalancheamplitudesarebelow2.5◦.However, forr=3mm,continuousflowdoesnotseemtodevelopwithinthe rangeofviscositiesexaminedinourresearch.

Dimensionalanalysisandflowtransitionregion

In order toestimatetherelative importanceof gravitational forceswithrespecttotheviscousforcesactingonwetparticles, weintroducethegranularGalileonumber:

Fig.10.Timeevolutionofgranularavalancheswithaparticleradiusofr=3mm.(a)

Surfaceangleand(b)granulartemperatureTgforthedrycasen=0.(c)and(d)

Tgforthelowviscositywetcasen=1andhighviscositywetcasen=7.

Gag=

2gr3

2 . (25)

TheGalileo number is anespecially relevant parameter, asthe displacementofparticlesduringavalanchesisdominatedby grav-itational forces. In Fig. 7(a), we plot ta/ts as a function of the

square-rootoftheinverseofGag.FromFig.6(b),wefoundthat

continuous flow develops only for cases with r=1.25mm and r=2mm, beyond =520mPas and =940mPas, respectively, whereta/ts≈1.Weareabletodefinearegioninwhichthe

transi-tionfromavalanchingflowtocontinuousflowtakesplace,marked bythebluezoneinFig.7(a).Thisregionroughlycorrespondstoa granularGalileonumberGag≈1,i.e.theviscousforcesstartto

sur-passthegravitationalforcesatthispoint.Wealsoobservethatthe datasetcollapsesontoasinglehill-typecurve,thattendstota/ts=1

athighvaluesof



1/Gag.

Havingestablishedtheavalanching-continuousflowtransition zone interms of the Galileonumber, we subsequently explore theeffectofthisnumberontheavalancheamplitudeinFig.7(b). For



1/Gag<10−2,theflowbehaviourisalmostunaffectedby

theviscousforces,butrathergovernedbycapillaryand gravita-tionalforces,resultinginarelativelyhighavalancheamplitude. As



1/Gag increases, theflow becomes more dilated and the

(10)

Fig.11. Velocityprofilesduringgranularavalanches withaparticleradiusof

r=1.25mm.(a)Drycasen=0.(b),(c)and(d)Wetcasesn=1,3,7respectively,with

viscositiesof=1.01mPas,=219mPasand=1410mPas.(e)Particlevelocityv

asafunctionofpiledepthdforn=0,1,3,7.

Averagesurfaceangleandvolumefraction

Fig.8(a)showsthetime-averagedsurfaceangle,with stan-darddeviations,asafunctionof,forseveralparticleradii.Forthe drycase,increaseswithparticlesize,inagreementwith previ-ousobservations(Balmforth&McElwaine,2018).Forthewetcases, showsaslightlydecreasingtrendwithr,whichisinagreement withobservationsmadebyNowak,Samadani,andKudrolli(2005). Again,someoutlyingpointsappearforsimulationswithr=3mm, possiblytheresultofinterlocking.Weobservenocleardependency oftheaverageangleontheliquidviscosity.

Finally, thetime-averagedvolume fractionof theparticulate bed isplottedasafunctionoftheinterstitialliquidviscosity inFig.8(b).Here, isdefinedasthesummedvolumeofthe parti-clesoverthevolumeoccupiedbythepacking.Weobservethatwet particlesyieldahighervolumefractionthandryparticles, indica-tiveofamorecompressedsystem(Shietal.,2020).Overall,itseems thatviscosityonlyhasaweakeffecton .However, decreases withincreasingparticlesize.Thisislikelyduetotheincreasing par-ticleoverdrumradiusratior/R,whichnegativelyimpactspacking efficiency.

Conclusions

Usingdiscreteelementmethodsimulations,wehave investi-gatedhowthedynamicsofwetgranularavalanchesina rotary drum are affectedby theviscosityof theinterstitial liquidand

Fig.12.Velocityprofilesduringgranularavalanches withaparticleradiusof

r=3mm.(a)Drycasen=0.(b),(c)and(d)Wetcasesn=1,3,7respectively,with

viscositiesof=1.01mPas,=219mPasand=1410mPas.(e)Particlevelocityv

asafunctionofpiledepthdforn=0,1,3,7.

particlesize.Simulationswerevalidatedagainstalimitedsetof experimentalmeasurementsandgoodagreementwasobtained.

Discreteavalanches wereobserved forthe drycase and the wetcaseswithrelativelylowviscosity.Asviscosityincreases,the flowbehaviourtransitions fromtheavalanchingtothe continu-ousregime.Thistransitionisindicatedbyadecreaseinavalanche amplitude,flow layervelocityand granulartemperatureandan increaseincurvynessoftheflowsurface.Theavalanchingregime ismarkedbyintermittentrigidbodymovementoftheparticulate bed,andnear-zerodropsinthegranulartemperature.For contin-uousflow,rigidbody movementofthebeddoesnotoccurand thegranulartemperatureassumesfinitevalueswellabovezero. Basedontheevolutionofthegranulartemperatureandavalanche amplitude,wewere abletoidentifyanavalanching-continuous flowtransitionregion,asafunctionofthedimensionlessgranular GalileonumberGag.

Astheparticlesize increases,theavalancheamplitude, flow layervelocityandgranulartemperatureincreaseaswell,indicating anincreaseinrelativeimportanceofinertialeffectswithrespectto frictionalforcesandviscousforces.

Our findings suggest that theeffects of liquid viscosity and particlesizeshouldalwaysbeconsideredwhenstudying granu-laravalanches,particularlyfor



1/Gag>0.5,whetherlargescale

investigation,pilotscaleexperimentsornumericalsimulationsare ofinterest.

Theanalysispresentedinthispapercouldbeextendedto cor-relatetheflowbehaviour(i.e.theangleofreposeortheavalanche

(11)

amplitude)ofthegranularmixturetoitsapparentshearviscosity, whichcanbeobtainedbyextractingtheratiooftheshearstressto theshearrate(Schwarze,Gladkyy,Uhlig,&Luding,2013)alongthe depthoftheflowinglayer.Additionally,itwouldbeinterestingto explorehowliquidviscosityaffectsthedynamicsofgranular mat-teratahigherrotationalspeedofthedrum,wheretheflowregime iscontinuousandintermittentavalanchesareabsent.

Conflictofinterest

Theauthorsdeclarenoconflictofinterest. Acknowledgements

WethankStefanLudingandBertJ.Scheperfortheirhelpand suggestions.

Additionaldataforotherparticlesizes

Figs.9and10 showthetimeevolutionofthesurfaceangle

and thegranulartemperatureTg forcases withr=1.25mmand

r=3mm, respectively. Similartocases withr=2mm, shownin

Fig.3,discreteavalanchesareobservedfordrycasesandlow viscos-itycases(=1.01mPas).Highlyviscousliquids(=1410mPas) yieldsignificantreductionsinsurfaceanglefluctuationsand fluctu-ationsinTg,andavalanchesarelesspronounced.Thiseffectappears

lessdominantforlargerparticleshowever,asther=3mmcasewith highviscositystillshowsdistinctavalanches.

Figs.11and12 showthevelocityprofilesforavalancheswith

lowtohighliquidviscosityforcaseswithr=1.25mmandr=3mm, respectively.Thevelocityoftheflowinglayerincreaseswith parti-clesize,whileitsthicknessremainsrelativelyconstant.

References

Ai,J.,Chen,J.F.,Rotter,J.M.,&Ooi,J.Y.(2011).Assessmentofrollingresistance

modelsindiscreteelementsimulations.PowderTechnology,206(3),269–282.

Ayachit,Utkarsh.(2015).Theparaviewguide:Aparallelvisualizationapplication.

NewYork:Kitware,Inc.

Balmforth,N.J.,&McElwaine,J.N.(2018).Fromepisodicavalanchingto

continuousflowinagranulardrum.GranularMatter,20(3),52.

Brewster,R.,Grest,G.S.,&Levine,A.J.(2009).Effectsofcohesiononthesurface

angleandvelocityprofilesofgranularmaterialinarotatingdrum.Physical ReviewE,79(1),011305.

Campbell,C.S.(2006).Granularmaterialflows–Anoverview.PowderTechnology,

162(3),208–229.

Chou,S.H.,Liao,C.C.,&Hsiau,S.S.(2010).Anexperimentalstudyontheeffectof

liquidcontentandviscosityonparticlesegregationinarotatingdrum.Powder Technology,201(3),266–272.

Chou,S.H.,Yang,F.C.,&Hsiau,S.S.(2019).Influenceofinterstitialfluidviscosity

andparticlesizeoncreepinggranularflowinarotatingdrum.International JournalofMultiphaseFlow,113,179–190.

CourrechduPont,S.,Gondret,P.,Perrin,B.,&Rabaud,M.(2003).Granular

avalanchesinfluids.PhysicalReviewLetters,90(4),443011–443014.

CourrechDuPont,S.,Fischer,R.,Gondret,P.,Perrin,B.,&Rabaud,M.(2005).

Instantaneousvelocityprofilesduringgranularavalanches.PhysicalReview Letters,94(4),048003.

DiRenzo,A.,&DiMaio,F.(2005).Animprovedintegralnon-linearmodelforthe

contactofparticlesindistinctelementsimulations.ChemicalEngineering Science,60(5),1303–1312.

Duran,J.(2012).Sands,powders,andgrains:Anintroductiontothephysicsof

granularmaterials.NewYork:Springer.

Easo,L.A.,&Wassgren,C.R.(2013).Comparisonofliquidbridgevolumemodelsin

demsimulations.2013AIChEannualmeeting(Vol.1).

Finger,T.,&Stannarius,R.(2007).Influencesoftheinterstitialliquidon

segregationpatternsofgranularslurriesinarotatingdrum.PhysicalReviewE, 75(3),031308.

Fischer,R.,Gondret,P.,Perrin,B.,&Rabaud,M.(2008).Dynamicsofdrygranular

avalanches.PhysicalReviewE,78(2),021302.

Gabrieli,F.,Lambert,P.,Cola,S.,&Calvetti,F.(2012).Micromechanicalmodelling

oferosionduetoevaporationinapartiallywetgranularslope.International journalfornumericalandanalyticalmethodsingeomechanics,36(7),918–943.

GlycerineProducers’Association.(1963).Physicalpropertiesofglycerineandits

solutions.NewYork:GlycerineProducers’Association.

González,S.,Windows-Yule,C.R.K.,Luding,S.,Parker,D.J.,&Thornton,A.R.

(2015).Forcedaxialsegregationinaxiallyinhomogeneousrotatingsystems.

PhysicalReviewE,92(2),022202.

Gray,D.E.(1972).Americaninstituteofphysicshandbook.NewYork:McGraw-Hill.

Green,D.W.,Winandy,J.E.,&Kretschmann,D.E.(1999).Woodhandbook:Woodas

anengineeringmaterial.Madison:USDAForestService.

Hornbaker,D.J.,Albert,R.,Albert,I.,Barabási,A.L.,&Schiffer,P.(1997).What

keepssandcastlesstanding?Nature,387(6635),765.

Iveson,S.M.,Beathe,J.A.,&Page,N.W.(2002).Thedynamicstrengthofpartially

saturatedpowdercompacts:Theeffectofliquidproperties.PowderTechnology, 127(2),149–161.

Jaeger,H.M.,Liu,C.H.,&Nagel,S.R.(1989).Relaxationattheangleofrepose.

PhysicalReviewLetters,62(1),40–43.

Jarray,A.,Magnanimo,V.,Ramaioli,M.,&Luding,S.(2017).Scalingofwetgranular

flowsinarotatingdrum.pp.03078.EPJwebofconferences(Vol.140)EDP Sciences.

Jarray,A.,Shi,H.,Scheper,B.J.,Habibi,M.,&Luding,S.(2019).Cohesion-driven

mixingandsegregationofdrygranularmedia.ScientificReports,9(1),1–12.

Jarray,A.,Magnanimo,V.,&Luding,S.(2019).Wetgranularflowcontrolthrough

liquidinducedcohesion.PowderTechnology,341,126–139.

Kanule,J.,Ng’etich,W.,&Rotich,S.(2019).Computationalandexperimentalstudy

ofahydro-dynamicallandslidemodelbasedonlaboratoryflumetests. EnvironmentalResearchCommunications,1(12),125003.

Kloss,C.,Goniva,C.,Hager,A.,Amberger,S.,&Pirker,S.(2012).Models,algorithms

andvalidationforopensourcedemandcfd-dem.ProgressinComputational FluidDynamics,AnInternationalJournal,12(2–3),140–152.

Li,R.,Yang,H.,Zheng,G.,&Sun,Q.C.(2018).Granularavalanchesinslumping

regimeina2drotatingdrum.PowderTechnology,326,322–326.

Lian,G.,Thornton,C.,&Adams,M.J.(1993).Atheoreticalstudyoftheliquidbridge

forcesbetweentworigidsphericalbodies.JournalofColloidandInterface Science,161(1),138–147.

Liao,C.C.(2018).Astudyoftheeffectofliquidviscosityondensity-drivenwet

granularsegregationinarotatingdrum.PowderTechnology,325, 632–638.

Liu,X.Y.,Specht,E.,&Mellmann,J.(2005).Slumping-rollingtransitionofgranular

solidsinrotarykilns.ChemicalEngineeringScience,60(13), 3629–3636.

Liu,P.Y.,Yang,R.Y.,&Yu,A.B.(2011).Dynamicsofwetparticlesinrotating

drums:Effectofliquidsurfacetension.PhysicsofFluids,23(1),013304.

Liu,P.Y.,Yang,R.Y.,&Yu,A.B.(2013).Particlescaleinvestigationofflowandmixing

ofwetparticlesinrotatingdrums.pp.963–966.AIPconferenceproceedings(Vol. 1542)AmericanInstituteofPhysics.

Louati,H.,Oulahna,D.,&DeRyck,A.(2017).Effectoftheparticlesizeandthe

liquidcontentontheshearbehaviourofwetgranularmaterial.Powder Technology,315,398–409.

Lowe,D.G.(2004).Distinctiveimagefeaturesfromscale-invariantkeypoints.

InternationalJournalofComputerVision,60(2),91–110.

Mindlin,R.D.,&Deresiewicz,H.(1953).Elasticspheresincontactundervarying

obliqueforces.JournalofAppliedMechanics,20,327–344.

Nase,S.T.,Vargas,W.L.,Abatan,A.A.,&McCarthy,J.J.(2001).Discrete

characterizationtoolsforcohesivegranularmaterial.PowderTechnology, 116(2-3),214–223.

Nowak,S.,Samadani,A.,&Kudrolli,A.(2005).Maximumangleofstabilityofawet

granularpile.NaturePhysics,1(1),50–52.

Oberg,E.,Jones,F.D.,Horton,H.L.,&Ryffel,H.H.(2000).Machinery’sHandbook26:

AReferenceBookfortheMechanicalEngineer,Designer,ManufacturingEngineer, Draftsman,Toolmaker,andMachinist.NewYork:IndustrialPressIncorporated.

Price,D.J.(2012).Smoothedparticlehydrodynamicsandmagnetohydrodynamics.

JournalofComputationalPhysics,231(3),759–794.

Pudasaini,S.P.,&Hutter,K.(2007).Avalanchedynamics:Dynamicsofrapidflowsof

densegranularavalanches.Heidelberg:SpringerScience&BusinessMedia.

Roy,S.,Scheper,B.J.,Polman,H.,Thornton,A.R.,Tunuguntla,D.R.,Luding,S.,etal.

(2019).Surfaceflowprofilesfordryandwetgranularmaterialsbyparticle

trackingvelocimetry:Theeffectofwallroughness.TheEuropeanPhysical JournalE,42(2),14.

Rueden,C.T.,Schindelin,J.,Hiner,M.C.,DeZonia,B.E.,Walter,A.E.,Arena,E.T.,

etal.(2017).Imagej2:Imagejforthenextgenerationofscientificimagedata.

BMCBioinformatics,18(1),529.

Samadani,A.,&Kudrolli,A.(2001).Angleofreposeandsegregationincohesive

granularmatter.PhysicalReviewE,64(5),051301.

Schindelin,J.,Arganda-Carreras,I.,Frise,E.,Kaynig,V.,Longair,M.,Pietzsch,T.,

etal.(2012).Fiji:Anopen-sourceplatformforbiological-imageanalysis.

NatureMethods,9(7),676–682.

Schroeder,W.J.,Lorensen,B.,&Martin,K.(2004).Thevisualizationtoolkit:An

object-orientedapproachto3Dgraphics.NewYork:Kitware.

Schwarze,R.,Gladkyy,A.,Uhlig,F.,&Luding,S.(2013).Rheologyofweaklywetted

granularmaterials:Acomparisonofexperimentalandnumericaldata. GranularMatter,15(4),455–465.

Serway,R.A.,&Jewett,J.W.(2004).Physicsforscientistsandengineers.Pacific

Grove,California:ThomsonBrooks/Cole.

Shi,H.,Roy,S.,Weinhart,T.,Magnanimo,V.,&Luding,S.(2020).Steadystate

rheologyofhomogeneousandinhomogeneouscohesivegranularmaterials. GranularMatter,22(1).

SigmundLindner.(2018).Productdatasheet:Silibeadsglassbeadstypes.https://

www.sigmund-lindner.com/wp-content/uploads/2018/08/SiLibeadsTypeS-1. pdf

(12)

Silbert,L.E.,Ertas¸,D.,Grest,G.S.,Halsey,T.C.,Levine,D.,&Plimpton,S.J.(2001).

Granularflowdownaninclinedplane:Bagnoldscalingandrheology.Physical ReviewE,64(5),051302.

Soulie,F.,Cherblanc,F.,ElYoussoufi,M.S.,&Saix,C.(2006).Influenceofliquid

bridgesonthemechanicalbehaviourofpolydispersegranularmaterials. InternationalJournalforNumericalandAnalyticalMethodsinGeomechanics, 30(3),213–228.

Taghizadeh,A.,Hashemabadi,S.H.,Yazdani,E.,&Akbari,S.(2018).Numerical

analysisofrestitutioncoefficient,rotationalspeedandparticlesizeeffectson thehydrodynamicsofparticlesinarotatingdrum.GranularMatter,20(3),56.

Tegzes,P.,Albert,R.,Paskvan,M.,Barabási,A.L.,Vicsek,T.,&Schiffer,P.(1999).

Liquid-inducedtransitionsingranularmedia.PhysicalReviewE,60(5), 5823–5826.

Tegzes,P.,Vicsek,T.,&Schiffer,P.(2002).Avalanchedynamicsinwetgranular

materials.PhysicalReviewLetters,89(9),094301.

Tegzes,P.,Vicsek,T.,&Schiffer,P.(2003).Developmentofcorrelationsinthe

dynamicsofwetgranularavalanches.PhysicalReviewE,67(5),051303.

Tinevez,J.Y.,Perry,N.,Schindelin,J.,Hoopes,G.M.,Reynolds,G.D.,Laplantine,E.,

etal.(2017).Trackmate:Anopenandextensibleplatformforsingle-particle

tracking.Methods,115,80–90.

Urso,M.E.D.,Lawrence,C.J.,&Adams,M.J.(1999).Pendular,funicular,and

capillarybridges:Resultsfortwodimensions.JournalofColloidandInterface Science,220(1),42–56.

Vicente,C.M.S.,André,P.S.,&Ferreira,R.A.S.(2012).Simplemeasurementof

surfacefreeenergyusingawebcam.RevistaBrasileiradeEnsinodeFísica,34(3), 1–5.

Vo,T.T.,Nezamabadi,S.,Mutabaruka,P.,Delenne,J.Y.,&Radjai,F.(2020).Additive

rheologyofcomplexgranularflows.NatureCommunications,11(1),1–8.

Weinhart,T.,Tunuguntla,D.R.,vanSchrojensteinLantman,M.P.,Windows-Yule,

C.R.,Polman,H.,Tsang,J.M.F.,etal.(2017).Mercurydpm:Fast,flexible

particlesimulationsincomplexgeometriespartii:Applications.PARTICLESV: ProceedingsoftheVinternationalconferenceonparticle-basedmethods: Fundamentalsandapplications,123–134.

Windows-Yule,C.R.K.,Scheper,B.J.A.,VanderHorn,J.,Hainsworth,N.,Saunders,

J.,Parker,D.J.,etal.(2016).Understandingandexploitingcompeting

segregationmechanismsinhorizontallyrotatedgranularmedia.NewJournalof Physics,18(2),023013.

Wu,W.(2015).Recentadvancesinmodelinglandslidesanddebrisflows.Heidelberg:

Springer.

Xu,Y.,Xu,C.,Zhou,Z.,Du,J.,&Hu,D.(2010).2ddemsimulationofparticlemixing

inrotatingdrum:Aparametricstudy.Particuology,8(2),141–149.

Zhou,G.G.D.,&Sun,Q.C.(2013).Three-dimensionalnumericalstudyonflow

Referenties

GERELATEERDE DOCUMENTEN

For a relatively low capillary number of 0.2, it was observed that only highly confined droplets display a sigmoidal shape, whereas droplets at a lower degree of confinement still

If a specified number of particles, in our case 10 5 , is reached, a particle remapping is applied to reduce the number of computational particles; in this step, half of them are

Une chronologie relative de cette église est fournie par les tombes qu' elle abritait et qui toutes, à l'exception d'une seule, sont disséminées dans la nef

Although we could not quantify visiting arthropods by employing this approach, the large number of subjects observed in videos (average of 15.74 per hour per plant) compared

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Argumenten van zorgverleners die patiënten willen activeren Er zijn zorgverleners die het geen probleem vinden om activiteiten van pa- tiënten over te nemen als die aangeven zelf

All regressions are run using simple logit model. The dependent variable is equal to one if a company fails/defaults. Standard errors are computed using ’HC0’ method. The

Since charge delocalization is crucial for reducing exciton binding energy, donor moieties with 2-D conjugation may be good building blocks. Future study on CC1 (Chapter