• No results found

Structure and function of the surface layer of the fish pathogenic bacterium Aeromonas salmonicida

N/A
N/A
Protected

Academic year: 2021

Share "Structure and function of the surface layer of the fish pathogenic bacterium Aeromonas salmonicida"

Copied!
222
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

' a ‘ : A L U S TV Mi S3i pHH 30 ■ r.'A'rt'1 Jf • j S T R U C T U R E A N D F U N C T IO N O F T H E S U R FA C E L A Y E R O F T H E FISH PA T H O G EN IC B A C TER IU M A m m on as salmonicida by

Rafael A ngel G arduno

B .vS c., E scuela N acional de C iencias B ioldgicas, M&cico, 1980 , . . r , oj . .. }i A D issertation Subm itted in?Partial F u lfilm e n t o f the

‘ ‘ R equirem ents for the D egree o f

,! t( I-?'h i L ;■* S t Of

D O C T O R O F P H IL O SO PH Y

the D epartm ent o f Biochem istry and M icrobiology

W e accept this dissertation as conform ing to the required standard:

D r, W .W . K ay T su p e rv iso r^ e p a rim e p tjO f B iochem istry and M icrobiology)

Dr. A .T, M iilheson, DepartmenuOTlMembor (D epartm ent o f B iochem , and M icrobiol.)

-X 'tN g y 1-..

D r, R .W ; OlaFsdn, D epartm ental M em ber (D epartm ent o f B iochem . and M icrobiol.)

D r. T.W . i3ears()n! D<jnarlmental M em ber (D epartm ent o f B iochem , and M icrobiol.)

-y—y ---- C V " - :---— --- ---D r; L A , H obson, O utside M em ber (---D epartm ent o f B iology)

D r. J. Sm it, External E xam iner (D epartm ent o f M icrobiology, U niversity o f B ritish C olum bia)

© R A F A E L A N G E L G A R D U N O , 1993 U niversity o f V ictoria

A ll rights reserved. D issertation m ay n o t be reproduced in w h o le or in part, by photocopying o r other m eans, w ithout the perm ission o f the author.

(2)

Supervisor: Dr. William W. Kay

ABSTRACT

T h e fish pathogenic bacterium Aemmonas salmonicida is the cau sativ e ag en t o f furunculosis in salm onids, a system ic disease that causes im p o rtan t eco n o m ic Josses in salm o n aq u acu ltu re, S ince the paracry stallin e S -lay cr o f Aeromonas salmonicida, k now n as the A -Iaycr, is essential for virulence, the v irulence m e ch an ism s asso ciated w ith this structure w ere studied,

S tru ctu ral studies dem onstrated th a t the A -lay er is flex ib le and p la stic, bein g c a p a b le o f acq u irin g d ifferen t co n fo rm atio n s a n d /o r stru ctu ral p a tte rn s, in w h ich d iv a len t cations play an im portant role,

It w as rigorously dem onstrated (hat the A -lay er acts as an ad h esin , p ro m oting ad h ere n ce to m acrophages, and fish cel) lines. S ince the m acro p h ag e is a p ro fessio n al p h ag o cy te involved in ingesting and destroying bacteria, the ability o f A, salmonicida to re p lic a te in sid e m acro p h ag es w as ex am in ed . A, salmonicida re p lic a te d in sid e m acro p h ag es and eventually destroyed them. This characteristic, together w ith the fact th at A, salmonicida also p en etrated ep ith elial fish ce lls, m ak e it a fa c u lta tiv e ly in tracellu la r, invasive pathogen. T h e A -lay er provided an initial p ro te ctio n a g a in st o x id a tiv e agents, increasing the opportunities for A. salmonicida cells to in d u c e an A - lay e^-in d ep en d en t m echanism in v o lv ed in high resistan ce to o x id a tiv e ag en ts, an d thereby increased survival inside m acrophages,

S tudies w ith in vivo g row n A. salmonicida p ro v id ed fu rth er in s ig h t into the p ath o g en ic p rocess o f furunculosis, and suggested th at the A -lay er plays a cru cial ro le in co lo n iza tio n and penetration o f the host, as w ell as survival in sid e the h o st (early e v e n ts o f the in fe ctio u s p ro cess). H o w ev er, it w as fo u n d th a t in vivo g ro w n A . salmonicida is cap ab le o f ex p ressin g a slim e lay er that sh ield s its en tire su rface an d p ro v id e s full protection against com p lem en t-m ed iated k illin g an d p h ag o cy to sis, th u s relegating the A -layer to a secondary or m inor tole in the later stages o f infection.

T h e results presented have contributed sig n ifican tly to o u r k n o w led g e o f the viru len ce factors o f A, salmonicida, and could be used p ractically in the p rev en tio n o f furunculosis in the salm on aquaeultural industry,

(3)

Exam iners;

mwnwViH <Nn:«m

P r, W .W . K ay, S upervisor (P epr^lm erit o f B iochem istry and M icrobiology)

D r, A .T . M atheson. D enartm m rnl. M am h ^' (D epartm ent o f B iochem . and M icrobiol,)

| ;„u ,,...,- T

Dr, R .JV , D iai^o'ivD spSrthibntal M em ber (D epartm ent o f B iochem . anil M icrobial,)

Dr, T 'iW .^ e a iso n , D enartm ental M e r ’ ^D epartm ent o f B iochem . and M icrobiol,)

D r/C , A , H obsop, O utside M em b er (D epartm ent o f Biology)

D r, J. S m it, E x tern al E x a m in er (D ep artm en t o f M icro b io lo g y , U n iv ersity o f B ritish C olum bia)

(4)

iv

TABLE OF CONTENTS

A B ST R A C T . ... ii TAB LTD OR CONTENTS... iv LIST OF TA BLES ... ix l i s t

o r n o

ORES ... .x

LIST o r ABBREVIATIONS ... ... ... ...xiv

ACKNOWLEDG EM ENTS... xvii

DEDICATION... xviii G E N E R A L IN T R O D U C T I O N ... 1 P A R A C R Y ST A L L IN E SU R FA C E LA Y ERS O F E U B A C T E R IA ... 1 S -L A Y E R S O F B A C T E R IA L P A T H O G E N S ... ... 4 Aeromanas' bydr op hi la ,,... 6 Aeromonas schubertii ... 8 Bacillus' anthracis ... 8 Bacillus cere us ... 9

Bacillus sphaericus and Bacillus thuringiensis ... ..9

Bacteroides buccae, Bacteroides spp., and o th e r p a th o g e n s associated with p erio d o n titis... 11

Bacteroides nodosus ... 14

Campylobacter fe tu s ... 14

Chlamydia psittaci and Chlamydia trachomatis ... .1 8 Clostridium difficile and other clostridial p a th o g en s... 19

Comamonas acidovorans and oilier p ath o g en s asso ciated w ith suppurative o titis ... .21

(5)

M y c o b a e te r iim b o r n ... , ... 2?, Rickettsia species ... ... Treponema pallidum ... ... ... . Aeromonas salmonicida ... ... ... ... O R G A N IZ A T IO N A L PLA N FO R T H IS D ISSE R T A T IO N ... ... .... , . . . 2 3 ...,2(v . , . . 2 7 , . . . 2 8 C H A P T E R I . S T R U C T U R E O E T H E A -L A Y E R O E A erom onas s a lm o n ic id a ... . 2 9 M A T E R IA L S A N D M E T H O D S U SE D IN S T R U C T U R A L S T U D IE S 12 B acterial strain s... 22 G row th c o n d itio n s ... 32 Electron m icroscopy ... 33

C om puter sim u latio n ... 34

Sodium deoxycholatc extraction m ethod lo r A -p ro tein ... 35

T re a tm e n t o f w h o le cells o r purified A -lay ers w ith E D T A o r E G T A , ... 36

T reatm en t o f altered A -layers with divalent c a tio n s ... 36

Im age p ro cessin g ... 36 C H A P T E R I I . A S I N G L E S T R U C T U R A L - T Y P E IN N O R M A L A - L A Y E R S ... 37 IN T R O D U C T IO N ... 37 R E S U L T S A N D D IS C U S S IO N ... 38 C H A P T E R I I I . S T R U C T U R A L P A T T E R N S IN D I V A L E N T C A T I O N - D E P L E T E D A -L A Y E R S , A -L A Y E R S E R O M E N E R G Y S T A R V E D C E L L S O R A - L A Y E R S F R O M M U T A N T S D E F E C T I V E IN A -L A Y E R A S S E M B L Y ... ... ,4 8 IN T R O D U C T IO N ... 48 R E S U L T S ... ,,,..4 9 R eview o f biochem ical studies on A protein subunit In teractio n s. . . 49

E D T A or EG TA altered the A -layer stru ctu re ... 52

A -la y e rs o f ca lc iu m d e p riv e d c e lls ... 52

T h e W h ite D o ts p attern is n o t e x c lu siv e ly associated- w ith lim itation o f di valent c a tio n s, . , , ... 54

(6)

VI T h e B ig S quares pattern is form ed by a sin g le m o rp h o lo g ical

U n it I .« I 1 I I . 57

D IS C U S S IO N ..,... 59

C H A P T E R I V . F U N C T IO N S O F T H E A -L A Y E R O F A erom onas s a l m o n i c i d a , , ... ... ... ... ... .

M A TER IA LS A N D M ETH O D S USED IN F U N C T IO N A L S T U D IE S ,. B u f f e r s . . . ... . ... ... Bacterial stra in s. ... ... ... ... G ro w th co n d itio n s an d prep aratio n o f b acterial c e lls ... M urine m acrophages ... Isolation and culture o f rainbow tro u t (Oncorhynchus mykiss) m acrophages ... . ... ... ... Fish cell lin e s ... ... ... ... S taining and counting m e th o d s ... ... ... Electron m ic ro sco p y ... ... ... Survival c u rv e s ... .. ... P u rifie d A -la y e r an d A -p ro tc in ... ,... A -layer reconstitution. , ... , . ... ... C o atin g o f latex b ead s w ith A -la y e r or A -p ro tc in . B acteria-h o stcell association a s s a y s . ... In trap erito n eal ch am b ers used fo r grow th o f A, salmonicida in vivo... ... ... ... S urgery o f rainbow tr o u t., -... ... ... A. salmonicida grow n in vivo ... ... ... C hallenges with scrum and peritoneal f lu i d ... ... . C hallenges with reduced oxygen sp ec ies... ... C hallenges w ith intracellular generators o f su p e ro x id e ... C ytochrom e C reduction a s s a y ... ... ... ... H e m o ly s is a s s a y ... ... ... . 65 ,68 68 68 ...69 .69 ... 70 79 ...8 0 81 83 83 .,...,.8 3 84 84 87 87 89 89 ...89 ...9 0 ... 91 91 C H A P T E R V . A- LA Y E R - M E D I A T E D S P E C I F I C INTERACTION OF Aeromonas salmonicida WITH MURINE

M ACRO PH AG ES ... ... 93

(7)

vu

R E S U L T S ,., ... . . , . , . , , 9 4

E ffect o f ■experimental assay conditions on m urine tn 0 s and 4 .

salmonicida ... 94

E ffect o f co m p lex m edia on bacteria-*m 0 in terac tio n s... . 99

A -layer or A -protein coated su rfaces ... ... . 99

A. salmonicida cy to to x ic ity ... ... ... . 102 D IS C U S S IO N ... ... . 102 C H A P T E R VI . A - L A Y E R M E D I A T E D I N T E R A C T I O N O E A e r o m o n a s s a l m o n i c i d a W I T H R A I N B O W T R O U T M A C R O P H A G E S ... . ... 107 IN T R O D U C T IO N ... ... ... ...107 R E S U L T S ..,,... ... ...107

Isolation and culture o f trout m acro p h ag es. ... ...107

R ec o n stitu tio n o f an A -!ayer onto A " , 0 + c e lls ,,,., ... ... . 1 OK A. salmonicida su rface ch an g es and m acro p h ag e asso ciatio n 108 E ffect o f A -layer structural m o d ificatio n s ... ... . . . 1 1 ! E ffect o f hem in coatings on m acrophage a sso c ia tio n ... . I l l C ytopathic effects o f A. salmonicida on trout m a c ro p h a g e s ... . I t 1 D I S C U S S IO N ....,... ...1 14 C H A P T E R V I I . R E S P O N S E O F Aeromonas salmonicida T O O X Y G E N R A D IC A L S . R O L E O F T H E A - L A Y E R ... 120 IN T R O D U C T IO N , ... ,. 120 R E S U L T S ... 121 A ssays on p la te s .. ... 121 A ssays in liquid m e d iu m ... ... ... 125 D IS C U S S IO N ., ... 130 C H A P T E R V I II . I N T R A P E R lT O N E A L C H A M B E R M O D E L F O R i N VIVO G R O W T H O F Aeromonas salmonicida... 137

IN T R O D U C T IO N .,... 137

R E S U L T S A N D D IS C U S S IO N ... 138

R em oved intraperitoneal ch am b ers... 138

S u rv iv al o f A. salmonicida inside in trap erito n eal c h a m b e rs „ ... 140

(8)

S u r v iv a l a n d r e p lic a tio n in s id e m a c r o p h a g e s .,.,, ... 143

C H A PTER rx. THE A-LAYER OF Aeromonas CROWN IN VIVO... ... IN T R O D U C T IO N ... . R ESU L T S A N D D IS C U S S IO N , , , , ... ... A -layers o f in vivo grow n A. salmonicida Functional com petence o f the Big Squares pattern salmonicida ... .,.,147 ... 147 ... 147 ...147 ... 148

C H A P T E R X . / A VIVO GROWN A m m o n a s salmonicida.. ...153

IN T R O D U C T IO N ... 153

R E SU L T S A N D D IS C U S S IO N ,., ... . , , ... 155

C H A P T E R X L IS Aeromonas salmonicida AN INVASIVE PA THOGEN?,,,, ... 164 IN T R O D U C T IO N ... 164 R E S U L T S . ... 165 D IS C U S S IO N ... 168 GENERAL DISCUSSION, ... 169 LITERATURE CITED ... 174

(9)

LIST OF TABLES

T a b le t . E ffect o f hem in and protoporhyrih IX on the toxicity o f strcptonigrin to A, salmonicida strains A450-1 and A.450-3, as com pared with the w ild type A+ strain A 4 5 0 . ... T a b le 2. B acterio ly tic activity o f trout peritoneal fluid and serum

(10)

LIST OF FIGURES

X

F ig u r e 1. S chem atic representation o f the different space sym m etry groups

and arrangem ents found in S -laycrs . . . ... , ...3 F ig u r e 2. T h re e d im e n sio n al reco n stru ctio n o f :U A -la y e r... „ ... .30 F ig u r e 3, Electron m icrographs show ing the two m orphologies

in w hich A -layer sloughs m ay a p p e a r ,... ...3 9 F ig u r e 4. Explanatory m odel o f how A, salmonicida cells

m ay shed their A -lay ers, ..., ... , ... .4 1 F ig u r e 5. H an d ed n ess o f th e A -la y e r lattice a rra n g e m e n t... 42 F ig u r e f». A -layer m orphological types produced by superim position

and differential sta in in g ., ... 43

P ig u r e 7. Lattice constant variation in A -layer slou »hs... 45 F ig u r e 8. M odelling o f the lattice constant variations in

A -laj er slo u g h s --- 45

F ig u r e 9. R egular arrays found in detergent extracted A -layers, o r in sem icrystaliinc sheets form ed upon

concentration o f A -protein on ultrafiltration

m e m b ra n e s . ... 51

F ig u r e 10. A ltered A -layer patterns ... 53 F ig u r e 11. C ell and A -layer m orphologies o f the surface disorganized

m utants A 450-10S and A450-1QSR, as com pared with the w ild

; strain A 4 5 0 ... 55 & 56

Figure 12. C om parison o f the norm al and B ig Squares A -lay er p a tte rn s ... ...58 Figure 13. H ypothetical m odel show ing the proposed structural

rearrangem ents w ithin the A -la y er.,...

Figure 14 , M anufacturing o f laboratory-m ade sieving cu p s... ... ... 72

Figure 15. T o p view representation o f a dissected trout

ju s t before rem oving the head k id n e y ... ... ___ ..74

Figure 16. D istribution o f head kidney cells in a continuous

(11)

xi F i g u r e 17. Tips o f the m odified Pasteur pipeis used

in the isolation o f trout m acrophages, ... 76 F i g u r e 18. P reparation o f m acrophage cultures on supported cover,slips . . . 78 F i g u r e 19. Sequential steps in the assem bly o f intvaperuoneal

cham bers using m ieroeentrifuge tubes ... .88

F i g u r e 2 0 . S urvival o f A, salmonicida tit 31%'., ... ... 05 F i g u r e 2 1 . A ssociation o f A * (A450) and A" (A 450-3) bacteria

w ith m acrophages k ep t in PB S, as determ ined by three

different quantitative m ethods and electron m icro sc o p y , ... . , , . . , . . , , , 0 7 F i g u r e 2 2 . Forced association o f A+ (A 450) and A'" (A 450-3)

A. salmonicida w ith m aerw phages in P B S ... ,.0 8 F ig u r e 2 3 . M acrophage association from m ixtures o f A+ (A450)

and A " (A 450-3) strains at different A ” to A + cell ratio s,, , , ... . 08 F i g u r e 2 4 . A ssociation o f A+ (A450) and A"' (A 450-:.,sa lm o n ic id a

w ith m acrophages in tissue culture m edium R P M M 6 4 0 ... 100 F i g u r e 2 5 , R econstruction o f the internalization m echanism o f

A. salmonicida by m urine m acrophages in tissue culture

m edium R P M I-1640... . . . ... . 00

Figure 26. M acrophage association w ith particles or substrata coaled

w ith A -layer or A - p r o te in ....,,.,...,... 101

Figure 2 7 . M orphological changes induced by A. salmonicida upon adherent m acrophages, as detected through scanning

e le c tro n m ic ro sco p y an d lig h t m ic ro s c o p y . ... ..1 0 3

Figure 2 8 . C ongo R ed binding o f the A + reconstituted co-cultured

m ixture, as com pared w ith w ild type A 450, and the separate

reconstitution partners A 4 5 0 -1 and A 4 5 0 -3 .. , . ... ... 109

Figure 2 9 . A ssociation o f trout m acrophages w ith different strains

o f A, salmonicida, and A -layer or A -protein reconstituted

o r la te x b e a d s ... ... ... . 110

Figure 30, M acrophage association o f two different A 450 m utants

w ith structural alterations in their A -iayers ... ... . 112

Figure 31. E ffect o f differen t surface coatings in the m acrophage

asso ciatio n levels o f A +, A 450 and A “ A 450-3

(12)

XU

F ig u r e 3 2 . E ffect o f opsonization' o f A salmonicida

upon m acrophage association... . ... 113 F ig u r e 3 3 . E ffect o f A. salmonicida upon trout

m acrophage m o rp h o lo g y ... , ... 115 F ig u r e 3 4 . R ationale o f surface rcconstriuiion with

A -layer sheets from the A450-1 s tr a in ,, . ... 117 F ig u r e 3 5 . T oxicity o f H2O2, streptonigrin, or plum bagin to

different strains o f A salmonicida, as determ ined by the

d isc in h ib itio n a ssa y on n u trie n t a g a r..,. ..., ...122

F ig u r e 3 6 . Effect o f hem in and protoporhyrin IX on the toxicity o f

streptonigrin to A. salmonicida strain A 4 5 0 ... 123 F ig u r e 3 7 . T oxicity o f H2O2 to A. salmonicida cells w ith different surface

properties, as determ ined in liquid phase assays in n utrient b ro th ,. . . 126 F ig u r e 3 8 . Induction, in A. salmonicida, o f a protective, A -layer

in d ep en d en t response a g a in d H2O2... -... <,,», 127 F ig u r e 3 9 . T oxicity o f superoxide to A. salmonicida cells w ith different

surface properties, and induction o f a protective, A -layer independent response, as determ ined in liquid phase assays

in phosphate b u ffer... . . . ... 128 F i g u r e 4 0 . Effect o f different A -layer coatings and grow th conditions

on toxicity o f streptonigrin, H2O2, or superoxide to

A, salmonicida stra in A 4 5 0 ... 129 F ig u r e 4 1 . R eduction o f oxidized cytochrom e C by

x a n th in e /x a n th in e o x id a se g e n era ted s u p e ro x id e ... 131 F ig u r e 4 2 . E ffect o f the presence o f coated or uncoated A + A 4 5 0 cells

o n survival o f the A~ strain A 450-3 to H2O2, streptonigrin, or

superoxide c h a lle n g e s ...,...,... 132 F ig u r e 4 3 . T oxicity o f streptonigrin to A. salmonicida

cells w ith different surface p ro p erties. ... 133 F ig u r e 4 4 . Scantling election m icroscopy o f the internal and external

sides o f a M illipore™ m em brane recovered from an

intraperitoneal cham ber... 139

F i g u r e 4 5 . N egatively stained specim ens show ing the pores

fo rm e d u p o n e x p o su re to p e rito n e al flu id ... 141 F ig u r e 4 6 . G row th o f A. salmonicida A 450 inside peritoneal

(13)

xiii

Figure 47. Survival o f different bacterial species after a challenge w ith

fresh peritoneal fluid or fresh serum obtained from trout... 144

Figure 48. Survival o f three A. salmonicida strains inside cultured

head kidney m acrophages isolated from rainbow tro u t. ... 145

Figure 49. A ltered A -layer patterns after in vivo

g row th o f A, salmonicida ... , , ... 149

Figure 50. C haracterization o f A -layets displaying the

B ig S quares pattern in A. salmonicida A 450... 150

Figure 51. R esistance o f in vivo grow n A. salmonicida A450

to different bactericidal challenges... 156

Figure 52. R esistan ce o f in vivo grow n A. salmonicida strains

M T 26 and A450-3 to different bactericidal c h a l l e n g e s , ... 156

Figure 53. E ffects o f in vivo grow th and pre-exposure to fresh

p e rito n e a l flu id on m acro p h ag e a s s o c ia tio n ... . 157

Figure 54. Im m unogold labelling, w ith anti-A*protein, antibody, o f

A. salmonicida A 450 grow n in vivo o r in vitro... 157

Figure 55. E lectron m icrographs o f thin sectioned

A. salmonicida A 450 grow n in vivo o r in vitro , ... ,, 159

Figure 5 6 . N egatively stained cells o f A. salmonicida

A 450-3 grow n in vivo... 159

Figure 57. Survival and m acrophage association o f the

attenuated A. salmonicida strain A 4 5 0 -1OSR

g ro w n in vivo o r in vitro ... ...161

Figure 58. A ssociation of E PC or C H S E fish cell lines w ith

d ifferen t A, salmonicida strain s... ... . 166

Figure 59. S canning electron m icroscopy of EPC and

C H S E cells with adhered bacterial cells o f

the A 450 wild type strain. . — ... 167

Figure 60. T hin section o f an EPC cell show ing several surface-bound

(14)

LIST OF ABBREVIATIONS

A TCC A m erican T ype Culture Collection

BSA B ovine scrum aibum in

BS pattern B ig squares pattern

C F U C olony form ing unit

C H S E C hinook salm on em bryo

cm C entim eter

C R C o n g o Red

D'MSO D im ethyl sulfoxide

DOC Sodium deoxycholate

EDDA Ethylcncdiam ine-di(o-hydroxyphenylacetic A cid) EDTA Ethylenediam inc Tetra-aeetic Acid

EGTA E th y len e G l>eol-bis(B -am inoethyl E ther) N ,N ,N ',N ' Tctra-acctic Acid

EM Electron m icroscopy

EPC E pitheliom a p ap ilo su n cyprini

FPA Fixative conUiining form alin and propionic acid in ethanol

FPM F ish peptone m edium

PR units F ree ring units

X gav A verage relative centrifugal field G C co n ten t T otal G uanine-C ytosine content

h H o u i(s)

B B S S H anks balanced salt solution

H E P E S N -[2-H ydroxyethylj piperazinc-N '-[2-ethancsulphonic acid)

IIP L C H igh perform ance liquid chrom atography

1PN Interferon

Im m unoglobulin

IP Intraperitoneal

I PC Intraperitoneal cham ber

Kd D issociation constant

(15)

kV K ilovolts

LB broth Luria-Berlani broth

LD50 Lethal dose o f a to x ic o r infectious agent that kills 509; o f a tested animal population

LOS Lipooligosaccharide

LPS Lipopolysaceharide

LTA Lipoteichoic acid

M Abs M onoclonal antibodies

MEM M inim al essential medium

m in, M inute(s)

mM M iilim olar

m0 M acrophage

M .S. 222 3-A m inoben'/oic acid ethyl ester

M W or Mt M olecular w eight

N A D P H N icotinam ide adenine dinucleotide phosphate (in its reduced form)

ng N anogram

nm N anom eter

nM N anom olar

CD O ptical density

OM O uter m em brane

PB M C Peripheral blood m ononuclear cells P B S P hosphate buffered saline

PG Plum bagin

Pi Isoelectric point

pK a -log 10 (acid dissociation constant)

PM N P olym orphonuclear

P M SF P henylm ethylsulfbnyl fluoride

R O S R educed oxygen species

S D S -P A G E Sodium dodecyl sulfate-polyaerylam ide gel electrophoresis

SEM Scanning electron m icroscopy

S N G Streptonigrin

SPA Surface protein antigen (S-layer protein in Rickettsia species)

(16)

xvi

SPO Superoxide

TEM Transm ission electron m icroscopy

TE PA B uffer containing T R IS, ED TA , P M SF and sodium azidc

T R IS T dsfhydroxym elhyJjam inom cthane TSA T rypiicase so y agar

TSB Trypticasc soy broth

(17)

xvii

ACKNOWLEDGEMENTS

I thank m y su p erv iso r Dr, W .W , K ay for his guidance am,I patience, as well as his g e n e ro sity in p ro v id in g financial su p p o rt as a graduate stu d en t, an d tit attend scientific m eetings.

T h e assistan ce o f G eraldine W on g , Em il Lee, K aren W ithal, A nne A rch er and John W in ch ester, is greatly appreciated.

F in an cial su p p o rt from the U n iv ersity o f V ictoria (through a U n iv ersity o f V ic to ria F e llo w sh ip , P re sid e n t's R ese arc h A w ard and T h e M rs, A n n ie G re sk iw A w a rd ), N S E R C (th ro u g h a P o stg rad u ate S cholarship), and the S cience C ouncil o f B ritish C o lu m b ia (through a G R E A T A w ard) is acknow ledged.

F in ally , I w ant to thank J. N ich o ls for his ad v ise and su p p o rt d u rin g my first y ear a s a g ra d u a te stu d en t, as w ell as B .M . P hipps, J,C . T h o rn to n , J.L . D oran and S.K . C o llin so n fo r being helpful peers.

(18)

DEDICATION

A Elizabeth, mi ayuda idbnea

A m is padres por huberm c engcndrado eom o un producto de su am or S obre todo y sobre .lodos, al revelador de m isterios, en especial

el de su presencia en todo y on todos, quo ha hecho y h ace posible todas las cosas en todo lugar. O ne d ay hum anity will have a different approach to the

learning process, T dedicate this piece o f know ledge to the day when the present scientific m ethod

(19)

GENERAL INTRODUCTION

T h is d o c to ra l d is s e rta tio n d eals w ith th e stru c tu re and fu n ctio n o f the p arac ry sta llin e su rface la y e r o f the fish pathogen A e tm m a s salmonicida, S everal co m p reh en siv e rev iew s and m onographs on p aracry stallin e surface layers (S -layers) h a v e ap p e a re d re c e n tly (B a u m cisler et al., 1989; B ev e rid g e and G rah am , 1991; E n g elh ard !, 1988; H o v m o ller et ah, 1988a; K oval, 1988; K oval and M u rray , 1986; M e s sn e r an d S lcy tr, 1991 & 1992; P h ip p s, 1988; P um et al., 1989; S ley tr and M essn e r, 1988 & 1989; S leytr et al,, 1988a, 1988b & 1989; S ley tr and Srtra, 1986; S m it, 1986), an d the p ro cee d in g s o f the T hird In tern atio n al W o rk sh o p on S -lay ers (N A T O -A R W , L ondon, O ntario, S eptem ber 27-30, 1,992), are to be published sh o rtly (B ev erid g e a n d K o v al, 1993). C o n seq u en tly , an o th er ex ten siv e p resen tatio n on S- lay ers w ould be redundant. T herefore, this general introduction will d escrib e, briefly, the general characteristics o f cubacterial S-layers, and m ore extensively, an area that has n o t been co v ered in d etail in any o f the ab o v e m entioned review s o r m on o g rap h s, that is th e S -lay ers o f b acterial pathogens, including the m icroorganism that co n stitu tes the su b ject m atter o f this dissertation, Aeromonas salmonicida.

PARACRYSTALLINE SURFACE LAYERS OF EUBACTERIA

H o u w in k (1 9 5 3 ) w as the first to rep o rt the ex isten ce o f an S -layer, T his w as d etected by electro n m icroscopy o f cell w all fragm ents p repared by m etal sh adow ing (u n fo rtu n ately these lay ers are o n ly detected by electron m icro sco p y ). S in ce then, S- layers have been reported in an increasing num ber o f bacterial species. T h e m ost recen t list o f eu b a c te ria po ssessin g S -layers (M essner an d Sleytr, 1992) in clu d es m ore than

200 sp e c ie s an d stra in s, co m p risin g n early e v e ry eu b a c te riu l ta x o n o m ic g ro u p , A lth o u g h th ese m acrom olecular surface structures have received different nam es, a t the S eco n d In te rn a tio n a l W o rk sh o p on S u rface L ayers, held in V ienna in 1987, it w as ag reed to use the term “ S -iay er” to co n n o te “ tw o -d im en sio n al cry stallin e array s o f p ro tein aceo u s su b u n its form ing surface layers on prokaryotic cells” . In this co n tex t S­

(20)

2 layers sh o u ld be distinguished from oth er surface layers describ ed in p rokaryotes; i.e. cap su les, external slim es o r glycocaliccs, and sheaths (B ev erid g e and G raham , 1991). Interestingly, m an y S -lay er proteins constitute exam ples o f p ro k ary o tic g ly co p ro tein s (M essn er and S leytr. 1991), for m any years thought not to ex ist in prokaryotes.

S-layers arc tw o-dim ensional, highly organized protein m uH im ers d isp o sed as sin g le m o n o lay ers, or as n atu rally su p erim p o sed m u ltilay ers, th a t c o v e r th e ersthc su rfac e o f those b acteria w hich possess them , W ith few ex cep tio n s, each S -’a y cr is co m p o sed (if a single ty p e o f protein o r glycoprotein subunit. T h erefo re, w hen m u lti- S -lay ers are p rese n t on th e sam e bacterium , each has a d iffere n t protein co m p o sitio n (A ustin and M urray, 1990; K ista n d M urray, 1984; T suboi etal, 1982).

S -layer su b u n its are acidic proteins with a m ass ran g e o f 30 to 220 k D a, high co n ten t o f h y d rophobic am ino acid s (40-50% on av erag e), and a very low c o n te n t o f m e th io n in e and cy stein e. S tru ctu rally , S -lay er su b u n its in e u b a c te ria are b ilo b ed p ro tein s, form ed by a heav ier (m ajor) and a lighter (m inor) do m ain co n n ected b y an arm (F ig . 1), H eav ier d o m ain s co n v en e around a p rim ary sy m m e try axis to form m assiv e co res, and the lig h ter d o m ain s p ro v id e c o n n e c tiv ity by in te ra c tin g a t a secondary sym m etry axis. Prim ary and secondary axes m ay be of the sam e o r differen t sy m m e try , i.e. 2-fold, 3 -fo ld , 4 -fo ld o r 6-fold sy m m etry , and reg u la rly d istrib u te d w ithin arrays o f p ! , p2, p3, p4 o r p6 sp ace sym m etry (S ax to n an d B au m eister, 1986) (Fig. 1), T he c u rre n t u n d erstan d in g o f the o rg an izatio n o f S -lay e rs in eu b ac teria, d efin es the su b u n it-su b u n it and the subunit-w all in teractio n s as th e m eans o f S -lay er in teg rity (B au m eister et al,, 1989; K oval, 1988; S le y tr and M essn e r, 1992; S m it, 1986). S ubunit-subunit interactions determ ine the form ation o f the paracrystalline array w hile in teractio n s w ith th e cell w all provide anchorage o f the asse m b led array to the bacterial cell,

Purified S -layer subunits have show n the ability to spontaneously self-assem b le into array s identical to th o se observed on cells, su g g estin g th at array fo rm atio n is an entropy-driven, process, and that subunits possess a lt the info rm atio n necessary to form lattices o f d efin ed stru ctu re (S ley tr and M essn er 1989). P u rified S -lay er su b u n its or layers assem bled in vitro also have the ability to reattach onto cell surfaces devoid o f S- la y e rs. T h is re c o n s titu tio n p ro ce ss is u su ally sp e c ie s a n d /o r stra in s p e c ific , d em o n stratin g th e im portance and sp ecificity o f su b u n it-w all in teractio n s. S u b u n it- su b u n it and su b u n it-w all in teractio n s are gen erally o f a d iffere n t n atu re (A u stin and

(21)

Minor domain Ann

IMajor domain

S-layer protein

f ’IG U R E 1. Schem atic representation o f the different space symmetry groups and arrangements found in S-layers, The symmetry axes, around which the S-layer protein major ( M ) , or m inor ((',)

domains convent, are shown as geometric figures filled in black: ellipse = 2- fold symmetry axis, triangle * 3-fold symmetry axis, square * 4-fold symmetry axis, hexagon - 6*fold symmetry axis. P i, P2, P3, P4, and P6 designate the space symmetry groups, and the nomenclature used for (he different lattice arrangements is that proposed by Saxton and Baumeister ( & 86). Other symmetry centres within the lattice are-not shown,

(22)

4 M u rray , 1990; B aum eister <'t. a l, 1982; D o ran e: al., 1987; K oval and M u rray , 1983; N o rm u t and M urray, 1967; S ley tr and G lau ert, 1976; S leytr and P lo h b e rg e r, 1980), and arc m ediated by non-eovalent bonds (hydrophobic and electrostatic interactions), as In ferred from the m ethods required- to iso la te in tact S -layers o r to so lu b iliz e S -lay er pro tein s (KOnig and S tcttcr, 1986; K oval an d M urray, 1984; M essn er & S leytr, 1992), T h e se m ethods usually involve th e use o f ch ao lro p es, detergents, lo w io n ic stren g th buffers or deionized w ater, extrem e pH buffers, or divalent catio n chelators.

S -layers are clearly im portant su p ram o lecu lar assem blies, acco u n tin g fo r th eir u b iq u ity am o n g p rokaryotes. W h en p resen t, they co m p rise up to 2 0 % o f the total cellu la r protein (im posing an expensive burden upon the cell econom y), and it has been estim ated that they rep resen t the m ost ab u n d an t prokaryotic proteins in the b io sp h ere (M essn er and Sleytr, 1991 & 1992), In m o st cases how ever, their e x a c t b io lo g ical fu n c tio n s h av e n o t y e t been assig n ed . In d eed , in c o n tra s t to th e ir s tru c tu ra l ch ara cterizatio n , there is a severe lack o f in fo rm atio n regarding the fu n ctio n s o f these unique structures, O w ing to their strategic surface location, and to the fact that S-layers rep resen t ttpen netw orks o f charged proteins w ith defined pores, the follow ing potential fu n ctio n s have been proposed: i) pro tectiv e coats, ii) m o lecu lar siev es, iii) m o lecu la r trap s an d /o r io n ic ex ch a n g ers; iv ) ad h csin s for su rface re c o g n itio n ; v) c e ll sh ap e d eterm in an ts, A lth o u g h som e o f these fu n ctio n s h av e now been co n firm ed in so m e eu b acteria (M essn er and Sleytr, 1992), th e ev id en ce is still frag m en tary o r a b sen t in m o st cases.

S-LAYERS OF BACTERIAL PATHOGENS

The interaction o f bacterial pathogens w ith th e ir h o st is m ainly d eterm in ed by m aero m o lecu lar surface structures (B row n and W illiam s, 1985, D oyle and S onnenfeld, 1989, F ish er, 1989, S m ith , 1977, W illia m s, 1988). T h e p a th o g e n ic p ro c e ss o f infectious d iseases has been dissected in th e follow ing steps: co lo n izatio n , p en etratio n , m u ltip lica tio n , ev asio n o f host defense m e ch an ism s and dam ag e to th e host. In all th ese steps (w ith the possible exception o f m ultiplication in th e host an d d am ag e) the b a cteria l s u rfa c e plays a piv o tal role. I t is the c e ll su rfa c e , th ro u g h sp e c ia liz e d m ac ro m o le c u lar structures know n as a d h em s, w hich serves as an an ch o rin g p o in t for path o g en ic bacteria, In turn, these adhcsins m ay determ ine h o st and tissu e specificity,

(23)

5 i.e. th e ability o f a b acterial pathogen to p ro d u ce disease in so m e an im al sp ecies in p referen ce to o th ers, and the ability to co lo n ize (w ithin a given host) som e specific tissue in preference to others, It is the cell surface, through its sp ecialized structures, w hich determ ines w hether certain pathogens w ill be invasive, i.e. able to penetrate host cells o r som e physical barriers, to becom e established in deeper layers o r tissues o f the host. S u rface co m p o n en ts co n trib u te to m ultiplication in the h o st by help in g bacteria ac q u ire e sse n tia l n u trien ts. O n e o f the b est docum ented cases is th eir role in iron aquisition, e ith e r through specific surface receptors for siderophores o r th ro u g h direct b in d in g o f h o st iron-containing m olecules. It is also the cell surface w hich serv es as a site o f im m unological recognition, accounting for the im portance o(surface antigens in v accin e design. It is by m odifying their cell surface (through m echanism s o f antigenic and phase variation) th at som e bacterial pathogens ev ad e im m unological recognition. As w ell, it is th e cell su rface w hich serves as the targ et o f m any o f th e host defense m echanism s, and it is by having tough specialized surfaces that so m e pathogen,,, evade th e se m e ch a n ism s. F o r in sta n ce, so m e su rfa c e stru c tu re s (e.g , p o ly sa c c h a rid e c ap su les, lo n g O p o ly s a c c h a rid e ch ain s and S -layers) in h ib it co m p lem e n t-m e d ia te d k il lin g , p h a g o c y to s is a n d /o r in tr a c e llu la r d ig e s tio n a f te r p h a g o c y to s is . L ip o p o ly sacch a rid e (L PS) from gram -n eg ativ e bacteria, and lip o teich o ie acid s (L'l'A ) from g ra m -p o sitiv e b acteria, also have been im plicated in m o d u la tio n o f the h o st im m u n e resp o n se. Finally, surface com ponents o f bacterial pathogens m ay cau se host d am ag e evoking im m unopathological reactions (e.g. im m unopathology associated with surface antigens o f Treponema pallidum or Mycobacterium species).

T he su rface location o f S -layers, in m any instances as th e o u term o st stru ctu re on bacterial pathogens, m eans that they serve as the interface betw een the pathogen and its h o s t and m ay significantly influence the outcom e o f a host-parasite relationship, S- la y ers m u st n a tu ra lly com e in clo se co n tact w ith cells, flu id s, m e m b ra n es an d /o r b a se m e n t p ro te in su rfaces o f the host, and th erefo re m ediate sev eral o f the actio n s described above. In the follow ing section a survey o f cases o f bacterial path o g en s wi th S -lay ers (ordered alphabetically by genus and species) is presented. M y intention is to em p h asize the know n virulence functions o f S-layers but, unfortunately, only structural descriptions are available in the m ajority of cases.

(24)

A e r o m o n a s h y d r o p h ila

A ccording to the B crg ey ’s M anual o f S ystem atic B acteriology (P o p o ff, 1,984), the g en u s Aeromonas belongs to the fam ily Vibrionaceae and in clu d es tw o g ro u p s sep arated on the basis o f o p tim al grow th tem p eratu re and m o tility . O n e g ro u p is form ed by p sy ch ro p h ilic, n o n -m o tile acro m o n ad s, b elo n g in g to a sin g le sp ecies, A. salmonicida, w ith three subspecies, A. salmonicida subsp. salmonicida, A. salmonicida su b sp . achromogenes, and A. salmonicida subsp. masoucida. T h e sec o n d g ro u p co n sists o f m eso p h ilic and m otile bacteria, including three sp ecies, A. hydrophila, A. caviae and A. sohria. A lthough the taxonom y o f m esophilic aero m o n ad s has ch an g ed significantly from P o p o ff s schem e, the psychrophilic group has been m o re stable. T o date, it has been proposed to m ove the acrom onads out from the Vibrionaceae to form a new fam ily, the Aeromonadaceae (C olw ell, e ta l, 1986); the taxonom y o f the n o w 11 recognized sp ecies o f m esophilic acrom onads is still n o t reso lv ed (M artfn ez-M u rcia et at,, 1992); an d a new su b sp ecies o f A. salmonicida h as been pro p o sed (A u stin et a l, 1989; B eilan d and T ru st, 1 9 8 8 ) lo in clu d e the so -c a lle d “ a ty p ic a l” stra in s. A . hydrophila co m p rises g ram -n eg ativ e straig h t and sh o rt rods, m o tile by a sin g le p o lar liag ellu m in liq u id m edium an d som etim es p eritrich o u s flag ella on so lid m edia. Its o p tim al g ro w th tem p eratu re is 28°C . Its nam e m eans “ w a te r-lo v in g ” sin c e th is organism is co m m o n ly found in fresh w ater and sew age (P opoff, 1984).

In 1980, M ittal et al, (1980), rep o rted a p a rticu la r g ro u p o f A. hydrophila strain s that w ere highly v iru len t to salm onids. A t th a t tim e, A. hydrophila had been regarded only as an op p o rtu n istic pathogen (B oulanger e ta l, 1977; De F ig u eired o and P lum b, 1977), residing free in the environm ent (H azen e ta l, 1978; K aper etal., 1981) o*’ in the d ig e stiv e tra ct o f salm o n id s (T ru st and S p arro w , 1974; C a h ill, 1990b and references therein). H ow ever, the high virulence traits o f this particular g ro u p indicated that som e A, hydrophila iso lates m ay behave as true prim ary pathogens. P ath o g en ic A. hydrophila c a u se h em o rrh ag ic sep ticem ic in fectio n s in fish , and g a stro in te stin al or sy ste m ic in fe c tio n s in o th e r an im al sp ecies in c lu d in g a m p h ib ia n s, re p tile s, and m am m als. In te re stin g ly , certain A. hydrophila strain s iso la ted from h u m a n s also d isp lay this high virulence phenotype (D ooley, etal., 1985; Jan d a etal., 1987), v/hich sig n ific a n tly c o rre la te s w ith p ro d u ctio n o f in v a siv e in fe c tio n s (b a c te re m ia and perito n itis) (Ja n d a etal., 1987). T he highly v iru len t iso lates (eith er from salm o n id s, m a m m a ls o r h u m a n s) p o sse ss O -p o ly s a c c h trid e c h a in s o f h o m o g e n e o u s len g th (D o o ley , et at., 1985) th a t carry a th erm o stab le se ro g ro u p -sp e cific ep ito p e , 0 :1 1

(25)

7 (S akazaki, 1987), in turn associated with the presence o f a pnracrystalline surface layer (D o o ley and T ru st, 1988). T he S -laycr o f the highly v iru len t A. hydrophila strain s (particularly T F 7 ) has been well characterized, In it" relation w ith the 0 ; 11 specific 0* p o ly sa c c h a rid e ch ain it w as sh o w n th a t S -lay e r an c h o ra g e is 0-p o ly sa c c h a rid e - d ep en d en t and that a m inim um L P S oligosaccharide size is required for an ch o rin g the S -la y e r to the cell su rfa ce (D o o ley and T rust, 1988; K okka et al,, 1990), A ll the m em bers o f the high virulence group possess a sim ilar te tra g o n a l^ arrayed layer w ith a lattice co n stan t o f ab o u t 12 an (M urray et cd„ 1988). T h e 3-D structure o f this array has b een reso lv ed (A l-K arad ag h i etal,, 1988) sh o w in g th a t the S -lay er su b u n its are b ilo b ed p ro tein s g ro u p ed around two d ifferen t 4 -lb ld sy m m etry axes w ith an MqOq arran g em en t (refer to Fig, 1) and a thickness o f 5.6 nm. D ooley et al,, (1988; D ooley and T ru st 1988) carried o u t the biochem ical characterization o f the S -layer subunit from strain T F 7, T h is is a 52 kD a acid ic protein, w ith 41% h y d ro p h o b ic am in o acid s, a sin g le iso electric form (p i 4.6), and no cysteine. V ery sim ilar ch aracteristics w ;rc also fo u n d fo r the S -la y e r p ro tein o f a strain (A H -3 4 2 ) in v o lv ed in a case o f hum an b acteraem 'a (K o k k a etal,, 1992b). A lthough hydrophobic in itself, the S -lay er protein d o es n o t c o n fe r h y d ro p n o b icity to A, hydrophila cells w hen p resen t as an in tact S- layer. T h e S -lay e r p ro te in is co m p o sed by 44% b eta-sh eet, 19% alp h a-h clix , 12% beta-tu rn , and 25% aperiodic structure, T he N -tcrm inal am ino acid seq u en ce (first 30 residues) o f the m atu re protein did not show any sequence sim ilarity w ith oth er S -lay er pro tein s (D ooley and T rust, 1988; K okka etal,, 1992b).

E x p lo rin g the an tig en ic related n css o f the S-Iayers asso ciated w ith the ();! I sero ty p e, it w as fo u n d th at som e S -layer proteins w ere a n tig e n ic a l'y d iv erse ow ing lo differences in their prim ary sequence. D ue to the com plexity o f this genus, this is not a su rp risin g finding, and in relation to pathogenesis, it m ay rep resen t an extra strategy o f a n tig e n ic v ariatio n o f S -lay er-p o ssessin g A, hydrophila strain s (K o str/.y n sk a el al., 1992). E stab lish m en t o f the functions for the S -laycr o f path o g en ic A. hydrophila has not b een an easy task, T h e stro n g est d irect evidence o f its role in p athogenesis co m es from rece n t experim ents reported by K okka et al, (1992b). S -layer negative (S ')strain s w ere injected intraperitoneally, together w ith purified S -layer protein, in S w iss-W ebster m ice, In terestin g ly the LD$r o f S" strains w as reduced 3 0 -70 fold, su g g estin g that the S -lay e r p ro tein m ay p lay an im p o rtan t role in p ath o g en esis. T he m echanism o f this enhancing effec t upon the ability to produce disease is not y et know n. H ow ever, it w as p ro p o sed that the S -lay e r su b u n its reconstituted an S -lay er on the su rface o f S* cells,

(26)

8

co n ferrin g to them so m e trait(s) necessary fo r sy stem ic d issem in atio n (K o k k a e ta l, 1992b), It is d isa p p o in tin g that, alth o u g h c le a rly im p lic ated in v iru le n c e and p athogenesis (M ittal et al.,, 1980; Janda et al,, 1987: Ford an d T hune, 1991; K o k k a et a l, 1992b), a sp e cific fu n ctio n fo r this w ell ch ara cte riz ed S -lay e r o f v iru le n t A. hydrophila, has not as y et been unequivocally dem onstrated (K okka et a l, 1991).

A e r o m o n a s s c h u b e r tii

T his is one o f the 12 recognized species o f the genus Aeromonas and belongs to the g ro u p o f m e so p h ilic m o tile ae ro m o n ad s (M a rtln e z -M u rc ia et al,, 1992 an d referen ces therein). A lthough d ifferen t species o f aero m o n ad s p o ssessin g the 0 :1 1 sero ty p e also possess an S -lay er (e.g. A. veronii),A. schubertii is o f p articu la r in terest b ecau se it cau ses sy stem ic o r w ound infections. S ig n ifican tly , a lth o u g h o n ly a few strains have bet n isolated, none o f them w ere isolated from the gastrointestinal tra ct and no an im al o r en v iro n m en tal isolates are know n to exist. K o k k a et al, (1 992a) stu d ied the 11 know n strain s o f A. schubertii to d eterm in e th eir stru c tu ral and p a th o g en ic pro p erties, A ll six strain s b elo n g in g to the 0 :1 1 sero g ro u p (b u t n o n e o f th e strain s co n tain in g L P S w ith O -ch ain s o f heterogeneous length) p o ssessed a 55 k D a su rface la y e r pro tein . O n e, o u t o f th ree strain s w ith tru n c ated O -p o ly sa c c h a rid e ch ain s, secreted the S -lay er p ro tein into th e m edium , su g g estin g th at, as d escrib e d fo r A . hydrophila, an ch o rin g o f the S -la y c r to the cell su rfac e is L P S -d e p e n d e n t a n d a m inim um len g th o f the O -p o ly sacch arid e ch ain is required fo r co m p eten t an ch o rin g (K o k k a et al. 1992a). S tran g ely , these authors d id n o t re p o rt any u ltrastru ctu ra l o r functional characterization of the S-layer.

B a c illu s a n th ra c is

T h e m em bers o f the g enus Bacillus are distinguished fro m o th er g ram -p o sitiv e rods b y th e ir stric t o r facu ltativ e aero b ic nature, and their ab ility to sp o ru la te and p ro d u ce catalase fS lep eck y and H em phill, 1992). B. anthracis, the cau sativ e ag en t o f the fatal disease anthrax, p o ssesses tw o w ell reco g n ized v iru len ce factors: a p o ly-D - glutam ic acid cap su le w hich inhibits phagocytosis (G reen etal., 1985) and a tripartite toxin (L eppla, 1988). T h e p resen ce o f a lin ear S -lay cr in th is o rg an ism Was early reco g n ized in freeze-etch ed rep licas (H o lt and L eadbetter, 1969) w h ere the S -lay er ap p eared to be form ed by strands o f globular particles o f 6-8 nm . S eparation betw een stran d s an d b etw een p articles w as 7 -1 0 nm . A n aly sis o f a 2-D p ro je ctio n o f the

(27)

y

n eg a tiv ely sta in e d S -lay er sh o w ed th a t it is o rg an ized in a p i la ttice (D o y le and S onnenfeld, 1989). A lthough u is possible that tw o proteins designated as “cxtrnetablo an tig en s” E A -I and E A -II (closely associated w ith the pep tid o g ly can layerl are the S* la y er su b u n its (D o y le and S onnenfeld, 1989), th e ir id en tity has n o t been clarifie d , n eith er their function discerned.

B a c illu s c e re u s

B. cereus has been reco g n ized as an a g e n t o f food p o iso n in g sin c e 1955, c a u sin g tru e in to x ic a tio n s ra th e r than in fe ctio n s. H o w ev er, B cereus has been

im p lic ated in m u ltip le cases o f a variety o f infections (F arrar and R eb o li, 1992), and acco rd in g to D av cy and T au b er (1987) th is is one o f the m o st destructive organism s to in fe c t the eye. Since B, cereus produces potent exotoxins (responsible for m uch of the p ath o g en esis asso ciated w ith this organism ) em phasis has been placed on the study o f su ch toxins. T h u s the functions associated with its S-layer have not been characterized a t all, and ev en stru ctu rally , very little is know n ab o u t the S -lay cr o f B. cereus, H o lt an d L ead b etter (1969) described it as a “globular lay er” , sin ce in freeze-etched replicas it ap p eared as form ed by g lo b u lar units o f 6-7 nm in size. N eg ativ e staining revealed m o re cle arly a tetrag o n al array w ith a lattice sp acin g o f ap p ro x im ately 10 nm , first described by E llar and Lundgren (1967) on the A T C C strain 4342.

B a c illu s sp h a e r ic u s a n d B a cillu s th u rin g ien sis

In the co u rse o f sporulation, so m e strains o f Bacillus sy n th esize a parasporal in c lu sio n o r “c ry sta l” , w hich m ay co n tain pro tein s toxic for la rv ae o f a v ariety o f in sects. T h e tw o m ore p ro m in en t sp ecies o f these en to m o p ath o g e n ic bacteria are B, sphaericus a n d '# . thuringiensis. C om m ercial products (bioinsecticides), prepared from c u ltu re s o f th ese m otile Bacillus species, are available and they are ex p ected to gain p o p u larity s in c e they do not h av e m ost o f the en v iro n m en tally d eleterio u s effects o f sy n th etic in secticid es (Ignoffo and A nderson, 1979; Stably etal., 1992). In terestin g ly , both sp ecies h av e S-layers.

T h e S -lay e r o f B, thuringiensis w as d escrib ed recen tly b y L u ck ev ieh and B ev erid g e (1989). T he three strains that they stu d ied had stru ctu rally sim ilar S -lay ers c o m p o se d o f a d elicate o b liq u e array. O ptical d iffractio n o f n e g a tiv e ly stain e d sp ecim en s sh o w e d that the m ajo r lattice lines w ere spaced ab o u t 8.5 nm . S eco n d ary lattice lines, ru nning at 73° w ith respect to the m ajor lines, w ere separated 7 .2 nm. T h e

(28)

10 la y e r w as 9 nm th ick in thin sectio n s. S h ad o w ed p re p ara tio n s o f sh ed S -la y e r fragm ents sh o w ed that the layer has an external sm ooth face and a rough face facing the cell w all. T h e p u rified S -lay er protein w as hydro p h o b ic, an d acid ic (p i 5) w ith a m olecular w e ig h t of 91,400, n o t glycosylated, and did not contain cysteine, m ethionine and tryptophan. Its N -term inal am ino acid sequence w as d eterm ined but no seq u en ce sim ilarity w as found w ith any o th er S -lay er protein. In creasin g am o u n ts o f S -lay e r protein w ere found as cultures aged, and stationary p h ase cells shed larg e am o u n ts o f S -lay cr fragm ents, N o functional characterization w as attem pted.

in c o n tra st to th e S-layer o f B. thuringiensis, the S -lay er o f B. sphaericus w as rep o rted m u ch earlier (H o lt and L cadbettcr, 1969). H ow ever, it w as n o t until 1983 w hen it w as d iscovered that the cn tom opathogenic strains o f B. sphaericus had an S- lay er d ifferen t from th a t o f non-pathogcnic strains (W ord et al,, 1983). T h e S -lay e r o f n o n -p ath o g o n ic strains consists o f a tetragonal array w ith a lattice co n sta n t o f 13-13.5 nm , form ed b y a — 150 k D a protein. Interestingly, S -lay er n eg ativ e m u tan ts h av e not b een iso la te d , su g g e stin g an in d isp e n sa b le ro le fo r th is S -la y e r, a lso sh o w n to co n stitu te a b acterio p h ag e recep to r (H ow ard and T ip p er, 1973). T h e S -lay e rs from n o n -p ath o g en ic B, sphaericus strains have been used to study th e d y n am ic p ro cess o f S -lay e r assem b ly d u rin g grow th (Sleytr an d G lauert, 1975; H o w ard et a l, 1982), to dem onstrate th e bilobal nature o f the S-layer subunit and define the dom ains and bonds involved in array form ation as w ell as anchorage to the cell w all (H astie an d B rin to n , 1979a; H o w ard and T ip p er, 1973; L epault etal,, 1986), to stu d y the sp ecificity o f S- la y cr reco n stitu tio n (HastiC and B rinton, 1979b), and the v ariatio n in fin e stru ctu ral detail betw een air-dried negatively stained and unstained fro zen -h y d rated sp ecim en s (L e p a u lta n d Pitt, 1984; L epault etal., 1986).

AH th e p ath o g en ic strain s o f B. sphaericus p o ssess o b liq u e S -lay ers w ith a sp acin g o f 5 nm and fa in t secondary linearity at ab o u t 27° (L ew is et al., 1987). T h ese co v er the en tire cell surface, and have the ability to reassem ble in vitro. In spite o f their stru ctu ral h o m o g en eity , it w as found that S -layer proteins o f p ath o g en ic strain s w ere an iig en ically heterogeneous. T h e re was a p erfect correlation betw een an tib o d y typing and the type o f peptide m ap obtained upon trypsin digestion, su g g estin g th a t an tig en ic variation w as due lo differences in prim ary am ino acid sequence. H ow ever, all S -lay er p ro tein s sh ared m any b io ch em ical characteristics, all w ere g ly co sy lated , had sim ila r am in o acid co m p o sitio n s, m olecular m asses (133-155 kD a) and isoelectric points (4,6- 4 .9 ). In tere stin g ly , sin c e the S -lay ers o f pathogenic strain s o f B. sphaericus w ere

(29)

lin e a r (as th o se o f B. thuringiensis) w h ereas n o n -p a th o g e n ie s tra in s p o sse ssed te trag o n al array s, a p o ssib le relatio n sh ip betw een S -lay e r and p a th o g e n icity w as co n sid e red an d further supported by the fact that a p roteolytic deg rad atio n p ro d u ct o f the S -lay er protein o f strain 2362 appeared to be to x ic to insects. P rep aratio n s o f the larv icid a l crystal show ed that it w as form ed by four autigenically related proteins, 125, 110,, 63 and 43 k D a (B aum ann et a l, 1985). E x c itin g resu lts sh o w ed th a t upon com pletion o f the exponential phase, and initiation o f the sporulation process, a gradual decrease o f the ab u n d an t 125 kD a protein w as accom panied by a proportional increase o f th e 110 k D a protein. S ince the latter proved lo be toxic to m osquito larvae, but not as to x ic as the 43 k D a protein, it w as proposed that the 110 and the 43 k D a parasporal c ry s ta l c o m p o n en ts rep rese n ted su b se q u en t d eg rad atio n p ro d u cts o f the 125 kD a protoxin, each having increased toxicity against insect larvae (B roadw el! and B aum ann, 1986). O nce the gene encoding the 125 k D a protein w as cloned and seq u en ced , it w as fo u n d that the 125 kD a w as the precursor o f the 122 kD a S -layer protein o f strain 2362, an d th a t the 125, 122 (S -lay er p ro tein ) and 110 kD a p ro te in s sh a red the sa m e IM- te rm in u s a m in o a c id se q u en ce (B o w d itch et a l, 1989). H o w e v er, it w as also dem onstrated that no relationship existed between this group o f proteins and the 43 kD a to x in , and th e p ro p o sed relatio n sh ip betw een S -lay er and to x icity beg an to collapse. N o w it is k n o w n th a t no relatio n sh ip ex ists betw een S -lay er and p ath o g en icity o f IS. sphaericus. T h e 122 and 110 kD a proteins w ere d em o n strated n o t to be p art o f the p arasp o ral crystal and the 110 kD a protein not to be toxic to m osquito larvae (B ow dileh et a l, 1989; B au m an n and B aum ann, 1991; B aum ann et a l, 1991). T h erefo re, we are le ft w ith an o th er w ell characterized S -layer with no functional role y e t assigned. Even the putative protective role o f the S -layer against m uram idases w as not confirm ed (Stira et a l , 1990).

B a c t e r o i d e s b u c c a e , B a c te r o id e s s p p . , an d o t h e r p a t h o g e n s a s s o c ia te d w ith p e rio d o n titis

In th e p ro g ressio n o f th e in flam m ato ry p erio d o n tal d isease, th ere is a c le a r succession o f the resid en t m icrobiota from a predom inantly gram -p o sitiv e facultatively an aero b ic one, to one that is alm o st exclusively gram -negative and anaerobic, A m ajo r co m p o n e n t o f this co m m u n ity com prises several Bacteroides species frequently found in a sso ciatio n w ith apical periodontitis (infection o f the ja w b o n e). F ro m these, five sp e c ie s h av e been show n to possess S-layers: B. buccae, B, caplllus, B, pentosaceus

(30)

12

(H aap asalo et al,, 1985; K ornm an and H olt, 1981), B, heparinolyticus (O k u d a et al., 1985), and B, forsythus (T anner et at,, 1986). H ow ever, the S -lay er is n o t u su ally the o u term o st lay er on m ost o f these bacteria since they also po ssess slim e layers detected as an electro n o paque m aterial in specim ens stain ed in the p resen ce o f ta n n ic acid (H aap asalo et al., 1985) o r ruthenium red (K ornm an and H olt, 1981). M o reo v er, B. buccae and B, capillus also possess pill (H aapasalo etal,, 1985).

Sjhrgen et al, (1.985) show ed that two different types o f h exagonal S -layers are p resen t on d ifferen t strains o f B, buccae, B. capillus and B. pentosaceus. T h e lattice c o n sta n t o f o n e S-layer is 2'1.5 ± 0.5 nm and the o th er 7.7 ± 0.3 nm. A lthough the tw o S -la y c r ty p es can c o -e x ist on the sam e su p p o rtin g m em b ran e, a n aly sis by o p tical d iffraction sh o w ed that they did not o ccu r on top o f each o th er (su p erim p o sed layers). In th e sam e stu d y (SjOrgen etal,, 1985), the 3-D reco n stru ctio n o f th e 21.5 nm array w as achieved. It consisted o f a sin g le m orphological unit o f 6-fold sy m m e try w ith a cen tral pore o f ~5 nm in d iam eter and six sm aller pores (5 x 2.5 nm ) su rro u n d in g it. In ad d itio n to th ese tw o S -lay er types, cells o f B. buccae have been sh o w n to p o sses an h ex ag o n ally arranged periodic structure (K erosuo etal,, 1987 & 1988b). T h is kin d o f array , form ed by cry stallin e o u ter m em brane proteins, also has been o b serv ed in o th e r p a th o g e n ic b acteria like Bordetella pertussis (K essel et al,, 1988) and o th e r non- pathogcnic species (review ed in M essner and Sleytr, 1992). T h e relation betw een the 8

nm array o f crystalline ou ter m em brane proteins and the tw o S-layers is not know n. In the first rep o rt o f O kuda et al. (1985) no characterization o f the S -lay er o f B. heparinolyticus w as attem pted. Later, this w as structurally ch aracterized by K erosuo et al, (1 9 8 8 b ) as a thin electro n d en se lay er su rro u n d ed by a m o rp h o u s m aterial and separated from the outer m em brane by an electron dense, 20 nm gap. T h is layer has an hexagonal lattice w ith a spacing o f about 20 nm. T h e stru ctu re o f th e S -lay er fro m B. forsythus w as also fu rth er ch ara cterized by K erosuo (1 9 8 8 ) as an o b liq u e array o f

a b o u t 10 nm sp acin g and 10 nm height. S om etim es the array co u ld be sep arated in sin g le lines (ragged appearance), suggesting m ultiple su b u n it-su b u n it in teractio n s; the interactions w ithin lines being stronger than interactions betw een lines, U nfortunately, in th ese and oth er reports docum enting the existence o f S-laycrs on Bacteroides species ,no biochem ical characterization w as attem pted and only in one case, th a t o f B, buccae, w as the role o f the S-laycr in m ediating an interaction with leukocytes in vitro explored (K ero su o et al,, 1990). U nfortunately, no S -layer d eficient m utants w ere available and a sp ecific ro le for the S -laycr w as n o t dem onstrated. M o reo v er, so m e iso lates studied

(31)

13

w ere ap p a re n tly cap su lated (K, L ounatm aa, personal co m m u n icatio n ) o b scu rin g the role o f the S -lay er in adherence,

A n o th e r S -lay c r for w h ich a fu n ctio n al role has been ex p lo re d is th at o f Wollinella recta, an o ral pathogen frequently im plicated in m ixed periodontal infections to g eth er with o th e r flagellated, anaerobic gram -negatives; Campylobacter coacistts and Eikenella conodens (L ai et ah, 1981). From these organism s only W. recta clearly d isp la y ed an S -lay er o f hexagonal space sym m etry and a lattice co n stan t o f ab o u t 20 nm , D o k lan d et a l (1988 & 1990), as w ell as K ero su o et a l (1 9 8 8 a ) fu rth e r ch aracterized th e stru ctu re o f the S -layer from V/. recta, A close relationship betw een S -la y e r and o u te r m e m b ran e w a p fo u n d and a 3-D reco n stru c tio n w a s ach iev ed (D okland, 1988 & 1990), confirm ing the p6 sym m etry and a lattice co n stan t o f 21. nm , T h e th ick n ess o f the la y er w as 15 nm (u n u su ally thick) and it w as form ed by bilobed p ro te in su b u n its in an M6C3 arra n g e m en t (refer lo Fig, 1). T h e six h eav y dom ains a ro u n d the 6-fo ld sym m etry axis form a funnel-shaped m assive un it th at in teract w ith a d ja c e n t units th rough the lig h ter do m ain s at the 3-fold axis. In terestin g ly , a second p e rio d ic stru c tu re w as p resen t in n eg ativ ely stain ed cell w all frag m e n ts, Us 2-D p ro jectio n sh o w ed a p2 sym m etry w ith u n it cell vectors o f 8.5 x 12,5 nm and a relative angle o f 85°, an d apparently it represented an alternate crystallization lattice o f the sam e S -la y e r p ro tein (D o k lan d , 1988), C o m p arin g S -lay cr p o sitiv e and S -lay e r negative stra in s o f W, recta it w as sh o w n th at the p resen ce o f S -lay c r c o rrelate d w ith the ap p earan ce o f an acidic 142-154 kD a protein (B orinsky and H olt, 1990), T h e ab sence o f S -la y e r also cau sed a 45-60% in crease in bacterial ad h eren ce to a hum an gingival fib ro b last c e lt line. A lthough clearly pointing to a potentially im p o rtan t function, this alte re d b ac teria -h o st c e ll in teractio n in the ab sen ce o f S -lay er has n o t been fu rth er characterized. Interestingly, as previously indicated for Aeromonas species o f the 0 :1 1 s e ro ty p e , th e L P S o f W. recta p o s s e s s e s O -p o ly s a c c h a rid e c h a in s o f ra th e r h o m o g en eo u s size co n tain in g 5-8 rep eatin g units (G illespie e t a l , 1988). M oreover, this L P S had a n u nusual high co n ten t o f rham nose (88%).

T w o o th e r organism s associated w ith oral infections have been dem o n strated to p o sse ss S -layers. T h e se are Campylobacter sputorum and Bacillus sp, strain M 3 198, T h e fo rm e r c o n s titu te s a ca se in w h ich the p re se n c e o f S -la y e r h a s on ly been d o c u m en ted in thin sectio n s o f the o rg an ism , since its fine stru c tu re co u ld n o t be re so lv e d by n eg ativ e stain in g (L ai et a l, 1981). In terestin g ly (see b elo w ), the fin e stru c tu re o f th e S -lay er o f an o th er C am pylobacter, Campylobacter fetus, also has n o t

(32)

14

been resolved by n eg ativ e staining, T h e strain M 3198 is a p eritrich o u sly flag ellated , facu ltativ ely an aero b ic Bacillus species, related to li, coagulans and B, circulans. It w as isolated from a ro o t canal infection and found to have an oblique S -layer w ith 9.5 nm spacing betw een lines (H aapasalo etal., 1988).

B a c te r o id e s n o d o s u s

T his organism is the causal ag en t o f ovine fo o tro t disease (h o o f in fe ctio n s o f sh eep and g o ats). It is an o b lig ate an aero b ic, g ram -n eg ativ e rod w ith an u n certain tax o n o m ic g e n e ric p o sitio n , th a t has been p ro p o sed to be m o v e d o u t fro m th e Bacteroides g en u s (S h ah , 1992), to g e th e r w ith m an y o th e r b a c te ria p re v io u sly classified as Bacteroides species (actually, m ost o f the above m entioned oral path o g en s arc bein g reclassified into the genus Prevotella), T he cell surface o f this o rg an ism is very co m p lex , o w in g to the p resence o f pili, cap su le, u nusual ro d -lik e stru c tu res, a d iffu se m aterial associated w ith pili, polar rings and an S -layer (E v ery and S k erm an , 1980). T h e S -lay er is co m p o sed o f su b u n its arran g ed in a h ex ag o n al la ttice w ith a spacing o f 6-7 nm , clearly observed in negatively stained and freeze-etch ed sp ecim en s o f d iffe re n t v iru len t strains. A lthough the role o f surface structures in th e v iru len ce o f B, nodosus w as being investigated (E v ery and S k erm an , 1980), no fu rth er fin d in g s have been reported.

C a m p y l o b a c t e r f e t u s

T h e g e n u s Campylobacter en co m p asse s th irteen sp ecies o f g ra m -n e g a tiv e , sle n d e r c u rv e d ro d s, m o tile by m ean s o f a sin g le p o la r fla g ellu m . S p e c ie s o f Campylobacter are asacch aro ly tic and produce th eir en erg y th ro u g h resp iratio n and m etabolism o f am ino acids (T enovcr and F ennell, 1992). C fetus, the type sp ecies o f the genus, is an im p o rtan t veterinary pathogen cau sin g venereal genital tract in fectio n s in c a ttle th at m ay lead to infertility and abortion. In h u m an s in fe ctio n s are rare, b u t b eco m e sy ste m ic in c o m p ro m ised in d iv id u als. A lth o u g h m o st c a se s re p o rte d in hum ans involve extra intestinal infections, C, fetus also causes acute d iarrh eal illness,

T he first rep o rt on the existence o f an S -layer on C. fetus w as th at o f M cC o y et al, (1975). T h e S -layer w as ev id en t in thin sections, and in co n trast to oth er S -lay ers, a fu n ctio n al ro le as an an tip h ag o cy tic su rface stru ctu re w as read ily re c o g n ized . T w o ty p es o f lattice w ere ev id en t in the m icrographs o f negatively stain ed sp ecim en s la te r reported by M cC o y et al, (1976), but at that tim e this fact passed u n considered. It took

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden.. Downloaded

By using MD simulations, much work has been performed on particle interaction with surfaces (at normal and grazing incidence), cluster beam deposition, annealing

Changes in energy and angular distribution as a function of time can be used to monitor real-time and in-situ the interaction between plasma and surfaces..

The intensity distribution as a function of polar scattering angle shown in figure 6 (b1) Figure 6: The turning point, polar angle, azimuthal angle and energy loss

Figure 4 shows the scattered distribution as a function of the elastic energy loss for the different defect densities.. For a perfect crystal, the peak in the energy loss

Figure 6(a): The internal and rotational energies at the turning point (open symbols) and after collision (filled symbols) as a function of the normal incidence energy for

The adsorbed fraction of F as a function of CF exposure is presented in figure 5 (b). Similar to C, it is sensitive to the incident energy of the molecules. During

Figure 1(a) shows the number of H atoms sticking to the surface as a function of exposure for different energies.. W ith increasing exposure, the number of H atoms deposited on